]> git.neil.brown.name Git - mdadm.git/blob - super-intel.c
IMSM: Add warning message when x8-type device is used
[mdadm.git] / super-intel.c
1 /*
2  * mdadm - Intel(R) Matrix Storage Manager Support
3  *
4  * Copyright (C) 2002-2008 Intel Corporation
5  *
6  * This program is free software; you can redistribute it and/or modify it
7  * under the terms and conditions of the GNU General Public License,
8  * version 2, as published by the Free Software Foundation.
9  *
10  * This program is distributed in the hope it will be useful, but WITHOUT
11  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
13  * more details.
14  *
15  * You should have received a copy of the GNU General Public License along with
16  * this program; if not, write to the Free Software Foundation, Inc.,
17  * 51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
18  */
19
20 #define HAVE_STDINT_H 1
21 #include "mdadm.h"
22 #include "mdmon.h"
23 #include "sha1.h"
24 #include "platform-intel.h"
25 #include <values.h>
26 #include <scsi/sg.h>
27 #include <ctype.h>
28 #include <dirent.h>
29
30 /* MPB == Metadata Parameter Block */
31 #define MPB_SIGNATURE "Intel Raid ISM Cfg Sig. "
32 #define MPB_SIG_LEN (strlen(MPB_SIGNATURE))
33 #define MPB_VERSION_RAID0 "1.0.00"
34 #define MPB_VERSION_RAID1 "1.1.00"
35 #define MPB_VERSION_MANY_VOLUMES_PER_ARRAY "1.2.00"
36 #define MPB_VERSION_3OR4_DISK_ARRAY "1.2.01"
37 #define MPB_VERSION_RAID5 "1.2.02"
38 #define MPB_VERSION_5OR6_DISK_ARRAY "1.2.04"
39 #define MPB_VERSION_CNG "1.2.06"
40 #define MPB_VERSION_ATTRIBS "1.3.00"
41 #define MAX_SIGNATURE_LENGTH  32
42 #define MAX_RAID_SERIAL_LEN   16
43
44 /* supports RAID0 */
45 #define MPB_ATTRIB_RAID0                __cpu_to_le32(0x00000001)
46 /* supports RAID1 */
47 #define MPB_ATTRIB_RAID1                __cpu_to_le32(0x00000002)
48 /* supports RAID10 */
49 #define MPB_ATTRIB_RAID10               __cpu_to_le32(0x00000004)
50 /* supports RAID1E */
51 #define MPB_ATTRIB_RAID1E               __cpu_to_le32(0x00000008)
52 /* supports RAID5 */
53 #define MPB_ATTRIB_RAID5                __cpu_to_le32(0x00000010)
54 /* supports RAID CNG */
55 #define MPB_ATTRIB_RAIDCNG              __cpu_to_le32(0x00000020)
56 /* supports expanded stripe sizes of  256K, 512K and 1MB */
57 #define MPB_ATTRIB_EXP_STRIPE_SIZE      __cpu_to_le32(0x00000040)
58
59 /* The OROM Support RST Caching of Volumes */
60 #define MPB_ATTRIB_NVM                  __cpu_to_le32(0x02000000)
61 /* The OROM supports creating disks greater than 2TB */
62 #define MPB_ATTRIB_2TB_DISK             __cpu_to_le32(0x04000000)
63 /* The OROM supports Bad Block Management */
64 #define MPB_ATTRIB_BBM                  __cpu_to_le32(0x08000000)
65
66 /* THe OROM Supports NVM Caching of Volumes */
67 #define MPB_ATTRIB_NEVER_USE2           __cpu_to_le32(0x10000000)
68 /* The OROM supports creating volumes greater than 2TB */
69 #define MPB_ATTRIB_2TB                  __cpu_to_le32(0x20000000)
70 /* originally for PMP, now it's wasted b/c. Never use this bit! */
71 #define MPB_ATTRIB_NEVER_USE            __cpu_to_le32(0x40000000)
72 /* Verify MPB contents against checksum after reading MPB */
73 #define MPB_ATTRIB_CHECKSUM_VERIFY      __cpu_to_le32(0x80000000)
74
75 /* Define all supported attributes that have to be accepted by mdadm
76  */
77 #define MPB_ATTRIB_SUPPORTED           (MPB_ATTRIB_CHECKSUM_VERIFY | \
78                                         MPB_ATTRIB_2TB             | \
79                                         MPB_ATTRIB_2TB_DISK        | \
80                                         MPB_ATTRIB_RAID0           | \
81                                         MPB_ATTRIB_RAID1           | \
82                                         MPB_ATTRIB_RAID10          | \
83                                         MPB_ATTRIB_RAID5           | \
84                                         MPB_ATTRIB_EXP_STRIPE_SIZE)
85
86 /* Define attributes that are unused but not harmful */
87 #define MPB_ATTRIB_IGNORED              (MPB_ATTRIB_NEVER_USE)
88
89 #define MPB_SECTOR_CNT 2210
90 #define IMSM_RESERVED_SECTORS 4096
91 #define NUM_BLOCKS_DIRTY_STRIPE_REGION 2056
92 #define SECT_PER_MB_SHIFT 11
93
94 /* Disk configuration info. */
95 #define IMSM_MAX_DEVICES 255
96 struct imsm_disk {
97         __u8 serial[MAX_RAID_SERIAL_LEN];/* 0xD8 - 0xE7 ascii serial number */
98         __u32 total_blocks_lo;           /* 0xE8 - 0xEB total blocks lo */
99         __u32 scsi_id;                   /* 0xEC - 0xEF scsi ID */
100 #define SPARE_DISK      __cpu_to_le32(0x01)  /* Spare */
101 #define CONFIGURED_DISK __cpu_to_le32(0x02)  /* Member of some RaidDev */
102 #define FAILED_DISK     __cpu_to_le32(0x04)  /* Permanent failure */
103         __u32 status;                    /* 0xF0 - 0xF3 */
104         __u32 owner_cfg_num; /* which config 0,1,2... owns this disk */
105         __u32 total_blocks_hi;           /* 0xF4 - 0xF5 total blocks hi */
106 #define IMSM_DISK_FILLERS       3
107         __u32 filler[IMSM_DISK_FILLERS]; /* 0xF5 - 0x107 MPB_DISK_FILLERS for future expansion */
108 };
109
110 /* map selector for map managment
111  */
112 #define MAP_0           0
113 #define MAP_1           1
114 #define MAP_X           -1
115
116 /* RAID map configuration infos. */
117 struct imsm_map {
118         __u32 pba_of_lba0_lo;   /* start address of partition */
119         __u32 blocks_per_member_lo;/* blocks per member */
120         __u32 num_data_stripes_lo;      /* number of data stripes */
121         __u16 blocks_per_strip;
122         __u8  map_state;        /* Normal, Uninitialized, Degraded, Failed */
123 #define IMSM_T_STATE_NORMAL 0
124 #define IMSM_T_STATE_UNINITIALIZED 1
125 #define IMSM_T_STATE_DEGRADED 2
126 #define IMSM_T_STATE_FAILED 3
127         __u8  raid_level;
128 #define IMSM_T_RAID0 0
129 #define IMSM_T_RAID1 1
130 #define IMSM_T_RAID5 5          /* since metadata version 1.2.02 ? */
131         __u8  num_members;      /* number of member disks */
132         __u8  num_domains;      /* number of parity domains */
133         __u8  failed_disk_num;  /* valid only when state is degraded */
134         __u8  ddf;
135         __u32 pba_of_lba0_hi;
136         __u32 blocks_per_member_hi;
137         __u32 num_data_stripes_hi;
138         __u32 filler[4];        /* expansion area */
139 #define IMSM_ORD_REBUILD (1 << 24)
140         __u32 disk_ord_tbl[1];  /* disk_ord_tbl[num_members],
141                                  * top byte contains some flags
142                                  */
143 } __attribute__ ((packed));
144
145 struct imsm_vol {
146         __u32 curr_migr_unit;
147         __u32 checkpoint_id;    /* id to access curr_migr_unit */
148         __u8  migr_state;       /* Normal or Migrating */
149 #define MIGR_INIT 0
150 #define MIGR_REBUILD 1
151 #define MIGR_VERIFY 2 /* analagous to echo check > sync_action */
152 #define MIGR_GEN_MIGR 3
153 #define MIGR_STATE_CHANGE 4
154 #define MIGR_REPAIR 5
155         __u8  migr_type;        /* Initializing, Rebuilding, ... */
156         __u8  dirty;
157         __u8  fs_state;         /* fast-sync state for CnG (0xff == disabled) */
158         __u16 verify_errors;    /* number of mismatches */
159         __u16 bad_blocks;       /* number of bad blocks during verify */
160         __u32 filler[4];
161         struct imsm_map map[1];
162         /* here comes another one if migr_state */
163 } __attribute__ ((packed));
164
165 struct imsm_dev {
166         __u8  volume[MAX_RAID_SERIAL_LEN];
167         __u32 size_low;
168         __u32 size_high;
169 #define DEV_BOOTABLE            __cpu_to_le32(0x01)
170 #define DEV_BOOT_DEVICE         __cpu_to_le32(0x02)
171 #define DEV_READ_COALESCING     __cpu_to_le32(0x04)
172 #define DEV_WRITE_COALESCING    __cpu_to_le32(0x08)
173 #define DEV_LAST_SHUTDOWN_DIRTY __cpu_to_le32(0x10)
174 #define DEV_HIDDEN_AT_BOOT      __cpu_to_le32(0x20)
175 #define DEV_CURRENTLY_HIDDEN    __cpu_to_le32(0x40)
176 #define DEV_VERIFY_AND_FIX      __cpu_to_le32(0x80)
177 #define DEV_MAP_STATE_UNINIT    __cpu_to_le32(0x100)
178 #define DEV_NO_AUTO_RECOVERY    __cpu_to_le32(0x200)
179 #define DEV_CLONE_N_GO          __cpu_to_le32(0x400)
180 #define DEV_CLONE_MAN_SYNC      __cpu_to_le32(0x800)
181 #define DEV_CNG_MASTER_DISK_NUM __cpu_to_le32(0x1000)
182         __u32 status;   /* Persistent RaidDev status */
183         __u32 reserved_blocks; /* Reserved blocks at beginning of volume */
184         __u8  migr_priority;
185         __u8  num_sub_vols;
186         __u8  tid;
187         __u8  cng_master_disk;
188         __u16 cache_policy;
189         __u8  cng_state;
190         __u8  cng_sub_state;
191 #define IMSM_DEV_FILLERS 10
192         __u32 filler[IMSM_DEV_FILLERS];
193         struct imsm_vol vol;
194 } __attribute__ ((packed));
195
196 struct imsm_super {
197         __u8 sig[MAX_SIGNATURE_LENGTH]; /* 0x00 - 0x1F */
198         __u32 check_sum;                /* 0x20 - 0x23 MPB Checksum */
199         __u32 mpb_size;                 /* 0x24 - 0x27 Size of MPB */
200         __u32 family_num;               /* 0x28 - 0x2B Checksum from first time this config was written */
201         __u32 generation_num;           /* 0x2C - 0x2F Incremented each time this array's MPB is written */
202         __u32 error_log_size;           /* 0x30 - 0x33 in bytes */
203         __u32 attributes;               /* 0x34 - 0x37 */
204         __u8 num_disks;                 /* 0x38 Number of configured disks */
205         __u8 num_raid_devs;             /* 0x39 Number of configured volumes */
206         __u8 error_log_pos;             /* 0x3A  */
207         __u8 fill[1];                   /* 0x3B */
208         __u32 cache_size;               /* 0x3c - 0x40 in mb */
209         __u32 orig_family_num;          /* 0x40 - 0x43 original family num */
210         __u32 pwr_cycle_count;          /* 0x44 - 0x47 simulated power cycle count for array */
211         __u32 bbm_log_size;             /* 0x48 - 0x4B - size of bad Block Mgmt Log in bytes */
212 #define IMSM_FILLERS 35
213         __u32 filler[IMSM_FILLERS];     /* 0x4C - 0xD7 RAID_MPB_FILLERS */
214         struct imsm_disk disk[1];       /* 0xD8 diskTbl[numDisks] */
215         /* here comes imsm_dev[num_raid_devs] */
216         /* here comes BBM logs */
217 } __attribute__ ((packed));
218
219 #define BBM_LOG_MAX_ENTRIES 254
220
221 struct bbm_log_entry {
222         __u64 defective_block_start;
223 #define UNREADABLE 0xFFFFFFFF
224         __u32 spare_block_offset;
225         __u16 remapped_marked_count;
226         __u16 disk_ordinal;
227 } __attribute__ ((__packed__));
228
229 struct bbm_log {
230         __u32 signature; /* 0xABADB10C */
231         __u32 entry_count;
232         __u32 reserved_spare_block_count; /* 0 */
233         __u32 reserved; /* 0xFFFF */
234         __u64 first_spare_lba;
235         struct bbm_log_entry mapped_block_entries[BBM_LOG_MAX_ENTRIES];
236 } __attribute__ ((__packed__));
237
238 #ifndef MDASSEMBLE
239 static char *map_state_str[] = { "normal", "uninitialized", "degraded", "failed" };
240 #endif
241
242 #define RAID_DISK_RESERVED_BLOCKS_IMSM_HI 2209
243
244 #define GEN_MIGR_AREA_SIZE 2048 /* General Migration Copy Area size in blocks */
245
246 #define MIGR_REC_BUF_SIZE 512 /* size of migr_record i/o buffer */
247 #define MIGR_REC_POSITION 512 /* migr_record position offset on disk,
248                                * MIGR_REC_BUF_SIZE <= MIGR_REC_POSITION
249                                */
250
251 #define UNIT_SRC_NORMAL     0   /* Source data for curr_migr_unit must
252                                  *  be recovered using srcMap */
253 #define UNIT_SRC_IN_CP_AREA 1   /* Source data for curr_migr_unit has
254                                  *  already been migrated and must
255                                  *  be recovered from checkpoint area */
256 struct migr_record {
257         __u32 rec_status;           /* Status used to determine how to restart
258                                      * migration in case it aborts
259                                      * in some fashion */
260         __u32 curr_migr_unit;       /* 0..numMigrUnits-1 */
261         __u32 family_num;           /* Family number of MPB
262                                      * containing the RaidDev
263                                      * that is migrating */
264         __u32 ascending_migr;       /* True if migrating in increasing
265                                      * order of lbas */
266         __u32 blocks_per_unit;      /* Num disk blocks per unit of operation */
267         __u32 dest_depth_per_unit;  /* Num member blocks each destMap
268                                      * member disk
269                                      * advances per unit-of-operation */
270         __u32 ckpt_area_pba;        /* Pba of first block of ckpt copy area */
271         __u32 dest_1st_member_lba;  /* First member lba on first
272                                      * stripe of destination */
273         __u32 num_migr_units;       /* Total num migration units-of-op */
274         __u32 post_migr_vol_cap;    /* Size of volume after
275                                      * migration completes */
276         __u32 post_migr_vol_cap_hi; /* Expansion space for LBA64 */
277         __u32 ckpt_read_disk_num;   /* Which member disk in destSubMap[0] the
278                                      * migration ckpt record was read from
279                                      * (for recovered migrations) */
280 } __attribute__ ((__packed__));
281
282 struct md_list {
283         /* usage marker:
284          *  1: load metadata
285          *  2: metadata does not match
286          *  4: already checked
287          */
288         int   used;
289         char  *devname;
290         int   found;
291         int   container;
292         dev_t st_rdev;
293         struct md_list *next;
294 };
295
296 #define pr_vrb(fmt, arg...) (void) (verbose && pr_err(fmt, ##arg))
297
298 static __u8 migr_type(struct imsm_dev *dev)
299 {
300         if (dev->vol.migr_type == MIGR_VERIFY &&
301             dev->status & DEV_VERIFY_AND_FIX)
302                 return MIGR_REPAIR;
303         else
304                 return dev->vol.migr_type;
305 }
306
307 static void set_migr_type(struct imsm_dev *dev, __u8 migr_type)
308 {
309         /* for compatibility with older oroms convert MIGR_REPAIR, into
310          * MIGR_VERIFY w/ DEV_VERIFY_AND_FIX status
311          */
312         if (migr_type == MIGR_REPAIR) {
313                 dev->vol.migr_type = MIGR_VERIFY;
314                 dev->status |= DEV_VERIFY_AND_FIX;
315         } else {
316                 dev->vol.migr_type = migr_type;
317                 dev->status &= ~DEV_VERIFY_AND_FIX;
318         }
319 }
320
321 static unsigned int sector_count(__u32 bytes)
322 {
323         return ROUND_UP(bytes, 512) / 512;
324 }
325
326 static unsigned int mpb_sectors(struct imsm_super *mpb)
327 {
328         return sector_count(__le32_to_cpu(mpb->mpb_size));
329 }
330
331 struct intel_dev {
332         struct imsm_dev *dev;
333         struct intel_dev *next;
334         unsigned index;
335 };
336
337 struct intel_hba {
338         enum sys_dev_type type;
339         char *path;
340         char *pci_id;
341         struct intel_hba *next;
342 };
343
344 enum action {
345         DISK_REMOVE = 1,
346         DISK_ADD
347 };
348 /* internal representation of IMSM metadata */
349 struct intel_super {
350         union {
351                 void *buf; /* O_DIRECT buffer for reading/writing metadata */
352                 struct imsm_super *anchor; /* immovable parameters */
353         };
354         union {
355                 void *migr_rec_buf; /* buffer for I/O operations */
356                 struct migr_record *migr_rec; /* migration record */
357         };
358         int clean_migration_record_by_mdmon; /* when reshape is switched to next
359                 array, it indicates that mdmon is allowed to clean migration
360                 record */
361         size_t len; /* size of the 'buf' allocation */
362         void *next_buf; /* for realloc'ing buf from the manager */
363         size_t next_len;
364         int updates_pending; /* count of pending updates for mdmon */
365         int current_vol; /* index of raid device undergoing creation */
366         unsigned long long create_offset; /* common start for 'current_vol' */
367         __u32 random; /* random data for seeding new family numbers */
368         struct intel_dev *devlist;
369         struct dl {
370                 struct dl *next;
371                 int index;
372                 __u8 serial[MAX_RAID_SERIAL_LEN];
373                 int major, minor;
374                 char *devname;
375                 struct imsm_disk disk;
376                 int fd;
377                 int extent_cnt;
378                 struct extent *e; /* for determining freespace @ create */
379                 int raiddisk; /* slot to fill in autolayout */
380                 enum action action;
381         } *disks, *current_disk;
382         struct dl *disk_mgmt_list; /* list of disks to add/remove while mdmon
383                                       active */
384         struct dl *missing; /* disks removed while we weren't looking */
385         struct bbm_log *bbm_log;
386         struct intel_hba *hba; /* device path of the raid controller for this metadata */
387         const struct imsm_orom *orom; /* platform firmware support */
388         struct intel_super *next; /* (temp) list for disambiguating family_num */
389 };
390
391 struct intel_disk {
392         struct imsm_disk disk;
393         #define IMSM_UNKNOWN_OWNER (-1)
394         int owner;
395         struct intel_disk *next;
396 };
397
398 struct extent {
399         unsigned long long start, size;
400 };
401
402 /* definitions of reshape process types */
403 enum imsm_reshape_type {
404         CH_TAKEOVER,
405         CH_MIGRATION,
406         CH_ARRAY_SIZE,
407 };
408
409 /* definition of messages passed to imsm_process_update */
410 enum imsm_update_type {
411         update_activate_spare,
412         update_create_array,
413         update_kill_array,
414         update_rename_array,
415         update_add_remove_disk,
416         update_reshape_container_disks,
417         update_reshape_migration,
418         update_takeover,
419         update_general_migration_checkpoint,
420         update_size_change,
421 };
422
423 struct imsm_update_activate_spare {
424         enum imsm_update_type type;
425         struct dl *dl;
426         int slot;
427         int array;
428         struct imsm_update_activate_spare *next;
429 };
430
431 struct geo_params {
432         char devnm[32];
433         char *dev_name;
434         unsigned long long size;
435         int level;
436         int layout;
437         int chunksize;
438         int raid_disks;
439 };
440
441 enum takeover_direction {
442         R10_TO_R0,
443         R0_TO_R10
444 };
445 struct imsm_update_takeover {
446         enum imsm_update_type type;
447         int subarray;
448         enum takeover_direction direction;
449 };
450
451 struct imsm_update_reshape {
452         enum imsm_update_type type;
453         int old_raid_disks;
454         int new_raid_disks;
455
456         int new_disks[1]; /* new_raid_disks - old_raid_disks makedev number */
457 };
458
459 struct imsm_update_reshape_migration {
460         enum imsm_update_type type;
461         int old_raid_disks;
462         int new_raid_disks;
463         /* fields for array migration changes
464          */
465         int subdev;
466         int new_level;
467         int new_layout;
468         int new_chunksize;
469
470         int new_disks[1]; /* new_raid_disks - old_raid_disks makedev number */
471 };
472
473 struct imsm_update_size_change {
474         enum imsm_update_type type;
475         int subdev;
476         long long new_size;
477 };
478
479 struct imsm_update_general_migration_checkpoint {
480         enum imsm_update_type type;
481         __u32 curr_migr_unit;
482 };
483
484 struct disk_info {
485         __u8 serial[MAX_RAID_SERIAL_LEN];
486 };
487
488 struct imsm_update_create_array {
489         enum imsm_update_type type;
490         int dev_idx;
491         struct imsm_dev dev;
492 };
493
494 struct imsm_update_kill_array {
495         enum imsm_update_type type;
496         int dev_idx;
497 };
498
499 struct imsm_update_rename_array {
500         enum imsm_update_type type;
501         __u8 name[MAX_RAID_SERIAL_LEN];
502         int dev_idx;
503 };
504
505 struct imsm_update_add_remove_disk {
506         enum imsm_update_type type;
507 };
508
509 static const char *_sys_dev_type[] = {
510         [SYS_DEV_UNKNOWN] = "Unknown",
511         [SYS_DEV_SAS] = "SAS",
512         [SYS_DEV_SATA] = "SATA",
513         [SYS_DEV_NVME] = "NVMe",
514         [SYS_DEV_VMD] = "VMD"
515 };
516
517 const char *get_sys_dev_type(enum sys_dev_type type)
518 {
519         if (type >= SYS_DEV_MAX)
520                 type = SYS_DEV_UNKNOWN;
521
522         return _sys_dev_type[type];
523 }
524
525 static struct intel_hba * alloc_intel_hba(struct sys_dev *device)
526 {
527         struct intel_hba *result = xmalloc(sizeof(*result));
528
529         result->type = device->type;
530         result->path = xstrdup(device->path);
531         result->next = NULL;
532         if (result->path && (result->pci_id = strrchr(result->path, '/')) != NULL)
533                 result->pci_id++;
534
535         return result;
536 }
537
538 static struct intel_hba * find_intel_hba(struct intel_hba *hba, struct sys_dev *device)
539 {
540         struct intel_hba *result;
541
542         for (result = hba; result; result = result->next) {
543                 if (result->type == device->type && strcmp(result->path, device->path) == 0)
544                         break;
545         }
546         return result;
547 }
548
549 static int attach_hba_to_super(struct intel_super *super, struct sys_dev *device)
550 {
551         struct intel_hba *hba;
552
553         /* check if disk attached to Intel HBA */
554         hba = find_intel_hba(super->hba, device);
555         if (hba != NULL)
556                 return 1;
557         /* Check if HBA is already attached to super */
558         if (super->hba == NULL) {
559                 super->hba = alloc_intel_hba(device);
560                 return 1;
561         }
562
563         hba = super->hba;
564         /* Intel metadata allows for all disks attached to the same type HBA.
565          * Do not support HBA types mixing
566          */
567         if (device->type != hba->type)
568                 return 2;
569
570         /* Always forbid spanning between VMD domains (seen as different controllers by mdadm) */
571         if (device->type == SYS_DEV_VMD && !path_attached_to_hba(device->path, hba->path))
572                 return 2;
573
574         /* Multiple same type HBAs can be used if they share the same OROM */
575         const struct imsm_orom *device_orom = get_orom_by_device_id(device->dev_id);
576
577         if (device_orom != super->orom)
578                 return 2;
579
580         while (hba->next)
581                 hba = hba->next;
582
583         hba->next = alloc_intel_hba(device);
584         return 1;
585 }
586
587 static struct sys_dev* find_disk_attached_hba(int fd, const char *devname)
588 {
589         struct sys_dev *list, *elem;
590         char *disk_path;
591
592         if ((list = find_intel_devices()) == NULL)
593                 return 0;
594
595         if (fd < 0)
596                 disk_path  = (char *) devname;
597         else
598                 disk_path = diskfd_to_devpath(fd);
599
600         if (!disk_path)
601                 return 0;
602
603         for (elem = list; elem; elem = elem->next)
604                 if (path_attached_to_hba(disk_path, elem->path))
605                         return elem;
606
607         if (disk_path != devname)
608                 free(disk_path);
609
610         return NULL;
611 }
612
613 static int find_intel_hba_capability(int fd, struct intel_super *super,
614                                      char *devname);
615
616 static struct supertype *match_metadata_desc_imsm(char *arg)
617 {
618         struct supertype *st;
619
620         if (strcmp(arg, "imsm") != 0 &&
621             strcmp(arg, "default") != 0
622                 )
623                 return NULL;
624
625         st = xcalloc(1, sizeof(*st));
626         st->ss = &super_imsm;
627         st->max_devs = IMSM_MAX_DEVICES;
628         st->minor_version = 0;
629         st->sb = NULL;
630         return st;
631 }
632
633 #ifndef MDASSEMBLE
634 static __u8 *get_imsm_version(struct imsm_super *mpb)
635 {
636         return &mpb->sig[MPB_SIG_LEN];
637 }
638 #endif
639
640 /* retrieve a disk directly from the anchor when the anchor is known to be
641  * up-to-date, currently only at load time
642  */
643 static struct imsm_disk *__get_imsm_disk(struct imsm_super *mpb, __u8 index)
644 {
645         if (index >= mpb->num_disks)
646                 return NULL;
647         return &mpb->disk[index];
648 }
649
650 /* retrieve the disk description based on a index of the disk
651  * in the sub-array
652  */
653 static struct dl *get_imsm_dl_disk(struct intel_super *super, __u8 index)
654 {
655         struct dl *d;
656
657         for (d = super->disks; d; d = d->next)
658                 if (d->index == index)
659                         return d;
660
661         return NULL;
662 }
663 /* retrieve a disk from the parsed metadata */
664 static struct imsm_disk *get_imsm_disk(struct intel_super *super, __u8 index)
665 {
666         struct dl *dl;
667
668         dl = get_imsm_dl_disk(super, index);
669         if (dl)
670                 return &dl->disk;
671
672         return NULL;
673 }
674
675 /* generate a checksum directly from the anchor when the anchor is known to be
676  * up-to-date, currently only at load or write_super after coalescing
677  */
678 static __u32 __gen_imsm_checksum(struct imsm_super *mpb)
679 {
680         __u32 end = mpb->mpb_size / sizeof(end);
681         __u32 *p = (__u32 *) mpb;
682         __u32 sum = 0;
683
684         while (end--) {
685                 sum += __le32_to_cpu(*p);
686                 p++;
687         }
688
689         return sum - __le32_to_cpu(mpb->check_sum);
690 }
691
692 static size_t sizeof_imsm_map(struct imsm_map *map)
693 {
694         return sizeof(struct imsm_map) + sizeof(__u32) * (map->num_members - 1);
695 }
696
697 struct imsm_map *get_imsm_map(struct imsm_dev *dev, int second_map)
698 {
699         /* A device can have 2 maps if it is in the middle of a migration.
700          * If second_map is:
701          *    MAP_0 - we return the first map
702          *    MAP_1 - we return the second map if it exists, else NULL
703          *    MAP_X - we return the second map if it exists, else the first
704          */
705         struct imsm_map *map = &dev->vol.map[0];
706         struct imsm_map *map2 = NULL;
707
708         if (dev->vol.migr_state)
709                 map2 = (void *)map + sizeof_imsm_map(map);
710
711         switch (second_map) {
712         case MAP_0:
713                 break;
714         case MAP_1:
715                 map = map2;
716                 break;
717         case MAP_X:
718                 if (map2)
719                         map = map2;
720                 break;
721         default:
722                 map = NULL;
723         }
724         return map;
725
726 }
727
728 /* return the size of the device.
729  * migr_state increases the returned size if map[0] were to be duplicated
730  */
731 static size_t sizeof_imsm_dev(struct imsm_dev *dev, int migr_state)
732 {
733         size_t size = sizeof(*dev) - sizeof(struct imsm_map) +
734                       sizeof_imsm_map(get_imsm_map(dev, MAP_0));
735
736         /* migrating means an additional map */
737         if (dev->vol.migr_state)
738                 size += sizeof_imsm_map(get_imsm_map(dev, MAP_1));
739         else if (migr_state)
740                 size += sizeof_imsm_map(get_imsm_map(dev, MAP_0));
741
742         return size;
743 }
744
745 #ifndef MDASSEMBLE
746 /* retrieve disk serial number list from a metadata update */
747 static struct disk_info *get_disk_info(struct imsm_update_create_array *update)
748 {
749         void *u = update;
750         struct disk_info *inf;
751
752         inf = u + sizeof(*update) - sizeof(struct imsm_dev) +
753               sizeof_imsm_dev(&update->dev, 0);
754
755         return inf;
756 }
757 #endif
758
759 static struct imsm_dev *__get_imsm_dev(struct imsm_super *mpb, __u8 index)
760 {
761         int offset;
762         int i;
763         void *_mpb = mpb;
764
765         if (index >= mpb->num_raid_devs)
766                 return NULL;
767
768         /* devices start after all disks */
769         offset = ((void *) &mpb->disk[mpb->num_disks]) - _mpb;
770
771         for (i = 0; i <= index; i++)
772                 if (i == index)
773                         return _mpb + offset;
774                 else
775                         offset += sizeof_imsm_dev(_mpb + offset, 0);
776
777         return NULL;
778 }
779
780 static struct imsm_dev *get_imsm_dev(struct intel_super *super, __u8 index)
781 {
782         struct intel_dev *dv;
783
784         if (index >= super->anchor->num_raid_devs)
785                 return NULL;
786         for (dv = super->devlist; dv; dv = dv->next)
787                 if (dv->index == index)
788                         return dv->dev;
789         return NULL;
790 }
791
792 /*
793  * for second_map:
794  *  == MAP_0 get first map
795  *  == MAP_1 get second map
796  *  == MAP_X than get map according to the current migr_state
797  */
798 static __u32 get_imsm_ord_tbl_ent(struct imsm_dev *dev,
799                                   int slot,
800                                   int second_map)
801 {
802         struct imsm_map *map;
803
804         map = get_imsm_map(dev, second_map);
805
806         /* top byte identifies disk under rebuild */
807         return __le32_to_cpu(map->disk_ord_tbl[slot]);
808 }
809
810 #define ord_to_idx(ord) (((ord) << 8) >> 8)
811 static __u32 get_imsm_disk_idx(struct imsm_dev *dev, int slot, int second_map)
812 {
813         __u32 ord = get_imsm_ord_tbl_ent(dev, slot, second_map);
814
815         return ord_to_idx(ord);
816 }
817
818 static void set_imsm_ord_tbl_ent(struct imsm_map *map, int slot, __u32 ord)
819 {
820         map->disk_ord_tbl[slot] = __cpu_to_le32(ord);
821 }
822
823 static int get_imsm_disk_slot(struct imsm_map *map, unsigned idx)
824 {
825         int slot;
826         __u32 ord;
827
828         for (slot = 0; slot < map->num_members; slot++) {
829                 ord = __le32_to_cpu(map->disk_ord_tbl[slot]);
830                 if (ord_to_idx(ord) == idx)
831                         return slot;
832         }
833
834         return -1;
835 }
836
837 static int get_imsm_raid_level(struct imsm_map *map)
838 {
839         if (map->raid_level == 1) {
840                 if (map->num_members == 2)
841                         return 1;
842                 else
843                         return 10;
844         }
845
846         return map->raid_level;
847 }
848
849 static int cmp_extent(const void *av, const void *bv)
850 {
851         const struct extent *a = av;
852         const struct extent *b = bv;
853         if (a->start < b->start)
854                 return -1;
855         if (a->start > b->start)
856                 return 1;
857         return 0;
858 }
859
860 static int count_memberships(struct dl *dl, struct intel_super *super)
861 {
862         int memberships = 0;
863         int i;
864
865         for (i = 0; i < super->anchor->num_raid_devs; i++) {
866                 struct imsm_dev *dev = get_imsm_dev(super, i);
867                 struct imsm_map *map = get_imsm_map(dev, MAP_0);
868
869                 if (get_imsm_disk_slot(map, dl->index) >= 0)
870                         memberships++;
871         }
872
873         return memberships;
874 }
875
876 static __u32 imsm_min_reserved_sectors(struct intel_super *super);
877
878 static int split_ull(unsigned long long n, __u32 *lo, __u32 *hi)
879 {
880         if (lo == 0 || hi == 0)
881                 return 1;
882         *lo = __le32_to_cpu((unsigned)n);
883         *hi = __le32_to_cpu((unsigned)(n >> 32));
884         return 0;
885 }
886
887 static unsigned long long join_u32(__u32 lo, __u32 hi)
888 {
889         return (unsigned long long)__le32_to_cpu(lo) |
890                (((unsigned long long)__le32_to_cpu(hi)) << 32);
891 }
892
893 static unsigned long long total_blocks(struct imsm_disk *disk)
894 {
895         if (disk == NULL)
896                 return 0;
897         return join_u32(disk->total_blocks_lo, disk->total_blocks_hi);
898 }
899
900 static unsigned long long pba_of_lba0(struct imsm_map *map)
901 {
902         if (map == NULL)
903                 return 0;
904         return join_u32(map->pba_of_lba0_lo, map->pba_of_lba0_hi);
905 }
906
907 static unsigned long long blocks_per_member(struct imsm_map *map)
908 {
909         if (map == NULL)
910                 return 0;
911         return join_u32(map->blocks_per_member_lo, map->blocks_per_member_hi);
912 }
913
914 #ifndef MDASSEMBLE
915 static unsigned long long num_data_stripes(struct imsm_map *map)
916 {
917         if (map == NULL)
918                 return 0;
919         return join_u32(map->num_data_stripes_lo, map->num_data_stripes_hi);
920 }
921
922 static void set_total_blocks(struct imsm_disk *disk, unsigned long long n)
923 {
924         split_ull(n, &disk->total_blocks_lo, &disk->total_blocks_hi);
925 }
926 #endif
927
928 static void set_pba_of_lba0(struct imsm_map *map, unsigned long long n)
929 {
930         split_ull(n, &map->pba_of_lba0_lo, &map->pba_of_lba0_hi);
931 }
932
933 static void set_blocks_per_member(struct imsm_map *map, unsigned long long n)
934 {
935         split_ull(n, &map->blocks_per_member_lo, &map->blocks_per_member_hi);
936 }
937
938 static void set_num_data_stripes(struct imsm_map *map, unsigned long long n)
939 {
940         split_ull(n, &map->num_data_stripes_lo, &map->num_data_stripes_hi);
941 }
942
943 static struct extent *get_extents(struct intel_super *super, struct dl *dl)
944 {
945         /* find a list of used extents on the given physical device */
946         struct extent *rv, *e;
947         int i;
948         int memberships = count_memberships(dl, super);
949         __u32 reservation;
950
951         /* trim the reserved area for spares, so they can join any array
952          * regardless of whether the OROM has assigned sectors from the
953          * IMSM_RESERVED_SECTORS region
954          */
955         if (dl->index == -1)
956                 reservation = imsm_min_reserved_sectors(super);
957         else
958                 reservation = MPB_SECTOR_CNT + IMSM_RESERVED_SECTORS;
959
960         rv = xcalloc(sizeof(struct extent), (memberships + 1));
961         e = rv;
962
963         for (i = 0; i < super->anchor->num_raid_devs; i++) {
964                 struct imsm_dev *dev = get_imsm_dev(super, i);
965                 struct imsm_map *map = get_imsm_map(dev, MAP_0);
966
967                 if (get_imsm_disk_slot(map, dl->index) >= 0) {
968                         e->start = pba_of_lba0(map);
969                         e->size = blocks_per_member(map);
970                         e++;
971                 }
972         }
973         qsort(rv, memberships, sizeof(*rv), cmp_extent);
974
975         /* determine the start of the metadata
976          * when no raid devices are defined use the default
977          * ...otherwise allow the metadata to truncate the value
978          * as is the case with older versions of imsm
979          */
980         if (memberships) {
981                 struct extent *last = &rv[memberships - 1];
982                 unsigned long long remainder;
983
984                 remainder = total_blocks(&dl->disk) - (last->start + last->size);
985                 /* round down to 1k block to satisfy precision of the kernel
986                  * 'size' interface
987                  */
988                 remainder &= ~1UL;
989                 /* make sure remainder is still sane */
990                 if (remainder < (unsigned)ROUND_UP(super->len, 512) >> 9)
991                         remainder = ROUND_UP(super->len, 512) >> 9;
992                 if (reservation > remainder)
993                         reservation = remainder;
994         }
995         e->start = total_blocks(&dl->disk) - reservation;
996         e->size = 0;
997         return rv;
998 }
999
1000 /* try to determine how much space is reserved for metadata from
1001  * the last get_extents() entry, otherwise fallback to the
1002  * default
1003  */
1004 static __u32 imsm_reserved_sectors(struct intel_super *super, struct dl *dl)
1005 {
1006         struct extent *e;
1007         int i;
1008         __u32 rv;
1009
1010         /* for spares just return a minimal reservation which will grow
1011          * once the spare is picked up by an array
1012          */
1013         if (dl->index == -1)
1014                 return MPB_SECTOR_CNT;
1015
1016         e = get_extents(super, dl);
1017         if (!e)
1018                 return MPB_SECTOR_CNT + IMSM_RESERVED_SECTORS;
1019
1020         /* scroll to last entry */
1021         for (i = 0; e[i].size; i++)
1022                 continue;
1023
1024         rv = total_blocks(&dl->disk) - e[i].start;
1025
1026         free(e);
1027
1028         return rv;
1029 }
1030
1031 static int is_spare(struct imsm_disk *disk)
1032 {
1033         return (disk->status & SPARE_DISK) == SPARE_DISK;
1034 }
1035
1036 static int is_configured(struct imsm_disk *disk)
1037 {
1038         return (disk->status & CONFIGURED_DISK) == CONFIGURED_DISK;
1039 }
1040
1041 static int is_failed(struct imsm_disk *disk)
1042 {
1043         return (disk->status & FAILED_DISK) == FAILED_DISK;
1044 }
1045
1046 /* try to determine how much space is reserved for metadata from
1047  * the last get_extents() entry on the smallest active disk,
1048  * otherwise fallback to the default
1049  */
1050 static __u32 imsm_min_reserved_sectors(struct intel_super *super)
1051 {
1052         struct extent *e;
1053         int i;
1054         unsigned long long min_active;
1055         __u32 remainder;
1056         __u32 rv = MPB_SECTOR_CNT + IMSM_RESERVED_SECTORS;
1057         struct dl *dl, *dl_min = NULL;
1058
1059         if (!super)
1060                 return rv;
1061
1062         min_active = 0;
1063         for (dl = super->disks; dl; dl = dl->next) {
1064                 if (dl->index < 0)
1065                         continue;
1066                 unsigned long long blocks = total_blocks(&dl->disk);
1067                 if (blocks < min_active || min_active == 0) {
1068                         dl_min = dl;
1069                         min_active = blocks;
1070                 }
1071         }
1072         if (!dl_min)
1073                 return rv;
1074
1075         /* find last lba used by subarrays on the smallest active disk */
1076         e = get_extents(super, dl_min);
1077         if (!e)
1078                 return rv;
1079         for (i = 0; e[i].size; i++)
1080                 continue;
1081
1082         remainder = min_active - e[i].start;
1083         free(e);
1084
1085         /* to give priority to recovery we should not require full
1086            IMSM_RESERVED_SECTORS from the spare */
1087         rv = MPB_SECTOR_CNT + NUM_BLOCKS_DIRTY_STRIPE_REGION;
1088
1089         /* if real reservation is smaller use that value */
1090         return  (remainder < rv) ? remainder : rv;
1091 }
1092
1093 /* Return minimum size of a spare that can be used in this array*/
1094 static unsigned long long min_acceptable_spare_size_imsm(struct supertype *st)
1095 {
1096         struct intel_super *super = st->sb;
1097         struct dl *dl;
1098         struct extent *e;
1099         int i;
1100         unsigned long long rv = 0;
1101
1102         if (!super)
1103                 return rv;
1104         /* find first active disk in array */
1105         dl = super->disks;
1106         while (dl && (is_failed(&dl->disk) || dl->index == -1))
1107                 dl = dl->next;
1108         if (!dl)
1109                 return rv;
1110         /* find last lba used by subarrays */
1111         e = get_extents(super, dl);
1112         if (!e)
1113                 return rv;
1114         for (i = 0; e[i].size; i++)
1115                 continue;
1116         if (i > 0)
1117                 rv = e[i-1].start + e[i-1].size;
1118         free(e);
1119
1120         /* add the amount of space needed for metadata */
1121         rv = rv + imsm_min_reserved_sectors(super);
1122
1123         return rv * 512;
1124 }
1125
1126 static int is_gen_migration(struct imsm_dev *dev);
1127
1128 #ifndef MDASSEMBLE
1129 static __u64 blocks_per_migr_unit(struct intel_super *super,
1130                                   struct imsm_dev *dev);
1131
1132 static void print_imsm_dev(struct intel_super *super,
1133                            struct imsm_dev *dev,
1134                            char *uuid,
1135                            int disk_idx)
1136 {
1137         __u64 sz;
1138         int slot, i;
1139         struct imsm_map *map = get_imsm_map(dev, MAP_0);
1140         struct imsm_map *map2 = get_imsm_map(dev, MAP_1);
1141         __u32 ord;
1142
1143         printf("\n");
1144         printf("[%.16s]:\n", dev->volume);
1145         printf("           UUID : %s\n", uuid);
1146         printf("     RAID Level : %d", get_imsm_raid_level(map));
1147         if (map2)
1148                 printf(" <-- %d", get_imsm_raid_level(map2));
1149         printf("\n");
1150         printf("        Members : %d", map->num_members);
1151         if (map2)
1152                 printf(" <-- %d", map2->num_members);
1153         printf("\n");
1154         printf("          Slots : [");
1155         for (i = 0; i < map->num_members; i++) {
1156                 ord = get_imsm_ord_tbl_ent(dev, i, MAP_0);
1157                 printf("%s", ord & IMSM_ORD_REBUILD ? "_" : "U");
1158         }
1159         printf("]");
1160         if (map2) {
1161                 printf(" <-- [");
1162                 for (i = 0; i < map2->num_members; i++) {
1163                         ord = get_imsm_ord_tbl_ent(dev, i, MAP_1);
1164                         printf("%s", ord & IMSM_ORD_REBUILD ? "_" : "U");
1165                 }
1166                 printf("]");
1167         }
1168         printf("\n");
1169         printf("    Failed disk : ");
1170         if (map->failed_disk_num == 0xff)
1171                 printf("none");
1172         else
1173                 printf("%i", map->failed_disk_num);
1174         printf("\n");
1175         slot = get_imsm_disk_slot(map, disk_idx);
1176         if (slot >= 0) {
1177                 ord = get_imsm_ord_tbl_ent(dev, slot, MAP_X);
1178                 printf("      This Slot : %d%s\n", slot,
1179                        ord & IMSM_ORD_REBUILD ? " (out-of-sync)" : "");
1180         } else
1181                 printf("      This Slot : ?\n");
1182         sz = __le32_to_cpu(dev->size_high);
1183         sz <<= 32;
1184         sz += __le32_to_cpu(dev->size_low);
1185         printf("     Array Size : %llu%s\n", (unsigned long long)sz,
1186                human_size(sz * 512));
1187         sz = blocks_per_member(map);
1188         printf("   Per Dev Size : %llu%s\n", (unsigned long long)sz,
1189                human_size(sz * 512));
1190         printf("  Sector Offset : %llu\n",
1191                 pba_of_lba0(map));
1192         printf("    Num Stripes : %llu\n",
1193                 num_data_stripes(map));
1194         printf("     Chunk Size : %u KiB",
1195                 __le16_to_cpu(map->blocks_per_strip) / 2);
1196         if (map2)
1197                 printf(" <-- %u KiB",
1198                         __le16_to_cpu(map2->blocks_per_strip) / 2);
1199         printf("\n");
1200         printf("       Reserved : %d\n", __le32_to_cpu(dev->reserved_blocks));
1201         printf("  Migrate State : ");
1202         if (dev->vol.migr_state) {
1203                 if (migr_type(dev) == MIGR_INIT)
1204                         printf("initialize\n");
1205                 else if (migr_type(dev) == MIGR_REBUILD)
1206                         printf("rebuild\n");
1207                 else if (migr_type(dev) == MIGR_VERIFY)
1208                         printf("check\n");
1209                 else if (migr_type(dev) == MIGR_GEN_MIGR)
1210                         printf("general migration\n");
1211                 else if (migr_type(dev) == MIGR_STATE_CHANGE)
1212                         printf("state change\n");
1213                 else if (migr_type(dev) == MIGR_REPAIR)
1214                         printf("repair\n");
1215                 else
1216                         printf("<unknown:%d>\n", migr_type(dev));
1217         } else
1218                 printf("idle\n");
1219         printf("      Map State : %s", map_state_str[map->map_state]);
1220         if (dev->vol.migr_state) {
1221                 struct imsm_map *map = get_imsm_map(dev, MAP_1);
1222
1223                 printf(" <-- %s", map_state_str[map->map_state]);
1224                 printf("\n     Checkpoint : %u ",
1225                            __le32_to_cpu(dev->vol.curr_migr_unit));
1226                 if (is_gen_migration(dev) && (slot > 1 || slot < 0))
1227                         printf("(N/A)");
1228                 else
1229                         printf("(%llu)", (unsigned long long)
1230                                    blocks_per_migr_unit(super, dev));
1231         }
1232         printf("\n");
1233         printf("    Dirty State : %s\n", dev->vol.dirty ? "dirty" : "clean");
1234 }
1235
1236 static void print_imsm_disk(struct imsm_disk *disk, int index, __u32 reserved)
1237 {
1238         char str[MAX_RAID_SERIAL_LEN + 1];
1239         __u64 sz;
1240
1241         if (index < -1 || !disk)
1242                 return;
1243
1244         printf("\n");
1245         snprintf(str, MAX_RAID_SERIAL_LEN + 1, "%s", disk->serial);
1246         if (index >= 0)
1247                 printf("  Disk%02d Serial : %s\n", index, str);
1248         else
1249                 printf("    Disk Serial : %s\n", str);
1250         printf("          State :%s%s%s\n", is_spare(disk) ? " spare" : "",
1251                                             is_configured(disk) ? " active" : "",
1252                                             is_failed(disk) ? " failed" : "");
1253         printf("             Id : %08x\n", __le32_to_cpu(disk->scsi_id));
1254         sz = total_blocks(disk) - reserved;
1255         printf("    Usable Size : %llu%s\n", (unsigned long long)sz,
1256                human_size(sz * 512));
1257 }
1258
1259 void examine_migr_rec_imsm(struct intel_super *super)
1260 {
1261         struct migr_record *migr_rec = super->migr_rec;
1262         struct imsm_super *mpb = super->anchor;
1263         int i;
1264
1265         for (i = 0; i < mpb->num_raid_devs; i++) {
1266                 struct imsm_dev *dev = __get_imsm_dev(mpb, i);
1267                 struct imsm_map *map;
1268                 int slot = -1;
1269
1270                 if (is_gen_migration(dev) == 0)
1271                                 continue;
1272
1273                 printf("\nMigration Record Information:");
1274
1275                 /* first map under migration */
1276                 map = get_imsm_map(dev, MAP_0);
1277                 if (map)
1278                         slot = get_imsm_disk_slot(map, super->disks->index);
1279                 if (map == NULL || slot > 1 || slot < 0) {
1280                         printf(" Empty\n                              ");
1281                         printf("Examine one of first two disks in array\n");
1282                         break;
1283                 }
1284                 printf("\n                     Status : ");
1285                 if (__le32_to_cpu(migr_rec->rec_status) == UNIT_SRC_NORMAL)
1286                         printf("Normal\n");
1287                 else
1288                         printf("Contains Data\n");
1289                 printf("               Current Unit : %u\n",
1290                        __le32_to_cpu(migr_rec->curr_migr_unit));
1291                 printf("                     Family : %u\n",
1292                        __le32_to_cpu(migr_rec->family_num));
1293                 printf("                  Ascending : %u\n",
1294                        __le32_to_cpu(migr_rec->ascending_migr));
1295                 printf("            Blocks Per Unit : %u\n",
1296                        __le32_to_cpu(migr_rec->blocks_per_unit));
1297                 printf("       Dest. Depth Per Unit : %u\n",
1298                        __le32_to_cpu(migr_rec->dest_depth_per_unit));
1299                 printf("        Checkpoint Area pba : %u\n",
1300                        __le32_to_cpu(migr_rec->ckpt_area_pba));
1301                 printf("           First member lba : %u\n",
1302                        __le32_to_cpu(migr_rec->dest_1st_member_lba));
1303                 printf("      Total Number of Units : %u\n",
1304                        __le32_to_cpu(migr_rec->num_migr_units));
1305                 printf("             Size of volume : %u\n",
1306                        __le32_to_cpu(migr_rec->post_migr_vol_cap));
1307                 printf("  Expansion space for LBA64 : %u\n",
1308                        __le32_to_cpu(migr_rec->post_migr_vol_cap_hi));
1309                 printf("       Record was read from : %u\n",
1310                        __le32_to_cpu(migr_rec->ckpt_read_disk_num));
1311
1312                 break;
1313         }
1314 }
1315 #endif /* MDASSEMBLE */
1316 /*******************************************************************************
1317  * function: imsm_check_attributes
1318  * Description: Function checks if features represented by attributes flags
1319  *              are supported by mdadm.
1320  * Parameters:
1321  *              attributes - Attributes read from metadata
1322  * Returns:
1323  *              0 - passed attributes contains unsupported features flags
1324  *              1 - all features are supported
1325  ******************************************************************************/
1326 static int imsm_check_attributes(__u32 attributes)
1327 {
1328         int ret_val = 1;
1329         __u32 not_supported = MPB_ATTRIB_SUPPORTED^0xffffffff;
1330
1331         not_supported &= ~MPB_ATTRIB_IGNORED;
1332
1333         not_supported &= attributes;
1334         if (not_supported) {
1335                 pr_err("(IMSM): Unsupported attributes : %x\n",
1336                         (unsigned)__le32_to_cpu(not_supported));
1337                 if (not_supported & MPB_ATTRIB_CHECKSUM_VERIFY) {
1338                         dprintf("\t\tMPB_ATTRIB_CHECKSUM_VERIFY \n");
1339                         not_supported ^= MPB_ATTRIB_CHECKSUM_VERIFY;
1340                 }
1341                 if (not_supported & MPB_ATTRIB_2TB) {
1342                         dprintf("\t\tMPB_ATTRIB_2TB\n");
1343                         not_supported ^= MPB_ATTRIB_2TB;
1344                 }
1345                 if (not_supported & MPB_ATTRIB_RAID0) {
1346                         dprintf("\t\tMPB_ATTRIB_RAID0\n");
1347                         not_supported ^= MPB_ATTRIB_RAID0;
1348                 }
1349                 if (not_supported & MPB_ATTRIB_RAID1) {
1350                         dprintf("\t\tMPB_ATTRIB_RAID1\n");
1351                         not_supported ^= MPB_ATTRIB_RAID1;
1352                 }
1353                 if (not_supported & MPB_ATTRIB_RAID10) {
1354                         dprintf("\t\tMPB_ATTRIB_RAID10\n");
1355                         not_supported ^= MPB_ATTRIB_RAID10;
1356                 }
1357                 if (not_supported & MPB_ATTRIB_RAID1E) {
1358                         dprintf("\t\tMPB_ATTRIB_RAID1E\n");
1359                         not_supported ^= MPB_ATTRIB_RAID1E;
1360                 }
1361                 if (not_supported & MPB_ATTRIB_RAID5) {
1362                 dprintf("\t\tMPB_ATTRIB_RAID5\n");
1363                         not_supported ^= MPB_ATTRIB_RAID5;
1364                 }
1365                 if (not_supported & MPB_ATTRIB_RAIDCNG) {
1366                         dprintf("\t\tMPB_ATTRIB_RAIDCNG\n");
1367                         not_supported ^= MPB_ATTRIB_RAIDCNG;
1368                 }
1369                 if (not_supported & MPB_ATTRIB_BBM) {
1370                         dprintf("\t\tMPB_ATTRIB_BBM\n");
1371                 not_supported ^= MPB_ATTRIB_BBM;
1372                 }
1373                 if (not_supported & MPB_ATTRIB_CHECKSUM_VERIFY) {
1374                         dprintf("\t\tMPB_ATTRIB_CHECKSUM_VERIFY (== MPB_ATTRIB_LEGACY)\n");
1375                         not_supported ^= MPB_ATTRIB_CHECKSUM_VERIFY;
1376                 }
1377                 if (not_supported & MPB_ATTRIB_EXP_STRIPE_SIZE) {
1378                         dprintf("\t\tMPB_ATTRIB_EXP_STRIP_SIZE\n");
1379                         not_supported ^= MPB_ATTRIB_EXP_STRIPE_SIZE;
1380                 }
1381                 if (not_supported & MPB_ATTRIB_2TB_DISK) {
1382                         dprintf("\t\tMPB_ATTRIB_2TB_DISK\n");
1383                         not_supported ^= MPB_ATTRIB_2TB_DISK;
1384                 }
1385                 if (not_supported & MPB_ATTRIB_NEVER_USE2) {
1386                         dprintf("\t\tMPB_ATTRIB_NEVER_USE2\n");
1387                         not_supported ^= MPB_ATTRIB_NEVER_USE2;
1388                 }
1389                 if (not_supported & MPB_ATTRIB_NEVER_USE) {
1390                         dprintf("\t\tMPB_ATTRIB_NEVER_USE\n");
1391                         not_supported ^= MPB_ATTRIB_NEVER_USE;
1392                 }
1393
1394                 if (not_supported)
1395                         dprintf("(IMSM): Unknown attributes : %x\n", not_supported);
1396
1397                 ret_val = 0;
1398         }
1399
1400         return ret_val;
1401 }
1402
1403 #ifndef MDASSEMBLE
1404 static void getinfo_super_imsm(struct supertype *st, struct mdinfo *info, char *map);
1405
1406 static void examine_super_imsm(struct supertype *st, char *homehost)
1407 {
1408         struct intel_super *super = st->sb;
1409         struct imsm_super *mpb = super->anchor;
1410         char str[MAX_SIGNATURE_LENGTH];
1411         int i;
1412         struct mdinfo info;
1413         char nbuf[64];
1414         __u32 sum;
1415         __u32 reserved = imsm_reserved_sectors(super, super->disks);
1416         struct dl *dl;
1417
1418         snprintf(str, MPB_SIG_LEN, "%s", mpb->sig);
1419         printf("          Magic : %s\n", str);
1420         snprintf(str, strlen(MPB_VERSION_RAID0), "%s", get_imsm_version(mpb));
1421         printf("        Version : %s\n", get_imsm_version(mpb));
1422         printf("    Orig Family : %08x\n", __le32_to_cpu(mpb->orig_family_num));
1423         printf("         Family : %08x\n", __le32_to_cpu(mpb->family_num));
1424         printf("     Generation : %08x\n", __le32_to_cpu(mpb->generation_num));
1425         printf("     Attributes : ");
1426         if (imsm_check_attributes(mpb->attributes))
1427                 printf("All supported\n");
1428         else
1429                 printf("not supported\n");
1430         getinfo_super_imsm(st, &info, NULL);
1431         fname_from_uuid(st, &info, nbuf, ':');
1432         printf("           UUID : %s\n", nbuf + 5);
1433         sum = __le32_to_cpu(mpb->check_sum);
1434         printf("       Checksum : %08x %s\n", sum,
1435                 __gen_imsm_checksum(mpb) == sum ? "correct" : "incorrect");
1436         printf("    MPB Sectors : %d\n", mpb_sectors(mpb));
1437         printf("          Disks : %d\n", mpb->num_disks);
1438         printf("   RAID Devices : %d\n", mpb->num_raid_devs);
1439         print_imsm_disk(__get_imsm_disk(mpb, super->disks->index), super->disks->index, reserved);
1440         if (super->bbm_log) {
1441                 struct bbm_log *log = super->bbm_log;
1442
1443                 printf("\n");
1444                 printf("Bad Block Management Log:\n");
1445                 printf("       Log Size : %d\n", __le32_to_cpu(mpb->bbm_log_size));
1446                 printf("      Signature : %x\n", __le32_to_cpu(log->signature));
1447                 printf("    Entry Count : %d\n", __le32_to_cpu(log->entry_count));
1448                 printf("   Spare Blocks : %d\n",  __le32_to_cpu(log->reserved_spare_block_count));
1449                 printf("    First Spare : %llx\n",
1450                        (unsigned long long) __le64_to_cpu(log->first_spare_lba));
1451         }
1452         for (i = 0; i < mpb->num_raid_devs; i++) {
1453                 struct mdinfo info;
1454                 struct imsm_dev *dev = __get_imsm_dev(mpb, i);
1455
1456                 super->current_vol = i;
1457                 getinfo_super_imsm(st, &info, NULL);
1458                 fname_from_uuid(st, &info, nbuf, ':');
1459                 print_imsm_dev(super, dev, nbuf + 5, super->disks->index);
1460         }
1461         for (i = 0; i < mpb->num_disks; i++) {
1462                 if (i == super->disks->index)
1463                         continue;
1464                 print_imsm_disk(__get_imsm_disk(mpb, i), i, reserved);
1465         }
1466
1467         for (dl = super->disks; dl; dl = dl->next)
1468                 if (dl->index == -1)
1469                         print_imsm_disk(&dl->disk, -1, reserved);
1470
1471         examine_migr_rec_imsm(super);
1472 }
1473
1474 static void brief_examine_super_imsm(struct supertype *st, int verbose)
1475 {
1476         /* We just write a generic IMSM ARRAY entry */
1477         struct mdinfo info;
1478         char nbuf[64];
1479         struct intel_super *super = st->sb;
1480
1481         if (!super->anchor->num_raid_devs) {
1482                 printf("ARRAY metadata=imsm\n");
1483                 return;
1484         }
1485
1486         getinfo_super_imsm(st, &info, NULL);
1487         fname_from_uuid(st, &info, nbuf, ':');
1488         printf("ARRAY metadata=imsm UUID=%s\n", nbuf + 5);
1489 }
1490
1491 static void brief_examine_subarrays_imsm(struct supertype *st, int verbose)
1492 {
1493         /* We just write a generic IMSM ARRAY entry */
1494         struct mdinfo info;
1495         char nbuf[64];
1496         char nbuf1[64];
1497         struct intel_super *super = st->sb;
1498         int i;
1499
1500         if (!super->anchor->num_raid_devs)
1501                 return;
1502
1503         getinfo_super_imsm(st, &info, NULL);
1504         fname_from_uuid(st, &info, nbuf, ':');
1505         for (i = 0; i < super->anchor->num_raid_devs; i++) {
1506                 struct imsm_dev *dev = get_imsm_dev(super, i);
1507
1508                 super->current_vol = i;
1509                 getinfo_super_imsm(st, &info, NULL);
1510                 fname_from_uuid(st, &info, nbuf1, ':');
1511                 printf("ARRAY /dev/md/%.16s container=%s member=%d UUID=%s\n",
1512                        dev->volume, nbuf + 5, i, nbuf1 + 5);
1513         }
1514 }
1515
1516 static void export_examine_super_imsm(struct supertype *st)
1517 {
1518         struct intel_super *super = st->sb;
1519         struct imsm_super *mpb = super->anchor;
1520         struct mdinfo info;
1521         char nbuf[64];
1522
1523         getinfo_super_imsm(st, &info, NULL);
1524         fname_from_uuid(st, &info, nbuf, ':');
1525         printf("MD_METADATA=imsm\n");
1526         printf("MD_LEVEL=container\n");
1527         printf("MD_UUID=%s\n", nbuf+5);
1528         printf("MD_DEVICES=%u\n", mpb->num_disks);
1529 }
1530
1531 static int copy_metadata_imsm(struct supertype *st, int from, int to)
1532 {
1533         /* The second last 512byte sector of the device contains
1534          * the "struct imsm_super" metadata.
1535          * This contains mpb_size which is the size in bytes of the
1536          * extended metadata.  This is located immediately before
1537          * the imsm_super.
1538          * We want to read all that, plus the last sector which
1539          * may contain a migration record, and write it all
1540          * to the target.
1541          */
1542         void *buf;
1543         unsigned long long dsize, offset;
1544         int sectors;
1545         struct imsm_super *sb;
1546         int written = 0;
1547
1548         if (posix_memalign(&buf, 4096, 4096) != 0)
1549                 return 1;
1550
1551         if (!get_dev_size(from, NULL, &dsize))
1552                 goto err;
1553
1554         if (lseek64(from, dsize-1024, 0) < 0)
1555                 goto err;
1556         if (read(from, buf, 512) != 512)
1557                 goto err;
1558         sb = buf;
1559         if (strncmp((char*)sb->sig, MPB_SIGNATURE, MPB_SIG_LEN) != 0)
1560                 goto err;
1561
1562         sectors = mpb_sectors(sb) + 2;
1563         offset = dsize - sectors * 512;
1564         if (lseek64(from, offset, 0) < 0 ||
1565             lseek64(to, offset, 0) < 0)
1566                 goto err;
1567         while (written < sectors * 512) {
1568                 int n = sectors*512 - written;
1569                 if (n > 4096)
1570                         n = 4096;
1571                 if (read(from, buf, n) != n)
1572                         goto err;
1573                 if (write(to, buf, n) != n)
1574                         goto err;
1575                 written += n;
1576         }
1577         free(buf);
1578         return 0;
1579 err:
1580         free(buf);
1581         return 1;
1582 }
1583
1584 static void detail_super_imsm(struct supertype *st, char *homehost)
1585 {
1586         struct mdinfo info;
1587         char nbuf[64];
1588
1589         getinfo_super_imsm(st, &info, NULL);
1590         fname_from_uuid(st, &info, nbuf, ':');
1591         printf("\n           UUID : %s\n", nbuf + 5);
1592 }
1593
1594 static void brief_detail_super_imsm(struct supertype *st)
1595 {
1596         struct mdinfo info;
1597         char nbuf[64];
1598         getinfo_super_imsm(st, &info, NULL);
1599         fname_from_uuid(st, &info, nbuf, ':');
1600         printf(" UUID=%s", nbuf + 5);
1601 }
1602
1603 static int imsm_read_serial(int fd, char *devname, __u8 *serial);
1604 static void fd2devname(int fd, char *name);
1605
1606 static int ahci_enumerate_ports(const char *hba_path, int port_count, int host_base, int verbose)
1607 {
1608         /* dump an unsorted list of devices attached to AHCI Intel storage
1609          * controller, as well as non-connected ports
1610          */
1611         int hba_len = strlen(hba_path) + 1;
1612         struct dirent *ent;
1613         DIR *dir;
1614         char *path = NULL;
1615         int err = 0;
1616         unsigned long port_mask = (1 << port_count) - 1;
1617
1618         if (port_count > (int)sizeof(port_mask) * 8) {
1619                 if (verbose > 0)
1620                         pr_err("port_count %d out of range\n", port_count);
1621                 return 2;
1622         }
1623
1624         /* scroll through /sys/dev/block looking for devices attached to
1625          * this hba
1626          */
1627         dir = opendir("/sys/dev/block");
1628         if (!dir)
1629                 return 1;
1630
1631         for (ent = readdir(dir); ent; ent = readdir(dir)) {
1632                 int fd;
1633                 char model[64];
1634                 char vendor[64];
1635                 char buf[1024];
1636                 int major, minor;
1637                 char *device;
1638                 char *c;
1639                 int port;
1640                 int type;
1641
1642                 if (sscanf(ent->d_name, "%d:%d", &major, &minor) != 2)
1643                         continue;
1644                 path = devt_to_devpath(makedev(major, minor));
1645                 if (!path)
1646                         continue;
1647                 if (!path_attached_to_hba(path, hba_path)) {
1648                         free(path);
1649                         path = NULL;
1650                         continue;
1651                 }
1652
1653                 /* retrieve the scsi device type */
1654                 if (asprintf(&device, "/sys/dev/block/%d:%d/device/xxxxxxx", major, minor) < 0) {
1655                         if (verbose > 0)
1656                                 pr_err("failed to allocate 'device'\n");
1657                         err = 2;
1658                         break;
1659                 }
1660                 sprintf(device, "/sys/dev/block/%d:%d/device/type", major, minor);
1661                 if (load_sys(device, buf, sizeof(buf)) != 0) {
1662                         if (verbose > 0)
1663                                 pr_err("failed to read device type for %s\n",
1664                                         path);
1665                         err = 2;
1666                         free(device);
1667                         break;
1668                 }
1669                 type = strtoul(buf, NULL, 10);
1670
1671                 /* if it's not a disk print the vendor and model */
1672                 if (!(type == 0 || type == 7 || type == 14)) {
1673                         vendor[0] = '\0';
1674                         model[0] = '\0';
1675                         sprintf(device, "/sys/dev/block/%d:%d/device/vendor", major, minor);
1676                         if (load_sys(device, buf, sizeof(buf)) == 0) {
1677                                 strncpy(vendor, buf, sizeof(vendor));
1678                                 vendor[sizeof(vendor) - 1] = '\0';
1679                                 c = (char *) &vendor[sizeof(vendor) - 1];
1680                                 while (isspace(*c) || *c == '\0')
1681                                         *c-- = '\0';
1682
1683                         }
1684                         sprintf(device, "/sys/dev/block/%d:%d/device/model", major, minor);
1685                         if (load_sys(device, buf, sizeof(buf)) == 0) {
1686                                 strncpy(model, buf, sizeof(model));
1687                                 model[sizeof(model) - 1] = '\0';
1688                                 c = (char *) &model[sizeof(model) - 1];
1689                                 while (isspace(*c) || *c == '\0')
1690                                         *c-- = '\0';
1691                         }
1692
1693                         if (vendor[0] && model[0])
1694                                 sprintf(buf, "%.64s %.64s", vendor, model);
1695                         else
1696                                 switch (type) { /* numbers from hald/linux/device.c */
1697                                 case 1: sprintf(buf, "tape"); break;
1698                                 case 2: sprintf(buf, "printer"); break;
1699                                 case 3: sprintf(buf, "processor"); break;
1700                                 case 4:
1701                                 case 5: sprintf(buf, "cdrom"); break;
1702                                 case 6: sprintf(buf, "scanner"); break;
1703                                 case 8: sprintf(buf, "media_changer"); break;
1704                                 case 9: sprintf(buf, "comm"); break;
1705                                 case 12: sprintf(buf, "raid"); break;
1706                                 default: sprintf(buf, "unknown");
1707                                 }
1708                 } else
1709                         buf[0] = '\0';
1710                 free(device);
1711
1712                 /* chop device path to 'host%d' and calculate the port number */
1713                 c = strchr(&path[hba_len], '/');
1714                 if (!c) {
1715                         if (verbose > 0)
1716                                 pr_err("%s - invalid path name\n", path + hba_len);
1717                         err = 2;
1718                         break;
1719                 }
1720                 *c = '\0';
1721                 if ((sscanf(&path[hba_len], "ata%d", &port) == 1) ||
1722                    ((sscanf(&path[hba_len], "host%d", &port) == 1)))
1723                         port -= host_base;
1724                 else {
1725                         if (verbose > 0) {
1726                                 *c = '/'; /* repair the full string */
1727                                 pr_err("failed to determine port number for %s\n",
1728                                         path);
1729                         }
1730                         err = 2;
1731                         break;
1732                 }
1733
1734                 /* mark this port as used */
1735                 port_mask &= ~(1 << port);
1736
1737                 /* print out the device information */
1738                 if (buf[0]) {
1739                         printf("          Port%d : - non-disk device (%s) -\n", port, buf);
1740                         continue;
1741                 }
1742
1743                 fd = dev_open(ent->d_name, O_RDONLY);
1744                 if (fd < 0)
1745                         printf("          Port%d : - disk info unavailable -\n", port);
1746                 else {
1747                         fd2devname(fd, buf);
1748                         printf("          Port%d : %s", port, buf);
1749                         if (imsm_read_serial(fd, NULL, (__u8 *) buf) == 0)
1750                                 printf(" (%.*s)\n", MAX_RAID_SERIAL_LEN, buf);
1751                         else
1752                                 printf(" ()\n");
1753                         close(fd);
1754                 }
1755                 free(path);
1756                 path = NULL;
1757         }
1758         if (path)
1759                 free(path);
1760         if (dir)
1761                 closedir(dir);
1762         if (err == 0) {
1763                 int i;
1764
1765                 for (i = 0; i < port_count; i++)
1766                         if (port_mask & (1 << i))
1767                                 printf("          Port%d : - no device attached -\n", i);
1768         }
1769
1770         return err;
1771 }
1772
1773 static int print_vmd_attached_devs(struct sys_dev *hba)
1774 {
1775         struct dirent *ent;
1776         DIR *dir;
1777         char path[292];
1778         char link[256];
1779         char *c, *rp;
1780
1781         if (hba->type != SYS_DEV_VMD)
1782                 return 1;
1783
1784         /* scroll through /sys/dev/block looking for devices attached to
1785          * this hba
1786          */
1787         dir = opendir("/sys/bus/pci/drivers/nvme");
1788         if (!dir)
1789                 return 1;
1790
1791         for (ent = readdir(dir); ent; ent = readdir(dir)) {
1792                 int n;
1793
1794                 /* is 'ent' a device? check that the 'subsystem' link exists and
1795                  * that its target matches 'bus'
1796                  */
1797                 sprintf(path, "/sys/bus/pci/drivers/nvme/%s/subsystem",
1798                         ent->d_name);
1799                 n = readlink(path, link, sizeof(link));
1800                 if (n < 0 || n >= (int)sizeof(link))
1801                         continue;
1802                 link[n] = '\0';
1803                 c = strrchr(link, '/');
1804                 if (!c)
1805                         continue;
1806                 if (strncmp("pci", c+1, strlen("pci")) != 0)
1807                         continue;
1808
1809                 sprintf(path, "/sys/bus/pci/drivers/nvme/%s", ent->d_name);
1810                 /* if not a intel NVMe - skip it*/
1811                 if (devpath_to_vendor(path) != 0x8086)
1812                         continue;
1813
1814                 rp = realpath(path, NULL);
1815                 if (!rp)
1816                         continue;
1817
1818                 if (path_attached_to_hba(rp, hba->path)) {
1819                         printf(" NVMe under VMD : %s\n", rp);
1820                 }
1821                 free(rp);
1822         }
1823
1824         closedir(dir);
1825         return 0;
1826 }
1827
1828 static void print_found_intel_controllers(struct sys_dev *elem)
1829 {
1830         for (; elem; elem = elem->next) {
1831                 pr_err("found Intel(R) ");
1832                 if (elem->type == SYS_DEV_SATA)
1833                         fprintf(stderr, "SATA ");
1834                 else if (elem->type == SYS_DEV_SAS)
1835                         fprintf(stderr, "SAS ");
1836                 else if (elem->type == SYS_DEV_NVME)
1837                         fprintf(stderr, "NVMe ");
1838
1839                 if (elem->type == SYS_DEV_VMD)
1840                         fprintf(stderr, "VMD domain");
1841                 else
1842                         fprintf(stderr, "RAID controller");
1843
1844                 if (elem->pci_id)
1845                         fprintf(stderr, " at %s", elem->pci_id);
1846                 fprintf(stderr, ".\n");
1847         }
1848         fflush(stderr);
1849 }
1850
1851 static int ahci_get_port_count(const char *hba_path, int *port_count)
1852 {
1853         struct dirent *ent;
1854         DIR *dir;
1855         int host_base = -1;
1856
1857         *port_count = 0;
1858         if ((dir = opendir(hba_path)) == NULL)
1859                 return -1;
1860
1861         for (ent = readdir(dir); ent; ent = readdir(dir)) {
1862                 int host;
1863
1864                 if ((sscanf(ent->d_name, "ata%d", &host) != 1) &&
1865                    ((sscanf(ent->d_name, "host%d", &host) != 1)))
1866                         continue;
1867                 if (*port_count == 0)
1868                         host_base = host;
1869                 else if (host < host_base)
1870                         host_base = host;
1871
1872                 if (host + 1 > *port_count + host_base)
1873                         *port_count = host + 1 - host_base;
1874         }
1875         closedir(dir);
1876         return host_base;
1877 }
1878
1879 static void print_imsm_capability(const struct imsm_orom *orom)
1880 {
1881         printf("       Platform : Intel(R) ");
1882         if (orom->capabilities == 0 && orom->driver_features == 0)
1883                 printf("Matrix Storage Manager\n");
1884         else
1885                 printf("Rapid Storage Technology%s\n",
1886                         imsm_orom_is_enterprise(orom) ? " enterprise" : "");
1887         if (orom->major_ver || orom->minor_ver || orom->hotfix_ver || orom->build)
1888                 printf("        Version : %d.%d.%d.%d\n", orom->major_ver,
1889                                 orom->minor_ver, orom->hotfix_ver, orom->build);
1890         printf("    RAID Levels :%s%s%s%s%s\n",
1891                imsm_orom_has_raid0(orom) ? " raid0" : "",
1892                imsm_orom_has_raid1(orom) ? " raid1" : "",
1893                imsm_orom_has_raid1e(orom) ? " raid1e" : "",
1894                imsm_orom_has_raid10(orom) ? " raid10" : "",
1895                imsm_orom_has_raid5(orom) ? " raid5" : "");
1896         printf("    Chunk Sizes :%s%s%s%s%s%s%s%s%s%s%s%s%s%s%s%s\n",
1897                imsm_orom_has_chunk(orom, 2) ? " 2k" : "",
1898                imsm_orom_has_chunk(orom, 4) ? " 4k" : "",
1899                imsm_orom_has_chunk(orom, 8) ? " 8k" : "",
1900                imsm_orom_has_chunk(orom, 16) ? " 16k" : "",
1901                imsm_orom_has_chunk(orom, 32) ? " 32k" : "",
1902                imsm_orom_has_chunk(orom, 64) ? " 64k" : "",
1903                imsm_orom_has_chunk(orom, 128) ? " 128k" : "",
1904                imsm_orom_has_chunk(orom, 256) ? " 256k" : "",
1905                imsm_orom_has_chunk(orom, 512) ? " 512k" : "",
1906                imsm_orom_has_chunk(orom, 1024*1) ? " 1M" : "",
1907                imsm_orom_has_chunk(orom, 1024*2) ? " 2M" : "",
1908                imsm_orom_has_chunk(orom, 1024*4) ? " 4M" : "",
1909                imsm_orom_has_chunk(orom, 1024*8) ? " 8M" : "",
1910                imsm_orom_has_chunk(orom, 1024*16) ? " 16M" : "",
1911                imsm_orom_has_chunk(orom, 1024*32) ? " 32M" : "",
1912                imsm_orom_has_chunk(orom, 1024*64) ? " 64M" : "");
1913         printf("    2TB volumes :%s supported\n",
1914                (orom->attr & IMSM_OROM_ATTR_2TB)?"":" not");
1915         printf("      2TB disks :%s supported\n",
1916                (orom->attr & IMSM_OROM_ATTR_2TB_DISK)?"":" not");
1917         printf("      Max Disks : %d\n", orom->tds);
1918         printf("    Max Volumes : %d per array, %d per %s\n",
1919                orom->vpa, orom->vphba,
1920                imsm_orom_is_nvme(orom) ? "platform" : "controller");
1921         return;
1922 }
1923
1924 static void print_imsm_capability_export(const struct imsm_orom *orom)
1925 {
1926         printf("MD_FIRMWARE_TYPE=imsm\n");
1927         if (orom->major_ver || orom->minor_ver || orom->hotfix_ver || orom->build)
1928                 printf("IMSM_VERSION=%d.%d.%d.%d\n", orom->major_ver, orom->minor_ver,
1929                                 orom->hotfix_ver, orom->build);
1930         printf("IMSM_SUPPORTED_RAID_LEVELS=%s%s%s%s%s\n",
1931                         imsm_orom_has_raid0(orom) ? "raid0 " : "",
1932                         imsm_orom_has_raid1(orom) ? "raid1 " : "",
1933                         imsm_orom_has_raid1e(orom) ? "raid1e " : "",
1934                         imsm_orom_has_raid5(orom) ? "raid10 " : "",
1935                         imsm_orom_has_raid10(orom) ? "raid5 " : "");
1936         printf("IMSM_SUPPORTED_CHUNK_SIZES=%s%s%s%s%s%s%s%s%s%s%s%s%s%s%s%s\n",
1937                         imsm_orom_has_chunk(orom, 2) ? "2k " : "",
1938                         imsm_orom_has_chunk(orom, 4) ? "4k " : "",
1939                         imsm_orom_has_chunk(orom, 8) ? "8k " : "",
1940                         imsm_orom_has_chunk(orom, 16) ? "16k " : "",
1941                         imsm_orom_has_chunk(orom, 32) ? "32k " : "",
1942                         imsm_orom_has_chunk(orom, 64) ? "64k " : "",
1943                         imsm_orom_has_chunk(orom, 128) ? "128k " : "",
1944                         imsm_orom_has_chunk(orom, 256) ? "256k " : "",
1945                         imsm_orom_has_chunk(orom, 512) ? "512k " : "",
1946                         imsm_orom_has_chunk(orom, 1024*1) ? "1M " : "",
1947                         imsm_orom_has_chunk(orom, 1024*2) ? "2M " : "",
1948                         imsm_orom_has_chunk(orom, 1024*4) ? "4M " : "",
1949                         imsm_orom_has_chunk(orom, 1024*8) ? "8M " : "",
1950                         imsm_orom_has_chunk(orom, 1024*16) ? "16M " : "",
1951                         imsm_orom_has_chunk(orom, 1024*32) ? "32M " : "",
1952                         imsm_orom_has_chunk(orom, 1024*64) ? "64M " : "");
1953         printf("IMSM_2TB_VOLUMES=%s\n",(orom->attr & IMSM_OROM_ATTR_2TB) ? "yes" : "no");
1954         printf("IMSM_2TB_DISKS=%s\n",(orom->attr & IMSM_OROM_ATTR_2TB_DISK) ? "yes" : "no");
1955         printf("IMSM_MAX_DISKS=%d\n",orom->tds);
1956         printf("IMSM_MAX_VOLUMES_PER_ARRAY=%d\n",orom->vpa);
1957         printf("IMSM_MAX_VOLUMES_PER_CONTROLLER=%d\n",orom->vphba);
1958 }
1959
1960 static int detail_platform_imsm(int verbose, int enumerate_only, char *controller_path)
1961 {
1962         /* There are two components to imsm platform support, the ahci SATA
1963          * controller and the option-rom.  To find the SATA controller we
1964          * simply look in /sys/bus/pci/drivers/ahci to see if an ahci
1965          * controller with the Intel vendor id is present.  This approach
1966          * allows mdadm to leverage the kernel's ahci detection logic, with the
1967          * caveat that if ahci.ko is not loaded mdadm will not be able to
1968          * detect platform raid capabilities.  The option-rom resides in a
1969          * platform "Adapter ROM".  We scan for its signature to retrieve the
1970          * platform capabilities.  If raid support is disabled in the BIOS the
1971          * option-rom capability structure will not be available.
1972          */
1973         struct sys_dev *list, *hba;
1974         int host_base = 0;
1975         int port_count = 0;
1976         int result=1;
1977
1978         if (enumerate_only) {
1979                 if (check_env("IMSM_NO_PLATFORM"))
1980                         return 0;
1981                 list = find_intel_devices();
1982                 if (!list)
1983                         return 2;
1984                 for (hba = list; hba; hba = hba->next) {
1985                         if (find_imsm_capability(hba)) {
1986                                 result = 0;
1987                                 break;
1988                         }
1989                         else
1990                                 result = 2;
1991                 }
1992                 return result;
1993         }
1994
1995         list = find_intel_devices();
1996         if (!list) {
1997                 if (verbose > 0)
1998                         pr_err("no active Intel(R) RAID controller found.\n");
1999                 return 2;
2000         } else if (verbose > 0)
2001                 print_found_intel_controllers(list);
2002
2003         for (hba = list; hba; hba = hba->next) {
2004                 if (controller_path && (compare_paths(hba->path, controller_path) != 0))
2005                         continue;
2006                 if (!find_imsm_capability(hba)) {
2007                         char buf[PATH_MAX];
2008                         pr_err("imsm capabilities not found for controller: %s (type %s)\n",
2009                                   hba->type == SYS_DEV_VMD ? vmd_domain_to_controller(hba, buf) : hba->path,
2010                                   get_sys_dev_type(hba->type));
2011                         continue;
2012                 }
2013                 result = 0;
2014         }
2015
2016         if (controller_path && result == 1) {
2017                 pr_err("no active Intel(R) RAID controller found under %s\n",
2018                                 controller_path);
2019                 return result;
2020         }
2021
2022         const struct orom_entry *entry;
2023
2024         for (entry = orom_entries; entry; entry = entry->next) {
2025                 if (entry->type == SYS_DEV_VMD) {
2026                         for (hba = list; hba; hba = hba->next) {
2027                                 if (hba->type == SYS_DEV_VMD) {
2028                                         char buf[PATH_MAX];
2029                                         print_imsm_capability(&entry->orom);
2030                                         printf(" I/O Controller : %s (%s)\n",
2031                                                 vmd_domain_to_controller(hba, buf), get_sys_dev_type(hba->type));
2032                                         if (print_vmd_attached_devs(hba)) {
2033                                                 if (verbose > 0)
2034                                                         pr_err("failed to get devices attached to VMD domain.\n");
2035                                                 result |= 2;
2036                                         }
2037                                         printf("\n");
2038                                 }
2039                         }
2040                         continue;
2041                 }
2042
2043                 print_imsm_capability(&entry->orom);
2044                 if (entry->type == SYS_DEV_NVME) {
2045                         for (hba = list; hba; hba = hba->next) {
2046                                 if (hba->type == SYS_DEV_NVME)
2047                                         printf("    NVMe Device : %s\n", hba->path);
2048                         }
2049                         printf("\n");
2050                         continue;
2051                 }
2052
2053                 struct devid_list *devid;
2054                 for (devid = entry->devid_list; devid; devid = devid->next) {
2055                         hba = device_by_id(devid->devid);
2056                         if (!hba)
2057                                 continue;
2058
2059                         printf(" I/O Controller : %s (%s)\n",
2060                                 hba->path, get_sys_dev_type(hba->type));
2061                         if (hba->type == SYS_DEV_SATA) {
2062                                 host_base = ahci_get_port_count(hba->path, &port_count);
2063                                 if (ahci_enumerate_ports(hba->path, port_count, host_base, verbose)) {
2064                                         if (verbose > 0)
2065                                                 pr_err("failed to enumerate ports on SATA controller at %s.\n", hba->pci_id);
2066                                         result |= 2;
2067                                 }
2068                         }
2069                 }
2070                 printf("\n");
2071         }
2072
2073         return result;
2074 }
2075
2076 static int export_detail_platform_imsm(int verbose, char *controller_path)
2077 {
2078         struct sys_dev *list, *hba;
2079         int result=1;
2080
2081         list = find_intel_devices();
2082         if (!list) {
2083                 if (verbose > 0)
2084                         pr_err("IMSM_DETAIL_PLATFORM_ERROR=NO_INTEL_DEVICES\n");
2085                 result = 2;
2086                 return result;
2087         }
2088
2089         for (hba = list; hba; hba = hba->next) {
2090                 if (controller_path && (compare_paths(hba->path,controller_path) != 0))
2091                         continue;
2092                 if (!find_imsm_capability(hba) && verbose > 0) {
2093                         char buf[PATH_MAX];
2094                         pr_err("IMSM_DETAIL_PLATFORM_ERROR=NO_IMSM_CAPABLE_DEVICE_UNDER_%s\n",
2095                         hba->type == SYS_DEV_VMD ? vmd_domain_to_controller(hba, buf) : hba->path);
2096                 }
2097                 else
2098                         result = 0;
2099         }
2100
2101         const struct orom_entry *entry;
2102
2103         for (entry = orom_entries; entry; entry = entry->next) {
2104                 if (entry->type == SYS_DEV_VMD) {
2105                         for (hba = list; hba; hba = hba->next)
2106                                 print_imsm_capability_export(&entry->orom);
2107                         continue;
2108                 }
2109                 print_imsm_capability_export(&entry->orom);
2110         }
2111
2112         return result;
2113 }
2114
2115 #endif
2116
2117 static int match_home_imsm(struct supertype *st, char *homehost)
2118 {
2119         /* the imsm metadata format does not specify any host
2120          * identification information.  We return -1 since we can never
2121          * confirm nor deny whether a given array is "meant" for this
2122          * host.  We rely on compare_super and the 'family_num' fields to
2123          * exclude member disks that do not belong, and we rely on
2124          * mdadm.conf to specify the arrays that should be assembled.
2125          * Auto-assembly may still pick up "foreign" arrays.
2126          */
2127
2128         return -1;
2129 }
2130
2131 static void uuid_from_super_imsm(struct supertype *st, int uuid[4])
2132 {
2133         /* The uuid returned here is used for:
2134          *  uuid to put into bitmap file (Create, Grow)
2135          *  uuid for backup header when saving critical section (Grow)
2136          *  comparing uuids when re-adding a device into an array
2137          *    In these cases the uuid required is that of the data-array,
2138          *    not the device-set.
2139          *  uuid to recognise same set when adding a missing device back
2140          *    to an array.   This is a uuid for the device-set.
2141          *
2142          * For each of these we can make do with a truncated
2143          * or hashed uuid rather than the original, as long as
2144          * everyone agrees.
2145          * In each case the uuid required is that of the data-array,
2146          * not the device-set.
2147          */
2148         /* imsm does not track uuid's so we synthesis one using sha1 on
2149          * - The signature (Which is constant for all imsm array, but no matter)
2150          * - the orig_family_num of the container
2151          * - the index number of the volume
2152          * - the 'serial' number of the volume.
2153          * Hopefully these are all constant.
2154          */
2155         struct intel_super *super = st->sb;
2156
2157         char buf[20];
2158         struct sha1_ctx ctx;
2159         struct imsm_dev *dev = NULL;
2160         __u32 family_num;
2161
2162         /* some mdadm versions failed to set ->orig_family_num, in which
2163          * case fall back to ->family_num.  orig_family_num will be
2164          * fixed up with the first metadata update.
2165          */
2166         family_num = super->anchor->orig_family_num;
2167         if (family_num == 0)
2168                 family_num = super->anchor->family_num;
2169         sha1_init_ctx(&ctx);
2170         sha1_process_bytes(super->anchor->sig, MPB_SIG_LEN, &ctx);
2171         sha1_process_bytes(&family_num, sizeof(__u32), &ctx);
2172         if (super->current_vol >= 0)
2173                 dev = get_imsm_dev(super, super->current_vol);
2174         if (dev) {
2175                 __u32 vol = super->current_vol;
2176                 sha1_process_bytes(&vol, sizeof(vol), &ctx);
2177                 sha1_process_bytes(dev->volume, MAX_RAID_SERIAL_LEN, &ctx);
2178         }
2179         sha1_finish_ctx(&ctx, buf);
2180         memcpy(uuid, buf, 4*4);
2181 }
2182
2183 #if 0
2184 static void
2185 get_imsm_numerical_version(struct imsm_super *mpb, int *m, int *p)
2186 {
2187         __u8 *v = get_imsm_version(mpb);
2188         __u8 *end = mpb->sig + MAX_SIGNATURE_LENGTH;
2189         char major[] = { 0, 0, 0 };
2190         char minor[] = { 0 ,0, 0 };
2191         char patch[] = { 0, 0, 0 };
2192         char *ver_parse[] = { major, minor, patch };
2193         int i, j;
2194
2195         i = j = 0;
2196         while (*v != '\0' && v < end) {
2197                 if (*v != '.' && j < 2)
2198                         ver_parse[i][j++] = *v;
2199                 else {
2200                         i++;
2201                         j = 0;
2202                 }
2203                 v++;
2204         }
2205
2206         *m = strtol(minor, NULL, 0);
2207         *p = strtol(patch, NULL, 0);
2208 }
2209 #endif
2210
2211 static __u32 migr_strip_blocks_resync(struct imsm_dev *dev)
2212 {
2213         /* migr_strip_size when repairing or initializing parity */
2214         struct imsm_map *map = get_imsm_map(dev, MAP_0);
2215         __u32 chunk = __le32_to_cpu(map->blocks_per_strip);
2216
2217         switch (get_imsm_raid_level(map)) {
2218         case 5:
2219         case 10:
2220                 return chunk;
2221         default:
2222                 return 128*1024 >> 9;
2223         }
2224 }
2225
2226 static __u32 migr_strip_blocks_rebuild(struct imsm_dev *dev)
2227 {
2228         /* migr_strip_size when rebuilding a degraded disk, no idea why
2229          * this is different than migr_strip_size_resync(), but it's good
2230          * to be compatible
2231          */
2232         struct imsm_map *map = get_imsm_map(dev, MAP_1);
2233         __u32 chunk = __le32_to_cpu(map->blocks_per_strip);
2234
2235         switch (get_imsm_raid_level(map)) {
2236         case 1:
2237         case 10:
2238                 if (map->num_members % map->num_domains == 0)
2239                         return 128*1024 >> 9;
2240                 else
2241                         return chunk;
2242         case 5:
2243                 return max((__u32) 64*1024 >> 9, chunk);
2244         default:
2245                 return 128*1024 >> 9;
2246         }
2247 }
2248
2249 static __u32 num_stripes_per_unit_resync(struct imsm_dev *dev)
2250 {
2251         struct imsm_map *lo = get_imsm_map(dev, MAP_0);
2252         struct imsm_map *hi = get_imsm_map(dev, MAP_1);
2253         __u32 lo_chunk = __le32_to_cpu(lo->blocks_per_strip);
2254         __u32 hi_chunk = __le32_to_cpu(hi->blocks_per_strip);
2255
2256         return max((__u32) 1, hi_chunk / lo_chunk);
2257 }
2258
2259 static __u32 num_stripes_per_unit_rebuild(struct imsm_dev *dev)
2260 {
2261         struct imsm_map *lo = get_imsm_map(dev, MAP_0);
2262         int level = get_imsm_raid_level(lo);
2263
2264         if (level == 1 || level == 10) {
2265                 struct imsm_map *hi = get_imsm_map(dev, MAP_1);
2266
2267                 return hi->num_domains;
2268         } else
2269                 return num_stripes_per_unit_resync(dev);
2270 }
2271
2272 static __u8 imsm_num_data_members(struct imsm_dev *dev, int second_map)
2273 {
2274         /* named 'imsm_' because raid0, raid1 and raid10
2275          * counter-intuitively have the same number of data disks
2276          */
2277         struct imsm_map *map = get_imsm_map(dev, second_map);
2278
2279         switch (get_imsm_raid_level(map)) {
2280         case 0:
2281                 return map->num_members;
2282                 break;
2283         case 1:
2284         case 10:
2285                 return map->num_members/2;
2286         case 5:
2287                 return map->num_members - 1;
2288         default:
2289                 dprintf("unsupported raid level\n");
2290                 return 0;
2291         }
2292 }
2293
2294 static __u32 parity_segment_depth(struct imsm_dev *dev)
2295 {
2296         struct imsm_map *map = get_imsm_map(dev, MAP_0);
2297         __u32 chunk =  __le32_to_cpu(map->blocks_per_strip);
2298
2299         switch(get_imsm_raid_level(map)) {
2300         case 1:
2301         case 10:
2302                 return chunk * map->num_domains;
2303         case 5:
2304                 return chunk * map->num_members;
2305         default:
2306                 return chunk;
2307         }
2308 }
2309
2310 static __u32 map_migr_block(struct imsm_dev *dev, __u32 block)
2311 {
2312         struct imsm_map *map = get_imsm_map(dev, MAP_1);
2313         __u32 chunk = __le32_to_cpu(map->blocks_per_strip);
2314         __u32 strip = block / chunk;
2315
2316         switch (get_imsm_raid_level(map)) {
2317         case 1:
2318         case 10: {
2319                 __u32 vol_strip = (strip * map->num_domains) + 1;
2320                 __u32 vol_stripe = vol_strip / map->num_members;
2321
2322                 return vol_stripe * chunk + block % chunk;
2323         } case 5: {
2324                 __u32 stripe = strip / (map->num_members - 1);
2325
2326                 return stripe * chunk + block % chunk;
2327         }
2328         default:
2329                 return 0;
2330         }
2331 }
2332
2333 static __u64 blocks_per_migr_unit(struct intel_super *super,
2334                                   struct imsm_dev *dev)
2335 {
2336         /* calculate the conversion factor between per member 'blocks'
2337          * (md/{resync,rebuild}_start) and imsm migration units, return
2338          * 0 for the 'not migrating' and 'unsupported migration' cases
2339          */
2340         if (!dev->vol.migr_state)
2341                 return 0;
2342
2343         switch (migr_type(dev)) {
2344         case MIGR_GEN_MIGR: {
2345                 struct migr_record *migr_rec = super->migr_rec;
2346                 return __le32_to_cpu(migr_rec->blocks_per_unit);
2347         }
2348         case MIGR_VERIFY:
2349         case MIGR_REPAIR:
2350         case MIGR_INIT: {
2351                 struct imsm_map *map = get_imsm_map(dev, MAP_0);
2352                 __u32 stripes_per_unit;
2353                 __u32 blocks_per_unit;
2354                 __u32 parity_depth;
2355                 __u32 migr_chunk;
2356                 __u32 block_map;
2357                 __u32 block_rel;
2358                 __u32 segment;
2359                 __u32 stripe;
2360                 __u8  disks;
2361
2362                 /* yes, this is really the translation of migr_units to
2363                  * per-member blocks in the 'resync' case
2364                  */
2365                 stripes_per_unit = num_stripes_per_unit_resync(dev);
2366                 migr_chunk = migr_strip_blocks_resync(dev);
2367                 disks = imsm_num_data_members(dev, MAP_0);
2368                 blocks_per_unit = stripes_per_unit * migr_chunk * disks;
2369                 stripe = __le16_to_cpu(map->blocks_per_strip) * disks;
2370                 segment = blocks_per_unit / stripe;
2371                 block_rel = blocks_per_unit - segment * stripe;
2372                 parity_depth = parity_segment_depth(dev);
2373                 block_map = map_migr_block(dev, block_rel);
2374                 return block_map + parity_depth * segment;
2375         }
2376         case MIGR_REBUILD: {
2377                 __u32 stripes_per_unit;
2378                 __u32 migr_chunk;
2379
2380                 stripes_per_unit = num_stripes_per_unit_rebuild(dev);
2381                 migr_chunk = migr_strip_blocks_rebuild(dev);
2382                 return migr_chunk * stripes_per_unit;
2383         }
2384         case MIGR_STATE_CHANGE:
2385         default:
2386                 return 0;
2387         }
2388 }
2389
2390 static int imsm_level_to_layout(int level)
2391 {
2392         switch (level) {
2393         case 0:
2394         case 1:
2395                 return 0;
2396         case 5:
2397         case 6:
2398                 return ALGORITHM_LEFT_ASYMMETRIC;
2399         case 10:
2400                 return 0x102;
2401         }
2402         return UnSet;
2403 }
2404
2405 /*******************************************************************************
2406  * Function:    read_imsm_migr_rec
2407  * Description: Function reads imsm migration record from last sector of disk
2408  * Parameters:
2409  *      fd      : disk descriptor
2410  *      super   : metadata info
2411  * Returns:
2412  *       0 : success,
2413  *      -1 : fail
2414  ******************************************************************************/
2415 static int read_imsm_migr_rec(int fd, struct intel_super *super)
2416 {
2417         int ret_val = -1;
2418         unsigned long long dsize;
2419
2420         get_dev_size(fd, NULL, &dsize);
2421         if (lseek64(fd, dsize - MIGR_REC_POSITION, SEEK_SET) < 0) {
2422                 pr_err("Cannot seek to anchor block: %s\n",
2423                        strerror(errno));
2424                 goto out;
2425         }
2426         if (read(fd, super->migr_rec_buf, MIGR_REC_BUF_SIZE) !=
2427                                                             MIGR_REC_BUF_SIZE) {
2428                 pr_err("Cannot read migr record block: %s\n",
2429                        strerror(errno));
2430                 goto out;
2431         }
2432         ret_val = 0;
2433
2434 out:
2435         return ret_val;
2436 }
2437
2438 static struct imsm_dev *imsm_get_device_during_migration(
2439         struct intel_super *super)
2440 {
2441
2442         struct intel_dev *dv;
2443
2444         for (dv = super->devlist; dv; dv = dv->next) {
2445                 if (is_gen_migration(dv->dev))
2446                         return dv->dev;
2447         }
2448         return NULL;
2449 }
2450
2451 /*******************************************************************************
2452  * Function:    load_imsm_migr_rec
2453  * Description: Function reads imsm migration record (it is stored at the last
2454  *              sector of disk)
2455  * Parameters:
2456  *      super   : imsm internal array info
2457  *      info    : general array info
2458  * Returns:
2459  *       0 : success
2460  *      -1 : fail
2461  *      -2 : no migration in progress
2462  ******************************************************************************/
2463 static int load_imsm_migr_rec(struct intel_super *super, struct mdinfo *info)
2464 {
2465         struct mdinfo *sd;
2466         struct dl *dl;
2467         char nm[30];
2468         int retval = -1;
2469         int fd = -1;
2470         struct imsm_dev *dev;
2471         struct imsm_map *map;
2472         int slot = -1;
2473
2474         /* find map under migration */
2475         dev = imsm_get_device_during_migration(super);
2476         /* nothing to load,no migration in progress?
2477         */
2478         if (dev == NULL)
2479                 return -2;
2480
2481         if (info) {
2482                 for (sd = info->devs ; sd ; sd = sd->next) {
2483                         /* read only from one of the first two slots */
2484                         if ((sd->disk.raid_disk < 0) ||
2485                             (sd->disk.raid_disk > 1))
2486                                 continue;
2487
2488                         sprintf(nm, "%d:%d", sd->disk.major, sd->disk.minor);
2489                         fd = dev_open(nm, O_RDONLY);
2490                         if (fd >= 0)
2491                                 break;
2492                 }
2493         }
2494         if (fd < 0) {
2495                 map = get_imsm_map(dev, MAP_0);
2496                 for (dl = super->disks; dl; dl = dl->next) {
2497                         /* skip spare and failed disks
2498                         */
2499                         if (dl->index < 0)
2500                                 continue;
2501                         /* read only from one of the first two slots */
2502                         if (map)
2503                                 slot = get_imsm_disk_slot(map, dl->index);
2504                         if (map == NULL || slot > 1 || slot < 0)
2505                                 continue;
2506                         sprintf(nm, "%d:%d", dl->major, dl->minor);
2507                         fd = dev_open(nm, O_RDONLY);
2508                         if (fd >= 0)
2509                                 break;
2510                 }
2511         }
2512         if (fd < 0)
2513                 goto out;
2514         retval = read_imsm_migr_rec(fd, super);
2515
2516 out:
2517         if (fd >= 0)
2518                 close(fd);
2519         return retval;
2520 }
2521
2522 #ifndef MDASSEMBLE
2523 /*******************************************************************************
2524  * function: imsm_create_metadata_checkpoint_update
2525  * Description: It creates update for checkpoint change.
2526  * Parameters:
2527  *      super   : imsm internal array info
2528  *      u       : pointer to prepared update
2529  * Returns:
2530  *      Uptate length.
2531  *      If length is equal to 0, input pointer u contains no update
2532  ******************************************************************************/
2533 static int imsm_create_metadata_checkpoint_update(
2534         struct intel_super *super,
2535         struct imsm_update_general_migration_checkpoint **u)
2536 {
2537
2538         int update_memory_size = 0;
2539
2540         dprintf("(enter)\n");
2541
2542         if (u == NULL)
2543                 return 0;
2544         *u = NULL;
2545
2546         /* size of all update data without anchor */
2547         update_memory_size =
2548                 sizeof(struct imsm_update_general_migration_checkpoint);
2549
2550         *u = xcalloc(1, update_memory_size);
2551         if (*u == NULL) {
2552                 dprintf("error: cannot get memory\n");
2553                 return 0;
2554         }
2555         (*u)->type = update_general_migration_checkpoint;
2556         (*u)->curr_migr_unit = __le32_to_cpu(super->migr_rec->curr_migr_unit);
2557         dprintf("prepared for %u\n", (*u)->curr_migr_unit);
2558
2559         return update_memory_size;
2560 }
2561
2562 static void imsm_update_metadata_locally(struct supertype *st,
2563                                          void *buf, int len);
2564
2565 /*******************************************************************************
2566  * Function:    write_imsm_migr_rec
2567  * Description: Function writes imsm migration record
2568  *              (at the last sector of disk)
2569  * Parameters:
2570  *      super   : imsm internal array info
2571  * Returns:
2572  *       0 : success
2573  *      -1 : if fail
2574  ******************************************************************************/
2575 static int write_imsm_migr_rec(struct supertype *st)
2576 {
2577         struct intel_super *super = st->sb;
2578         unsigned long long dsize;
2579         char nm[30];
2580         int fd = -1;
2581         int retval = -1;
2582         struct dl *sd;
2583         int len;
2584         struct imsm_update_general_migration_checkpoint *u;
2585         struct imsm_dev *dev;
2586         struct imsm_map *map;
2587
2588         /* find map under migration */
2589         dev = imsm_get_device_during_migration(super);
2590         /* if no migration, write buffer anyway to clear migr_record
2591          * on disk based on first available device
2592         */
2593         if (dev == NULL)
2594                 dev = get_imsm_dev(super, super->current_vol < 0 ? 0 :
2595                                           super->current_vol);
2596
2597         map = get_imsm_map(dev, MAP_0);
2598
2599         for (sd = super->disks ; sd ; sd = sd->next) {
2600                 int slot = -1;
2601
2602                 /* skip failed and spare devices */
2603                 if (sd->index < 0)
2604                         continue;
2605                 /* write to 2 first slots only */
2606                 if (map)
2607                         slot = get_imsm_disk_slot(map, sd->index);
2608                 if (map == NULL || slot > 1 || slot < 0)
2609                         continue;
2610
2611                 sprintf(nm, "%d:%d", sd->major, sd->minor);
2612                 fd = dev_open(nm, O_RDWR);
2613                 if (fd < 0)
2614                         continue;
2615                 get_dev_size(fd, NULL, &dsize);
2616                 if (lseek64(fd, dsize - MIGR_REC_POSITION, SEEK_SET) < 0) {
2617                         pr_err("Cannot seek to anchor block: %s\n",
2618                                strerror(errno));
2619                         goto out;
2620                 }
2621                 if (write(fd, super->migr_rec_buf, MIGR_REC_BUF_SIZE) !=
2622                                                             MIGR_REC_BUF_SIZE) {
2623                         pr_err("Cannot write migr record block: %s\n",
2624                                strerror(errno));
2625                         goto out;
2626                 }
2627                 close(fd);
2628                 fd = -1;
2629         }
2630         /* update checkpoint information in metadata */
2631         len = imsm_create_metadata_checkpoint_update(super, &u);
2632
2633         if (len <= 0) {
2634                 dprintf("imsm: Cannot prepare update\n");
2635                 goto out;
2636         }
2637         /* update metadata locally */
2638         imsm_update_metadata_locally(st, u, len);
2639         /* and possibly remotely */
2640         if (st->update_tail) {
2641                 append_metadata_update(st, u, len);
2642                 /* during reshape we do all work inside metadata handler
2643                  * manage_reshape(), so metadata update has to be triggered
2644                  * insida it
2645                  */
2646                 flush_metadata_updates(st);
2647                 st->update_tail = &st->updates;
2648         } else
2649                 free(u);
2650
2651         retval = 0;
2652  out:
2653         if (fd >= 0)
2654                 close(fd);
2655         return retval;
2656 }
2657 #endif /* MDASSEMBLE */
2658
2659 /* spare/missing disks activations are not allowe when
2660  * array/container performs reshape operation, because
2661  * all arrays in container works on the same disks set
2662  */
2663 int imsm_reshape_blocks_arrays_changes(struct intel_super *super)
2664 {
2665         int rv = 0;
2666         struct intel_dev *i_dev;
2667         struct imsm_dev *dev;
2668
2669         /* check whole container
2670          */
2671         for (i_dev = super->devlist; i_dev; i_dev = i_dev->next) {
2672                 dev = i_dev->dev;
2673                 if (is_gen_migration(dev)) {
2674                         /* No repair during any migration in container
2675                          */
2676                         rv = 1;
2677                         break;
2678                 }
2679         }
2680         return rv;
2681 }
2682 static unsigned long long imsm_component_size_aligment_check(int level,
2683                                               int chunk_size,
2684                                               unsigned long long component_size)
2685 {
2686         unsigned int component_size_alligment;
2687
2688         /* check component size aligment
2689         */
2690         component_size_alligment = component_size % (chunk_size/512);
2691
2692         dprintf("(Level: %i, chunk_size = %i, component_size = %llu), component_size_alligment = %u\n",
2693                 level, chunk_size, component_size,
2694                 component_size_alligment);
2695
2696         if (component_size_alligment && (level != 1) && (level != UnSet)) {
2697                 dprintf("imsm: reported component size alligned from %llu ",
2698                         component_size);
2699                 component_size -= component_size_alligment;
2700                 dprintf_cont("to %llu (%i).\n",
2701                         component_size, component_size_alligment);
2702         }
2703
2704         return component_size;
2705 }
2706
2707 static void getinfo_super_imsm_volume(struct supertype *st, struct mdinfo *info, char *dmap)
2708 {
2709         struct intel_super *super = st->sb;
2710         struct migr_record *migr_rec = super->migr_rec;
2711         struct imsm_dev *dev = get_imsm_dev(super, super->current_vol);
2712         struct imsm_map *map = get_imsm_map(dev, MAP_0);
2713         struct imsm_map *prev_map = get_imsm_map(dev, MAP_1);
2714         struct imsm_map *map_to_analyse = map;
2715         struct dl *dl;
2716         int map_disks = info->array.raid_disks;
2717
2718         memset(info, 0, sizeof(*info));
2719         if (prev_map)
2720                 map_to_analyse = prev_map;
2721
2722         dl = super->current_disk;
2723
2724         info->container_member    = super->current_vol;
2725         info->array.raid_disks    = map->num_members;
2726         info->array.level         = get_imsm_raid_level(map_to_analyse);
2727         info->array.layout        = imsm_level_to_layout(info->array.level);
2728         info->array.md_minor      = -1;
2729         info->array.ctime         = 0;
2730         info->array.utime         = 0;
2731         info->array.chunk_size    =
2732                 __le16_to_cpu(map_to_analyse->blocks_per_strip) << 9;
2733         info->array.state         = !dev->vol.dirty;
2734         info->custom_array_size   = __le32_to_cpu(dev->size_high);
2735         info->custom_array_size   <<= 32;
2736         info->custom_array_size   |= __le32_to_cpu(dev->size_low);
2737         info->recovery_blocked = imsm_reshape_blocks_arrays_changes(st->sb);
2738
2739         if (is_gen_migration(dev)) {
2740                 info->reshape_active = 1;
2741                 info->new_level = get_imsm_raid_level(map);
2742                 info->new_layout = imsm_level_to_layout(info->new_level);
2743                 info->new_chunk = __le16_to_cpu(map->blocks_per_strip) << 9;
2744                 info->delta_disks = map->num_members - prev_map->num_members;
2745                 if (info->delta_disks) {
2746                         /* this needs to be applied to every array
2747                          * in the container.
2748                          */
2749                         info->reshape_active = CONTAINER_RESHAPE;
2750                 }
2751                 /* We shape information that we give to md might have to be
2752                  * modify to cope with md's requirement for reshaping arrays.
2753                  * For example, when reshaping a RAID0, md requires it to be
2754                  * presented as a degraded RAID4.
2755                  * Also if a RAID0 is migrating to a RAID5 we need to specify
2756                  * the array as already being RAID5, but the 'before' layout
2757                  * is a RAID4-like layout.
2758                  */
2759                 switch (info->array.level) {
2760                 case 0:
2761                         switch(info->new_level) {
2762                         case 0:
2763                                 /* conversion is happening as RAID4 */
2764                                 info->array.level = 4;
2765                                 info->array.raid_disks += 1;
2766                                 break;
2767                         case 5:
2768                                 /* conversion is happening as RAID5 */
2769                                 info->array.level = 5;
2770                                 info->array.layout = ALGORITHM_PARITY_N;
2771                                 info->delta_disks -= 1;
2772                                 break;
2773                         default:
2774                                 /* FIXME error message */
2775                                 info->array.level = UnSet;
2776                                 break;
2777                         }
2778                         break;
2779                 }
2780         } else {
2781                 info->new_level = UnSet;
2782                 info->new_layout = UnSet;
2783                 info->new_chunk = info->array.chunk_size;
2784                 info->delta_disks = 0;
2785         }
2786
2787         if (dl) {
2788                 info->disk.major = dl->major;
2789                 info->disk.minor = dl->minor;
2790                 info->disk.number = dl->index;
2791                 info->disk.raid_disk = get_imsm_disk_slot(map_to_analyse,
2792                                                           dl->index);
2793         }
2794
2795         info->data_offset         = pba_of_lba0(map_to_analyse);
2796         info->component_size      = blocks_per_member(map_to_analyse);
2797
2798         info->component_size = imsm_component_size_aligment_check(
2799                                                         info->array.level,
2800                                                         info->array.chunk_size,
2801                                                         info->component_size);
2802
2803         memset(info->uuid, 0, sizeof(info->uuid));
2804         info->recovery_start = MaxSector;
2805
2806         info->reshape_progress = 0;
2807         info->resync_start = MaxSector;
2808         if ((map_to_analyse->map_state == IMSM_T_STATE_UNINITIALIZED ||
2809             dev->vol.dirty) &&
2810             imsm_reshape_blocks_arrays_changes(super) == 0) {
2811                 info->resync_start = 0;
2812         }
2813         if (dev->vol.migr_state) {
2814                 switch (migr_type(dev)) {
2815                 case MIGR_REPAIR:
2816                 case MIGR_INIT: {
2817                         __u64 blocks_per_unit = blocks_per_migr_unit(super,
2818                                                                      dev);
2819                         __u64 units = __le32_to_cpu(dev->vol.curr_migr_unit);
2820
2821                         info->resync_start = blocks_per_unit * units;
2822                         break;
2823                 }
2824                 case MIGR_GEN_MIGR: {
2825                         __u64 blocks_per_unit = blocks_per_migr_unit(super,
2826                                                                      dev);
2827                         __u64 units = __le32_to_cpu(migr_rec->curr_migr_unit);
2828                         unsigned long long array_blocks;
2829                         int used_disks;
2830
2831                         if (__le32_to_cpu(migr_rec->ascending_migr) &&
2832                             (units <
2833                                 (__le32_to_cpu(migr_rec->num_migr_units)-1)) &&
2834                             (super->migr_rec->rec_status ==
2835                                         __cpu_to_le32(UNIT_SRC_IN_CP_AREA)))
2836                                 units++;
2837
2838                         info->reshape_progress = blocks_per_unit * units;
2839
2840                         dprintf("IMSM: General Migration checkpoint : %llu (%llu) -> read reshape progress : %llu\n",
2841                                 (unsigned long long)units,
2842                                 (unsigned long long)blocks_per_unit,
2843                                 info->reshape_progress);
2844
2845                         used_disks = imsm_num_data_members(dev, MAP_1);
2846                         if (used_disks > 0) {
2847                                 array_blocks = blocks_per_member(map) *
2848                                         used_disks;
2849                                 /* round array size down to closest MB
2850                                  */
2851                                 info->custom_array_size = (array_blocks
2852                                                 >> SECT_PER_MB_SHIFT)
2853                                                 << SECT_PER_MB_SHIFT;
2854                         }
2855                 }
2856                 case MIGR_VERIFY:
2857                         /* we could emulate the checkpointing of
2858                          * 'sync_action=check' migrations, but for now
2859                          * we just immediately complete them
2860                          */
2861                 case MIGR_REBUILD:
2862                         /* this is handled by container_content_imsm() */
2863                 case MIGR_STATE_CHANGE:
2864                         /* FIXME handle other migrations */
2865                 default:
2866                         /* we are not dirty, so... */
2867                         info->resync_start = MaxSector;
2868                 }
2869         }
2870
2871         strncpy(info->name, (char *) dev->volume, MAX_RAID_SERIAL_LEN);
2872         info->name[MAX_RAID_SERIAL_LEN] = 0;
2873
2874         info->array.major_version = -1;
2875         info->array.minor_version = -2;
2876         sprintf(info->text_version, "/%s/%d", st->container_devnm, info->container_member);
2877         info->safe_mode_delay = 4000;  /* 4 secs like the Matrix driver */
2878         uuid_from_super_imsm(st, info->uuid);
2879
2880         if (dmap) {
2881                 int i, j;
2882                 for (i=0; i<map_disks; i++) {
2883                         dmap[i] = 0;
2884                         if (i < info->array.raid_disks) {
2885                                 struct imsm_disk *dsk;
2886                                 j = get_imsm_disk_idx(dev, i, MAP_X);
2887                                 dsk = get_imsm_disk(super, j);
2888                                 if (dsk && (dsk->status & CONFIGURED_DISK))
2889                                         dmap[i] = 1;
2890                         }
2891                 }
2892         }
2893 }
2894
2895 static __u8 imsm_check_degraded(struct intel_super *super, struct imsm_dev *dev,
2896                                 int failed, int look_in_map);
2897
2898 static int imsm_count_failed(struct intel_super *super, struct imsm_dev *dev,
2899                              int look_in_map);
2900
2901 #ifndef MDASSEMBLE
2902 static void manage_second_map(struct intel_super *super, struct imsm_dev *dev)
2903 {
2904         if (is_gen_migration(dev)) {
2905                 int failed;
2906                 __u8 map_state;
2907                 struct imsm_map *map2 = get_imsm_map(dev, MAP_1);
2908
2909                 failed = imsm_count_failed(super, dev, MAP_1);
2910                 map_state = imsm_check_degraded(super, dev, failed, MAP_1);
2911                 if (map2->map_state != map_state) {
2912                         map2->map_state = map_state;
2913                         super->updates_pending++;
2914                 }
2915         }
2916 }
2917 #endif
2918
2919 static struct imsm_disk *get_imsm_missing(struct intel_super *super, __u8 index)
2920 {
2921         struct dl *d;
2922
2923         for (d = super->missing; d; d = d->next)
2924                 if (d->index == index)
2925                         return &d->disk;
2926         return NULL;
2927 }
2928
2929 static void getinfo_super_imsm(struct supertype *st, struct mdinfo *info, char *map)
2930 {
2931         struct intel_super *super = st->sb;
2932         struct imsm_disk *disk;
2933         int map_disks = info->array.raid_disks;
2934         int max_enough = -1;
2935         int i;
2936         struct imsm_super *mpb;
2937
2938         if (super->current_vol >= 0) {
2939                 getinfo_super_imsm_volume(st, info, map);
2940                 return;
2941         }
2942         memset(info, 0, sizeof(*info));
2943
2944         /* Set raid_disks to zero so that Assemble will always pull in valid
2945          * spares
2946          */
2947         info->array.raid_disks    = 0;
2948         info->array.level         = LEVEL_CONTAINER;
2949         info->array.layout        = 0;
2950         info->array.md_minor      = -1;
2951         info->array.ctime         = 0; /* N/A for imsm */
2952         info->array.utime         = 0;
2953         info->array.chunk_size    = 0;
2954
2955         info->disk.major = 0;
2956         info->disk.minor = 0;
2957         info->disk.raid_disk = -1;
2958         info->reshape_active = 0;
2959         info->array.major_version = -1;
2960         info->array.minor_version = -2;
2961         strcpy(info->text_version, "imsm");
2962         info->safe_mode_delay = 0;
2963         info->disk.number = -1;
2964         info->disk.state = 0;
2965         info->name[0] = 0;
2966         info->recovery_start = MaxSector;
2967         info->recovery_blocked = imsm_reshape_blocks_arrays_changes(st->sb);
2968
2969         /* do we have the all the insync disks that we expect? */
2970         mpb = super->anchor;
2971
2972         for (i = 0; i < mpb->num_raid_devs; i++) {
2973                 struct imsm_dev *dev = get_imsm_dev(super, i);
2974                 int failed, enough, j, missing = 0;
2975                 struct imsm_map *map;
2976                 __u8 state;
2977
2978                 failed = imsm_count_failed(super, dev, MAP_0);
2979                 state = imsm_check_degraded(super, dev, failed, MAP_0);
2980                 map = get_imsm_map(dev, MAP_0);
2981
2982                 /* any newly missing disks?
2983                  * (catches single-degraded vs double-degraded)
2984                  */
2985                 for (j = 0; j < map->num_members; j++) {
2986                         __u32 ord = get_imsm_ord_tbl_ent(dev, j, MAP_0);
2987                         __u32 idx = ord_to_idx(ord);
2988
2989                         if (!(ord & IMSM_ORD_REBUILD) &&
2990                             get_imsm_missing(super, idx)) {
2991                                 missing = 1;
2992                                 break;
2993                         }
2994                 }
2995
2996                 if (state == IMSM_T_STATE_FAILED)
2997                         enough = -1;
2998                 else if (state == IMSM_T_STATE_DEGRADED &&
2999                          (state != map->map_state || missing))
3000                         enough = 0;
3001                 else /* we're normal, or already degraded */
3002                         enough = 1;
3003                 if (is_gen_migration(dev) && missing) {
3004                         /* during general migration we need all disks
3005                          * that process is running on.
3006                          * No new missing disk is allowed.
3007                          */
3008                         max_enough = -1;
3009                         enough = -1;
3010                         /* no more checks necessary
3011                          */
3012                         break;
3013                 }
3014                 /* in the missing/failed disk case check to see
3015                  * if at least one array is runnable
3016                  */
3017                 max_enough = max(max_enough, enough);
3018         }
3019         dprintf("enough: %d\n", max_enough);
3020         info->container_enough = max_enough;
3021
3022         if (super->disks) {
3023                 __u32 reserved = imsm_reserved_sectors(super, super->disks);
3024
3025                 disk = &super->disks->disk;
3026                 info->data_offset = total_blocks(&super->disks->disk) - reserved;
3027                 info->component_size = reserved;
3028                 info->disk.state  = is_configured(disk) ? (1 << MD_DISK_ACTIVE) : 0;
3029                 /* we don't change info->disk.raid_disk here because
3030                  * this state will be finalized in mdmon after we have
3031                  * found the 'most fresh' version of the metadata
3032                  */
3033                 info->disk.state |= is_failed(disk) ? (1 << MD_DISK_FAULTY) : 0;
3034                 info->disk.state |= is_spare(disk) ? 0 : (1 << MD_DISK_SYNC);
3035         }
3036
3037         /* only call uuid_from_super_imsm when this disk is part of a populated container,
3038          * ->compare_super may have updated the 'num_raid_devs' field for spares
3039          */
3040         if (info->disk.state & (1 << MD_DISK_SYNC) || super->anchor->num_raid_devs)
3041                 uuid_from_super_imsm(st, info->uuid);
3042         else
3043                 memcpy(info->uuid, uuid_zero, sizeof(uuid_zero));
3044
3045         /* I don't know how to compute 'map' on imsm, so use safe default */
3046         if (map) {
3047                 int i;
3048                 for (i = 0; i < map_disks; i++)
3049                         map[i] = 1;
3050         }
3051
3052 }
3053
3054 /* allocates memory and fills disk in mdinfo structure
3055  * for each disk in array */
3056 struct mdinfo *getinfo_super_disks_imsm(struct supertype *st)
3057 {
3058         struct mdinfo *mddev;
3059         struct intel_super *super = st->sb;
3060         struct imsm_disk *disk;
3061         int count = 0;
3062         struct dl *dl;
3063         if (!super || !super->disks)
3064                 return NULL;
3065         dl = super->disks;
3066         mddev = xcalloc(1, sizeof(*mddev));
3067         while (dl) {
3068                 struct mdinfo *tmp;
3069                 disk = &dl->disk;
3070                 tmp = xcalloc(1, sizeof(*tmp));
3071                 if (mddev->devs)
3072                         tmp->next = mddev->devs;
3073                 mddev->devs = tmp;
3074                 tmp->disk.number = count++;
3075                 tmp->disk.major = dl->major;
3076                 tmp->disk.minor = dl->minor;
3077                 tmp->disk.state = is_configured(disk) ?
3078                                   (1 << MD_DISK_ACTIVE) : 0;
3079                 tmp->disk.state |= is_failed(disk) ? (1 << MD_DISK_FAULTY) : 0;
3080                 tmp->disk.state |= is_spare(disk) ? 0 : (1 << MD_DISK_SYNC);
3081                 tmp->disk.raid_disk = -1;
3082                 dl = dl->next;
3083         }
3084         return mddev;
3085 }
3086
3087 static int update_super_imsm(struct supertype *st, struct mdinfo *info,
3088                              char *update, char *devname, int verbose,
3089                              int uuid_set, char *homehost)
3090 {
3091         /* For 'assemble' and 'force' we need to return non-zero if any
3092          * change was made.  For others, the return value is ignored.
3093          * Update options are:
3094          *  force-one : This device looks a bit old but needs to be included,
3095          *        update age info appropriately.
3096          *  assemble: clear any 'faulty' flag to allow this device to
3097          *              be assembled.
3098          *  force-array: Array is degraded but being forced, mark it clean
3099          *         if that will be needed to assemble it.
3100          *
3101          *  newdev:  not used ????
3102          *  grow:  Array has gained a new device - this is currently for
3103          *              linear only
3104          *  resync: mark as dirty so a resync will happen.
3105          *  name:  update the name - preserving the homehost
3106          *  uuid:  Change the uuid of the array to match watch is given
3107          *
3108          * Following are not relevant for this imsm:
3109          *  sparc2.2 : update from old dodgey metadata
3110          *  super-minor: change the preferred_minor number
3111          *  summaries:  update redundant counters.
3112          *  homehost:  update the recorded homehost
3113          *  _reshape_progress: record new reshape_progress position.
3114          */
3115         int rv = 1;
3116         struct intel_super *super = st->sb;
3117         struct imsm_super *mpb;
3118
3119         /* we can only update container info */
3120         if (!super || super->current_vol >= 0 || !super->anchor)
3121                 return 1;
3122
3123         mpb = super->anchor;
3124
3125         if (strcmp(update, "uuid") == 0) {
3126                 /* We take this to mean that the family_num should be updated.
3127                  * However that is much smaller than the uuid so we cannot really
3128                  * allow an explicit uuid to be given.  And it is hard to reliably
3129                  * know if one was.
3130                  * So if !uuid_set we know the current uuid is random and just used
3131                  * the first 'int' and copy it to the other 3 positions.
3132                  * Otherwise we require the 4 'int's to be the same as would be the
3133                  * case if we are using a random uuid.  So an explicit uuid will be
3134                  * accepted as long as all for ints are the same... which shouldn't hurt
3135                  */
3136                 if (!uuid_set) {
3137                         info->uuid[1] = info->uuid[2] = info->uuid[3] = info->uuid[0];
3138                         rv = 0;
3139                 } else {
3140                         if (info->uuid[0] != info->uuid[1] ||
3141                             info->uuid[1] != info->uuid[2] ||
3142                             info->uuid[2] != info->uuid[3])
3143                                 rv = -1;
3144                         else
3145                                 rv = 0;
3146                 }
3147                 if (rv == 0)
3148                         mpb->orig_family_num = info->uuid[0];
3149         } else if (strcmp(update, "assemble") == 0)
3150                 rv = 0;
3151         else
3152                 rv = -1;
3153
3154         /* successful update? recompute checksum */
3155         if (rv == 0)
3156                 mpb->check_sum = __le32_to_cpu(__gen_imsm_checksum(mpb));
3157
3158         return rv;
3159 }
3160
3161 static size_t disks_to_mpb_size(int disks)
3162 {
3163         size_t size;
3164
3165         size = sizeof(struct imsm_super);
3166         size += (disks - 1) * sizeof(struct imsm_disk);
3167         size += 2 * sizeof(struct imsm_dev);
3168         /* up to 2 maps per raid device (-2 for imsm_maps in imsm_dev */
3169         size += (4 - 2) * sizeof(struct imsm_map);
3170         /* 4 possible disk_ord_tbl's */
3171         size += 4 * (disks - 1) * sizeof(__u32);
3172
3173         return size;
3174 }
3175
3176 static __u64 avail_size_imsm(struct supertype *st, __u64 devsize,
3177                              unsigned long long data_offset)
3178 {
3179         if (devsize < (MPB_SECTOR_CNT + IMSM_RESERVED_SECTORS))
3180                 return 0;
3181
3182         return devsize - (MPB_SECTOR_CNT + IMSM_RESERVED_SECTORS);
3183 }
3184
3185 static void free_devlist(struct intel_super *super)
3186 {
3187         struct intel_dev *dv;
3188
3189         while (super->devlist) {
3190                 dv = super->devlist->next;
3191                 free(super->devlist->dev);
3192                 free(super->devlist);
3193                 super->devlist = dv;
3194         }
3195 }
3196
3197 static void imsm_copy_dev(struct imsm_dev *dest, struct imsm_dev *src)
3198 {
3199         memcpy(dest, src, sizeof_imsm_dev(src, 0));
3200 }
3201
3202 static int compare_super_imsm(struct supertype *st, struct supertype *tst)
3203 {
3204         /*
3205          * return:
3206          *  0 same, or first was empty, and second was copied
3207          *  1 second had wrong number
3208          *  2 wrong uuid
3209          *  3 wrong other info
3210          */
3211         struct intel_super *first = st->sb;
3212         struct intel_super *sec = tst->sb;
3213
3214         if (!first) {
3215                 st->sb = tst->sb;
3216                 tst->sb = NULL;
3217                 return 0;
3218         }
3219         /* in platform dependent environment test if the disks
3220          * use the same Intel hba
3221          * If not on Intel hba at all, allow anything.
3222          */
3223         if (!check_env("IMSM_NO_PLATFORM") && first->hba && sec->hba) {
3224                 if (first->hba->type != sec->hba->type) {
3225                         fprintf(stderr,
3226                                 "HBAs of devices do not match %s != %s\n",
3227                                 get_sys_dev_type(first->hba->type),
3228                                 get_sys_dev_type(sec->hba->type));
3229                         return 3;
3230                 }
3231                 if (first->orom != sec->orom) {
3232                         fprintf(stderr,
3233                                 "HBAs of devices do not match %s != %s\n",
3234                                 first->hba->pci_id, sec->hba->pci_id);
3235                         return 3;
3236                 }
3237         }
3238
3239         /* if an anchor does not have num_raid_devs set then it is a free
3240          * floating spare
3241          */
3242         if (first->anchor->num_raid_devs > 0 &&
3243             sec->anchor->num_raid_devs > 0) {
3244                 /* Determine if these disks might ever have been
3245                  * related.  Further disambiguation can only take place
3246                  * in load_super_imsm_all
3247                  */
3248                 __u32 first_family = first->anchor->orig_family_num;
3249                 __u32 sec_family = sec->anchor->orig_family_num;
3250
3251                 if (memcmp(first->anchor->sig, sec->anchor->sig,
3252                            MAX_SIGNATURE_LENGTH) != 0)
3253                         return 3;
3254
3255                 if (first_family == 0)
3256                         first_family = first->anchor->family_num;
3257                 if (sec_family == 0)
3258                         sec_family = sec->anchor->family_num;
3259
3260                 if (first_family != sec_family)
3261                         return 3;
3262
3263         }
3264
3265         /* if 'first' is a spare promote it to a populated mpb with sec's
3266          * family number
3267          */
3268         if (first->anchor->num_raid_devs == 0 &&
3269             sec->anchor->num_raid_devs > 0) {
3270                 int i;
3271                 struct intel_dev *dv;
3272                 struct imsm_dev *dev;
3273
3274                 /* we need to copy raid device info from sec if an allocation
3275                  * fails here we don't associate the spare
3276                  */
3277                 for (i = 0; i < sec->anchor->num_raid_devs; i++) {
3278                         dv = xmalloc(sizeof(*dv));
3279                         dev = xmalloc(sizeof_imsm_dev(get_imsm_dev(sec, i), 1));
3280                         dv->dev = dev;
3281                         dv->index = i;
3282                         dv->next = first->devlist;
3283                         first->devlist = dv;
3284                 }
3285                 if (i < sec->anchor->num_raid_devs) {
3286                         /* allocation failure */
3287                         free_devlist(first);
3288                         pr_err("imsm: failed to associate spare\n");
3289                         return 3;
3290                 }
3291                 first->anchor->num_raid_devs = sec->anchor->num_raid_devs;
3292                 first->anchor->orig_family_num = sec->anchor->orig_family_num;
3293                 first->anchor->family_num = sec->anchor->family_num;
3294                 memcpy(first->anchor->sig, sec->anchor->sig, MAX_SIGNATURE_LENGTH);
3295                 for (i = 0; i < sec->anchor->num_raid_devs; i++)
3296                         imsm_copy_dev(get_imsm_dev(first, i), get_imsm_dev(sec, i));
3297         }
3298
3299         return 0;
3300 }
3301
3302 static void fd2devname(int fd, char *name)
3303 {
3304         struct stat st;
3305         char path[256];
3306         char dname[PATH_MAX];
3307         char *nm;
3308         int rv;
3309
3310         name[0] = '\0';
3311         if (fstat(fd, &st) != 0)
3312                 return;
3313         sprintf(path, "/sys/dev/block/%d:%d",
3314                 major(st.st_rdev), minor(st.st_rdev));
3315
3316         rv = readlink(path, dname, sizeof(dname)-1);
3317         if (rv <= 0)
3318                 return;
3319
3320         dname[rv] = '\0';
3321         nm = strrchr(dname, '/');
3322         if (nm) {
3323                 nm++;
3324                 snprintf(name, MAX_RAID_SERIAL_LEN, "/dev/%s", nm);
3325         }
3326 }
3327
3328 static int nvme_get_serial(int fd, void *buf, size_t buf_len)
3329 {
3330         char path[60];
3331         char *name = fd2kname(fd);
3332
3333         if (!name)
3334                 return 1;
3335
3336         if (strncmp(name, "nvme", 4) != 0)
3337                 return 1;
3338
3339         snprintf(path, sizeof(path) - 1, "/sys/block/%s/device/serial", name);
3340
3341         return load_sys(path, buf, buf_len);
3342 }
3343
3344 extern int scsi_get_serial(int fd, void *buf, size_t buf_len);
3345
3346 static int imsm_read_serial(int fd, char *devname,
3347                             __u8 serial[MAX_RAID_SERIAL_LEN])
3348 {
3349         char buf[50];
3350         int rv;
3351         int len;
3352         char *dest;
3353         char *src;
3354         unsigned int i;
3355
3356         memset(buf, 0, sizeof(buf));
3357
3358         rv = nvme_get_serial(fd, buf, sizeof(buf));
3359
3360         if (rv)
3361                 rv = scsi_get_serial(fd, buf, sizeof(buf));
3362
3363         if (rv && check_env("IMSM_DEVNAME_AS_SERIAL")) {
3364                 memset(serial, 0, MAX_RAID_SERIAL_LEN);
3365                 fd2devname(fd, (char *) serial);
3366                 return 0;
3367         }
3368
3369         if (rv != 0) {
3370                 if (devname)
3371                         pr_err("Failed to retrieve serial for %s\n",
3372                                devname);
3373                 return rv;
3374         }
3375
3376         /* trim all whitespace and non-printable characters and convert
3377          * ':' to ';'
3378          */
3379         for (i = 0, dest = buf; i < sizeof(buf) && buf[i]; i++) {
3380                 src = &buf[i];
3381                 if (*src > 0x20) {
3382                         /* ':' is reserved for use in placeholder serial
3383                          * numbers for missing disks
3384                          */
3385                         if (*src == ':')
3386                                 *dest++ = ';';
3387                         else
3388                                 *dest++ = *src;
3389                 }
3390         }
3391         len = dest - buf;
3392         dest = buf;
3393
3394         /* truncate leading characters */
3395         if (len > MAX_RAID_SERIAL_LEN) {
3396                 dest += len - MAX_RAID_SERIAL_LEN;
3397                 len = MAX_RAID_SERIAL_LEN;
3398         }
3399
3400         memset(serial, 0, MAX_RAID_SERIAL_LEN);
3401         memcpy(serial, dest, len);
3402
3403         return 0;
3404 }
3405
3406 static int serialcmp(__u8 *s1, __u8 *s2)
3407 {
3408         return strncmp((char *) s1, (char *) s2, MAX_RAID_SERIAL_LEN);
3409 }
3410
3411 static void serialcpy(__u8 *dest, __u8 *src)
3412 {
3413         strncpy((char *) dest, (char *) src, MAX_RAID_SERIAL_LEN);
3414 }
3415
3416 static struct dl *serial_to_dl(__u8 *serial, struct intel_super *super)
3417 {
3418         struct dl *dl;
3419
3420         for (dl = super->disks; dl; dl = dl->next)
3421                 if (serialcmp(dl->serial, serial) == 0)
3422                         break;
3423
3424         return dl;
3425 }
3426
3427 static struct imsm_disk *
3428 __serial_to_disk(__u8 *serial, struct imsm_super *mpb, int *idx)
3429 {
3430         int i;
3431
3432         for (i = 0; i < mpb->num_disks; i++) {
3433                 struct imsm_disk *disk = __get_imsm_disk(mpb, i);
3434
3435                 if (serialcmp(disk->serial, serial) == 0) {
3436                         if (idx)
3437                                 *idx = i;
3438                         return disk;
3439                 }
3440         }
3441
3442         return NULL;
3443 }
3444
3445 static int
3446 load_imsm_disk(int fd, struct intel_super *super, char *devname, int keep_fd)
3447 {
3448         struct imsm_disk *disk;
3449         struct dl *dl;
3450         struct stat stb;
3451         int rv;
3452         char name[40];
3453         __u8 serial[MAX_RAID_SERIAL_LEN];
3454
3455         rv = imsm_read_serial(fd, devname, serial);
3456
3457         if (rv != 0)
3458                 return 2;
3459
3460         dl = xcalloc(1, sizeof(*dl));
3461
3462         fstat(fd, &stb);
3463         dl->major = major(stb.st_rdev);
3464         dl->minor = minor(stb.st_rdev);
3465         dl->next = super->disks;
3466         dl->fd = keep_fd ? fd : -1;
3467         assert(super->disks == NULL);
3468         super->disks = dl;
3469         serialcpy(dl->serial, serial);
3470         dl->index = -2;
3471         dl->e = NULL;
3472         fd2devname(fd, name);
3473         if (devname)
3474                 dl->devname = xstrdup(devname);
3475         else
3476                 dl->devname = xstrdup(name);
3477
3478         /* look up this disk's index in the current anchor */
3479         disk = __serial_to_disk(dl->serial, super->anchor, &dl->index);
3480         if (disk) {
3481                 dl->disk = *disk;
3482                 /* only set index on disks that are a member of a
3483                  * populated contianer, i.e. one with raid_devs
3484                  */
3485                 if (is_failed(&dl->disk))
3486                         dl->index = -2;
3487                 else if (is_spare(&dl->disk))
3488                         dl->index = -1;
3489         }
3490
3491         return 0;
3492 }
3493
3494 #ifndef MDASSEMBLE
3495 /* When migrating map0 contains the 'destination' state while map1
3496  * contains the current state.  When not migrating map0 contains the
3497  * current state.  This routine assumes that map[0].map_state is set to
3498  * the current array state before being called.
3499  *
3500  * Migration is indicated by one of the following states
3501  * 1/ Idle (migr_state=0 map0state=normal||unitialized||degraded||failed)
3502  * 2/ Initialize (migr_state=1 migr_type=MIGR_INIT map0state=normal
3503  *    map1state=unitialized)
3504  * 3/ Repair (Resync) (migr_state=1 migr_type=MIGR_REPAIR  map0state=normal
3505  *    map1state=normal)
3506  * 4/ Rebuild (migr_state=1 migr_type=MIGR_REBUILD map0state=normal
3507  *    map1state=degraded)
3508  * 5/ Migration (mig_state=1 migr_type=MIGR_GEN_MIGR map0state=normal
3509  *    map1state=normal)
3510  */
3511 static void migrate(struct imsm_dev *dev, struct intel_super *super,
3512                     __u8 to_state, int migr_type)
3513 {
3514         struct imsm_map *dest;
3515         struct imsm_map *src = get_imsm_map(dev, MAP_0);
3516
3517         dev->vol.migr_state = 1;
3518         set_migr_type(dev, migr_type);
3519         dev->vol.curr_migr_unit = 0;
3520         dest = get_imsm_map(dev, MAP_1);
3521
3522         /* duplicate and then set the target end state in map[0] */
3523         memcpy(dest, src, sizeof_imsm_map(src));
3524         if (migr_type == MIGR_REBUILD || migr_type ==  MIGR_GEN_MIGR) {
3525                 __u32 ord;
3526                 int i;
3527
3528                 for (i = 0; i < src->num_members; i++) {
3529                         ord = __le32_to_cpu(src->disk_ord_tbl[i]);
3530                         set_imsm_ord_tbl_ent(src, i, ord_to_idx(ord));
3531                 }
3532         }
3533
3534         if (migr_type == MIGR_GEN_MIGR)
3535                 /* Clear migration record */
3536                 memset(super->migr_rec, 0, sizeof(struct migr_record));
3537
3538         src->map_state = to_state;
3539 }
3540
3541 static void end_migration(struct imsm_dev *dev, struct intel_super *super,
3542                           __u8 map_state)
3543 {
3544         struct imsm_map *map = get_imsm_map(dev, MAP_0);
3545         struct imsm_map *prev = get_imsm_map(dev, dev->vol.migr_state == 0 ?
3546                                                     MAP_0 : MAP_1);
3547         int i, j;
3548
3549         /* merge any IMSM_ORD_REBUILD bits that were not successfully
3550          * completed in the last migration.
3551          *
3552          * FIXME add support for raid-level-migration
3553          */
3554         if (map_state != map->map_state && (is_gen_migration(dev) == 0) &&
3555             prev->map_state != IMSM_T_STATE_UNINITIALIZED) {
3556                 /* when final map state is other than expected
3557                  * merge maps (not for migration)
3558                  */
3559                 int failed;
3560
3561                 for (i = 0; i < prev->num_members; i++)
3562                         for (j = 0; j < map->num_members; j++)
3563                                 /* during online capacity expansion
3564                                  * disks position can be changed
3565                                  * if takeover is used
3566                                  */
3567                                 if (ord_to_idx(map->disk_ord_tbl[j]) ==
3568                                     ord_to_idx(prev->disk_ord_tbl[i])) {
3569                                         map->disk_ord_tbl[j] |=
3570                                                 prev->disk_ord_tbl[i];
3571                                         break;
3572                                 }
3573                 failed = imsm_count_failed(super, dev, MAP_0);
3574                 map_state = imsm_check_degraded(super, dev, failed, MAP_0);
3575         }
3576
3577         dev->vol.migr_state = 0;
3578         set_migr_type(dev, 0);
3579         dev->vol.curr_migr_unit = 0;
3580         map->map_state = map_state;
3581 }
3582 #endif
3583
3584 static int parse_raid_devices(struct intel_super *super)
3585 {
3586         int i;
3587         struct imsm_dev *dev_new;
3588         size_t len, len_migr;
3589         size_t max_len = 0;
3590         size_t space_needed = 0;
3591         struct imsm_super *mpb = super->anchor;
3592
3593         for (i = 0; i < super->anchor->num_raid_devs; i++) {
3594                 struct imsm_dev *dev_iter = __get_imsm_dev(super->anchor, i);
3595                 struct intel_dev *dv;
3596
3597                 len = sizeof_imsm_dev(dev_iter, 0);
3598                 len_migr = sizeof_imsm_dev(dev_iter, 1);
3599                 if (len_migr > len)
3600                         space_needed += len_migr - len;
3601
3602                 dv = xmalloc(sizeof(*dv));
3603                 if (max_len < len_migr)
3604                         max_len = len_migr;
3605                 if (max_len > len_migr)
3606                         space_needed += max_len - len_migr;
3607                 dev_new = xmalloc(max_len);
3608                 imsm_copy_dev(dev_new, dev_iter);
3609                 dv->dev = dev_new;
3610                 dv->index = i;
3611                 dv->next = super->devlist;
3612                 super->devlist = dv;
3613         }
3614
3615         /* ensure that super->buf is large enough when all raid devices
3616          * are migrating
3617          */
3618         if (__le32_to_cpu(mpb->mpb_size) + space_needed > super->len) {
3619                 void *buf;
3620
3621                 len = ROUND_UP(__le32_to_cpu(mpb->mpb_size) + space_needed, 512);
3622                 if (posix_memalign(&buf, 512, len) != 0)
3623                         return 1;
3624
3625                 memcpy(buf, super->buf, super->len);
3626                 memset(buf + super->len, 0, len - super->len);
3627                 free(super->buf);
3628                 super->buf = buf;
3629                 super->len = len;
3630         }
3631
3632         return 0;
3633 }
3634
3635 /* retrieve a pointer to the bbm log which starts after all raid devices */
3636 struct bbm_log *__get_imsm_bbm_log(struct imsm_super *mpb)
3637 {
3638         void *ptr = NULL;
3639
3640         if (__le32_to_cpu(mpb->bbm_log_size)) {
3641                 ptr = mpb;
3642                 ptr += mpb->mpb_size - __le32_to_cpu(mpb->bbm_log_size);
3643         }
3644
3645         return ptr;
3646 }
3647
3648 /*******************************************************************************
3649  * Function:    check_mpb_migr_compatibility
3650  * Description: Function checks for unsupported migration features:
3651  *              - migration optimization area (pba_of_lba0)
3652  *              - descending reshape (ascending_migr)
3653  * Parameters:
3654  *      super   : imsm metadata information
3655  * Returns:
3656  *       0 : migration is compatible
3657  *      -1 : migration is not compatible
3658  ******************************************************************************/
3659 int check_mpb_migr_compatibility(struct intel_super *super)
3660 {
3661         struct imsm_map *map0, *map1;
3662         struct migr_record *migr_rec = super->migr_rec;
3663         int i;
3664
3665         for (i = 0; i < super->anchor->num_raid_devs; i++) {
3666                 struct imsm_dev *dev_iter = __get_imsm_dev(super->anchor, i);
3667
3668                 if (dev_iter &&
3669                     dev_iter->vol.migr_state == 1 &&
3670                     dev_iter->vol.migr_type == MIGR_GEN_MIGR) {
3671                         /* This device is migrating */
3672                         map0 = get_imsm_map(dev_iter, MAP_0);
3673                         map1 = get_imsm_map(dev_iter, MAP_1);
3674                         if (pba_of_lba0(map0) != pba_of_lba0(map1))
3675                                 /* migration optimization area was used */
3676                                 return -1;
3677                         if (migr_rec->ascending_migr == 0
3678                                 && migr_rec->dest_depth_per_unit > 0)
3679                                 /* descending reshape not supported yet */
3680                                 return -1;
3681                 }
3682         }
3683         return 0;
3684 }
3685
3686 static void __free_imsm(struct intel_super *super, int free_disks);
3687
3688 /* load_imsm_mpb - read matrix metadata
3689  * allocates super->mpb to be freed by free_imsm
3690  */
3691 static int load_imsm_mpb(int fd, struct intel_super *super, char *devname)
3692 {
3693         unsigned long long dsize;
3694         unsigned long long sectors;
3695         struct stat;
3696         struct imsm_super *anchor;
3697         __u32 check_sum;
3698
3699         get_dev_size(fd, NULL, &dsize);
3700         if (dsize < 1024) {
3701                 if (devname)
3702                         pr_err("%s: device to small for imsm\n",
3703                                devname);
3704                 return 1;
3705         }
3706
3707         if (lseek64(fd, dsize - (512 * 2), SEEK_SET) < 0) {
3708                 if (devname)
3709                         pr_err("Cannot seek to anchor block on %s: %s\n",
3710                                devname, strerror(errno));
3711                 return 1;
3712         }
3713
3714         if (posix_memalign((void**)&anchor, 512, 512) != 0) {
3715                 if (devname)
3716                         pr_err("Failed to allocate imsm anchor buffer on %s\n", devname);
3717                 return 1;
3718         }
3719         if (read(fd, anchor, 512) != 512) {
3720                 if (devname)
3721                         pr_err("Cannot read anchor block on %s: %s\n",
3722                                devname, strerror(errno));
3723                 free(anchor);
3724                 return 1;
3725         }
3726
3727         if (strncmp((char *) anchor->sig, MPB_SIGNATURE, MPB_SIG_LEN) != 0) {
3728                 if (devname)
3729                         pr_err("no IMSM anchor on %s\n", devname);
3730                 free(anchor);
3731                 return 2;
3732         }
3733
3734         __free_imsm(super, 0);
3735         /*  reload capability and hba */
3736
3737         /* capability and hba must be updated with new super allocation */
3738         find_intel_hba_capability(fd, super, devname);
3739         super->len = ROUND_UP(anchor->mpb_size, 512);
3740         if (posix_memalign(&super->buf, 512, super->len) != 0) {
3741                 if (devname)
3742                         pr_err("unable to allocate %zu byte mpb buffer\n",
3743                                super->len);
3744                 free(anchor);
3745                 return 2;
3746         }
3747         memcpy(super->buf, anchor, 512);
3748
3749         sectors = mpb_sectors(anchor) - 1;
3750         free(anchor);
3751
3752         if (posix_memalign(&super->migr_rec_buf, 512, MIGR_REC_BUF_SIZE) != 0) {
3753                 pr_err("could not allocate migr_rec buffer\n");
3754                 free(super->buf);
3755                 return 2;
3756         }
3757         super->clean_migration_record_by_mdmon = 0;
3758
3759         if (!sectors) {
3760                 check_sum = __gen_imsm_checksum(super->anchor);
3761                 if (check_sum != __le32_to_cpu(super->anchor->check_sum)) {
3762                         if (devname)
3763                                 pr_err("IMSM checksum %x != %x on %s\n",
3764                                        check_sum,
3765                                        __le32_to_cpu(super->anchor->check_sum),
3766                                        devname);
3767                         return 2;
3768                 }
3769
3770                 return 0;
3771         }
3772
3773         /* read the extended mpb */
3774         if (lseek64(fd, dsize - (512 * (2 + sectors)), SEEK_SET) < 0) {
3775                 if (devname)
3776                         pr_err("Cannot seek to extended mpb on %s: %s\n",
3777                                devname, strerror(errno));
3778                 return 1;
3779         }
3780
3781         if ((unsigned)read(fd, super->buf + 512, super->len - 512) != super->len - 512) {
3782                 if (devname)
3783                         pr_err("Cannot read extended mpb on %s: %s\n",
3784                                devname, strerror(errno));
3785                 return 2;
3786         }
3787
3788         check_sum = __gen_imsm_checksum(super->anchor);
3789         if (check_sum != __le32_to_cpu(super->anchor->check_sum)) {
3790                 if (devname)
3791                         pr_err("IMSM checksum %x != %x on %s\n",
3792                                check_sum, __le32_to_cpu(super->anchor->check_sum),
3793                                devname);
3794                 return 3;
3795         }
3796
3797         /* FIXME the BBM log is disk specific so we cannot use this global
3798          * buffer for all disks.  Ok for now since we only look at the global
3799          * bbm_log_size parameter to gate assembly
3800          */
3801         super->bbm_log = __get_imsm_bbm_log(super->anchor);
3802
3803         return 0;
3804 }
3805
3806 static int read_imsm_migr_rec(int fd, struct intel_super *super);
3807
3808 /* clears hi bits in metadata if MPB_ATTRIB_2TB_DISK not set */
3809 static void clear_hi(struct intel_super *super)
3810 {
3811         struct imsm_super *mpb = super->anchor;
3812         int i, n;
3813         if (mpb->attributes & MPB_ATTRIB_2TB_DISK)
3814                 return;
3815         for (i = 0; i < mpb->num_disks; ++i) {
3816                 struct imsm_disk *disk = &mpb->disk[i];
3817                 disk->total_blocks_hi = 0;
3818         }
3819         for (i = 0; i < mpb->num_raid_devs; ++i) {
3820                 struct imsm_dev *dev = get_imsm_dev(super, i);
3821                 if (!dev)
3822                         return;
3823                 for (n = 0; n < 2; ++n) {
3824                         struct imsm_map *map = get_imsm_map(dev, n);
3825                         if (!map)
3826                                 continue;
3827                         map->pba_of_lba0_hi = 0;
3828                         map->blocks_per_member_hi = 0;
3829                         map->num_data_stripes_hi = 0;
3830                 }
3831         }
3832 }
3833
3834 static int
3835 load_and_parse_mpb(int fd, struct intel_super *super, char *devname, int keep_fd)
3836 {
3837         int err;
3838
3839         err = load_imsm_mpb(fd, super, devname);
3840         if (err)
3841                 return err;
3842         err = load_imsm_disk(fd, super, devname, keep_fd);
3843         if (err)
3844                 return err;
3845         err = parse_raid_devices(super);
3846         clear_hi(super);
3847         return err;
3848 }
3849
3850 static void __free_imsm_disk(struct dl *d)
3851 {
3852         if (d->fd >= 0)
3853                 close(d->fd);
3854         if (d->devname)
3855                 free(d->devname);
3856         if (d->e)
3857                 free(d->e);
3858         free(d);
3859
3860 }
3861
3862 static void free_imsm_disks(struct intel_super *super)
3863 {
3864         struct dl *d;
3865
3866         while (super->disks) {
3867                 d = super->disks;
3868                 super->disks = d->next;
3869                 __free_imsm_disk(d);
3870         }
3871         while (super->disk_mgmt_list) {
3872                 d = super->disk_mgmt_list;
3873                 super->disk_mgmt_list = d->next;
3874                 __free_imsm_disk(d);
3875         }
3876         while (super->missing) {
3877                 d = super->missing;
3878                 super->missing = d->next;
3879                 __free_imsm_disk(d);
3880         }
3881
3882 }
3883
3884 /* free all the pieces hanging off of a super pointer */
3885 static void __free_imsm(struct intel_super *super, int free_disks)
3886 {
3887         struct intel_hba *elem, *next;
3888
3889         if (super->buf) {
3890                 free(super->buf);
3891                 super->buf = NULL;
3892         }
3893         /* unlink capability description */
3894         super->orom = NULL;
3895         if (super->migr_rec_buf) {
3896                 free(super->migr_rec_buf);
3897                 super->migr_rec_buf = NULL;
3898         }
3899         if (free_disks)
3900                 free_imsm_disks(super);
3901         free_devlist(super);
3902         elem = super->hba;
3903         while (elem) {
3904                 if (elem->path)
3905                         free((void *)elem->path);
3906                 next = elem->next;
3907                 free(elem);
3908                 elem = next;
3909         }
3910         super->hba = NULL;
3911 }
3912
3913 static void free_imsm(struct intel_super *super)
3914 {
3915         __free_imsm(super, 1);
3916         free(super);
3917 }
3918
3919 static void free_super_imsm(struct supertype *st)
3920 {
3921         struct intel_super *super = st->sb;
3922
3923         if (!super)
3924                 return;
3925
3926         free_imsm(super);
3927         st->sb = NULL;
3928 }
3929
3930 static struct intel_super *alloc_super(void)
3931 {
3932         struct intel_super *super = xcalloc(1, sizeof(*super));
3933
3934         super->current_vol = -1;
3935         super->create_offset = ~((unsigned long long) 0);
3936         return super;
3937 }
3938
3939 /*
3940  * find and allocate hba and OROM/EFI based on valid fd of RAID component device
3941  */
3942 static int find_intel_hba_capability(int fd, struct intel_super *super, char *devname)
3943 {
3944         struct sys_dev *hba_name;
3945         int rv = 0;
3946
3947         if (fd < 0 || check_env("IMSM_NO_PLATFORM")) {
3948                 super->orom = NULL;
3949                 super->hba = NULL;
3950                 return 0;
3951         }
3952         hba_name = find_disk_attached_hba(fd, NULL);
3953         if (!hba_name) {
3954                 if (devname)
3955                         pr_err("%s is not attached to Intel(R) RAID controller.\n",
3956                                devname);
3957                 return 1;
3958         }
3959         rv = attach_hba_to_super(super, hba_name);
3960         if (rv == 2) {
3961                 if (devname) {
3962                         struct intel_hba *hba = super->hba;
3963
3964                         pr_err("%s is attached to Intel(R) %s %s (%s),\n"
3965                                 "    but the container is assigned to Intel(R) %s %s (",
3966                                 devname,
3967                                 get_sys_dev_type(hba_name->type),
3968                                 hba_name->type == SYS_DEV_VMD ? "domain" : "RAID controller",
3969                                 hba_name->pci_id ? : "Err!",
3970                                 get_sys_dev_type(super->hba->type),
3971                                 hba->type == SYS_DEV_VMD ? "domain" : "RAID controller");
3972
3973                         while (hba) {
3974                                 fprintf(stderr, "%s", hba->pci_id ? : "Err!");
3975                                 if (hba->next)
3976                                         fprintf(stderr, ", ");
3977                                 hba = hba->next;
3978                         }
3979                         fprintf(stderr, ").\n"
3980                                 "    Mixing devices attached to different %s is not allowed.\n",
3981                                 hba_name->type == SYS_DEV_VMD ? "VMD domains" : "controllers");
3982                 }
3983                 return 2;
3984         }
3985         super->orom = find_imsm_capability(hba_name);
3986         if (!super->orom)
3987                 return 3;
3988
3989         return 0;
3990 }
3991
3992 /* find_missing - helper routine for load_super_imsm_all that identifies
3993  * disks that have disappeared from the system.  This routine relies on
3994  * the mpb being uptodate, which it is at load time.
3995  */
3996 static int find_missing(struct intel_super *super)
3997 {
3998         int i;
3999         struct imsm_super *mpb = super->anchor;
4000         struct dl *dl;
4001         struct imsm_disk *disk;
4002
4003         for (i = 0; i < mpb->num_disks; i++) {
4004                 disk = __get_imsm_disk(mpb, i);
4005                 dl = serial_to_dl(disk->serial, super);
4006                 if (dl)
4007                         continue;
4008
4009                 dl = xmalloc(sizeof(*dl));
4010                 dl->major = 0;
4011                 dl->minor = 0;
4012                 dl->fd = -1;
4013                 dl->devname = xstrdup("missing");
4014                 dl->index = i;
4015                 serialcpy(dl->serial, disk->serial);
4016                 dl->disk = *disk;
4017                 dl->e = NULL;
4018                 dl->next = super->missing;
4019                 super->missing = dl;
4020         }
4021
4022         return 0;
4023 }
4024
4025 #ifndef MDASSEMBLE
4026 static struct intel_disk *disk_list_get(__u8 *serial, struct intel_disk *disk_list)
4027 {
4028         struct intel_disk *idisk = disk_list;
4029
4030         while (idisk) {
4031                 if (serialcmp(idisk->disk.serial, serial) == 0)
4032                         break;
4033                 idisk = idisk->next;
4034         }
4035
4036         return idisk;
4037 }
4038
4039 static int __prep_thunderdome(struct intel_super **table, int tbl_size,
4040                               struct intel_super *super,
4041                               struct intel_disk **disk_list)
4042 {
4043         struct imsm_disk *d = &super->disks->disk;
4044         struct imsm_super *mpb = super->anchor;
4045         int i, j;
4046
4047         for (i = 0; i < tbl_size; i++) {
4048                 struct imsm_super *tbl_mpb = table[i]->anchor;
4049                 struct imsm_disk *tbl_d = &table[i]->disks->disk;
4050
4051                 if (tbl_mpb->family_num == mpb->family_num) {
4052                         if (tbl_mpb->check_sum == mpb->check_sum) {
4053                                 dprintf("mpb from %d:%d matches %d:%d\n",
4054                                         super->disks->major,
4055                                         super->disks->minor,
4056                                         table[i]->disks->major,
4057                                         table[i]->disks->minor);
4058                                 break;
4059                         }
4060
4061                         if (((is_configured(d) && !is_configured(tbl_d)) ||
4062                              is_configured(d) == is_configured(tbl_d)) &&
4063                             tbl_mpb->generation_num < mpb->generation_num) {
4064                                 /* current version of the mpb is a
4065                                  * better candidate than the one in
4066                                  * super_table, but copy over "cross
4067                                  * generational" status
4068                                  */
4069                                 struct intel_disk *idisk;
4070
4071                                 dprintf("mpb from %d:%d replaces %d:%d\n",
4072                                         super->disks->major,
4073                                         super->disks->minor,
4074                                         table[i]->disks->major,
4075                                         table[i]->disks->minor);
4076
4077                                 idisk = disk_list_get(tbl_d->serial, *disk_list);
4078                                 if (idisk && is_failed(&idisk->disk))
4079                                         tbl_d->status |= FAILED_DISK;
4080                                 break;
4081                         } else {
4082                                 struct intel_disk *idisk;
4083                                 struct imsm_disk *disk;
4084
4085                                 /* tbl_mpb is more up to date, but copy
4086                                  * over cross generational status before
4087                                  * returning
4088                                  */
4089                                 disk = __serial_to_disk(d->serial, mpb, NULL);
4090                                 if (disk && is_failed(disk))
4091                                         d->status |= FAILED_DISK;
4092
4093                                 idisk = disk_list_get(d->serial, *disk_list);
4094                                 if (idisk) {
4095                                         idisk->owner = i;
4096                                         if (disk && is_configured(disk))
4097                                                 idisk->disk.status |= CONFIGURED_DISK;
4098                                 }
4099
4100                                 dprintf("mpb from %d:%d prefer %d:%d\n",
4101                                         super->disks->major,
4102                                         super->disks->minor,
4103                                         table[i]->disks->major,
4104                                         table[i]->disks->minor);
4105
4106                                 return tbl_size;
4107                         }
4108                 }
4109         }
4110
4111         if (i >= tbl_size)
4112                 table[tbl_size++] = super;
4113         else
4114                 table[i] = super;
4115
4116         /* update/extend the merged list of imsm_disk records */
4117         for (j = 0; j < mpb->num_disks; j++) {
4118                 struct imsm_disk *disk = __get_imsm_disk(mpb, j);
4119                 struct intel_disk *idisk;
4120
4121                 idisk = disk_list_get(disk->serial, *disk_list);
4122                 if (idisk) {
4123                         idisk->disk.status |= disk->status;
4124                         if (is_configured(&idisk->disk) ||
4125                             is_failed(&idisk->disk))
4126                                 idisk->disk.status &= ~(SPARE_DISK);
4127                 } else {
4128                         idisk = xcalloc(1, sizeof(*idisk));
4129                         idisk->owner = IMSM_UNKNOWN_OWNER;
4130                         idisk->disk = *disk;
4131                         idisk->next = *disk_list;
4132                         *disk_list = idisk;
4133                 }
4134
4135                 if (serialcmp(idisk->disk.serial, d->serial) == 0)
4136                         idisk->owner = i;
4137         }
4138
4139         return tbl_size;
4140 }
4141
4142 static struct intel_super *
4143 validate_members(struct intel_super *super, struct intel_disk *disk_list,
4144                  const int owner)
4145 {
4146         struct imsm_super *mpb = super->anchor;
4147         int ok_count = 0;
4148         int i;
4149
4150         for (i = 0; i < mpb->num_disks; i++) {
4151                 struct imsm_disk *disk = __get_imsm_disk(mpb, i);
4152                 struct intel_disk *idisk;
4153
4154                 idisk = disk_list_get(disk->serial, disk_list);
4155                 if (idisk) {
4156                         if (idisk->owner == owner ||
4157                             idisk->owner == IMSM_UNKNOWN_OWNER)
4158                                 ok_count++;
4159                         else
4160                                 dprintf("'%.16s' owner %d != %d\n",
4161                                         disk->serial, idisk->owner,
4162                                         owner);
4163                 } else {
4164                         dprintf("unknown disk %x [%d]: %.16s\n",
4165                                 __le32_to_cpu(mpb->family_num), i,
4166                                 disk->serial);
4167                         break;
4168                 }
4169         }
4170
4171         if (ok_count == mpb->num_disks)
4172                 return super;
4173         return NULL;
4174 }
4175
4176 static void show_conflicts(__u32 family_num, struct intel_super *super_list)
4177 {
4178         struct intel_super *s;
4179
4180         for (s = super_list; s; s = s->next) {
4181                 if (family_num != s->anchor->family_num)
4182                         continue;
4183                 pr_err("Conflict, offlining family %#x on '%s'\n",
4184                         __le32_to_cpu(family_num), s->disks->devname);
4185         }
4186 }
4187
4188 static struct intel_super *
4189 imsm_thunderdome(struct intel_super **super_list, int len)
4190 {
4191         struct intel_super *super_table[len];
4192         struct intel_disk *disk_list = NULL;
4193         struct intel_super *champion, *spare;
4194         struct intel_super *s, **del;
4195         int tbl_size = 0;
4196         int conflict;
4197         int i;
4198
4199         memset(super_table, 0, sizeof(super_table));
4200         for (s = *super_list; s; s = s->next)
4201                 tbl_size = __prep_thunderdome(super_table, tbl_size, s, &disk_list);
4202
4203         for (i = 0; i < tbl_size; i++) {
4204                 struct imsm_disk *d;
4205                 struct intel_disk *idisk;
4206                 struct imsm_super *mpb = super_table[i]->anchor;
4207
4208                 s = super_table[i];
4209                 d = &s->disks->disk;
4210
4211                 /* 'd' must appear in merged disk list for its
4212                  * configuration to be valid
4213                  */
4214                 idisk = disk_list_get(d->serial, disk_list);
4215                 if (idisk && idisk->owner == i)
4216                         s = validate_members(s, disk_list, i);
4217                 else
4218                         s = NULL;
4219
4220                 if (!s)
4221                         dprintf("marking family: %#x from %d:%d offline\n",
4222                                 mpb->family_num,
4223                                 super_table[i]->disks->major,
4224                                 super_table[i]->disks->minor);
4225                 super_table[i] = s;
4226         }
4227
4228         /* This is where the mdadm implementation differs from the Windows
4229          * driver which has no strict concept of a container.  We can only
4230          * assemble one family from a container, so when returning a prodigal
4231          * array member to this system the code will not be able to disambiguate
4232          * the container contents that should be assembled ("foreign" versus
4233          * "local").  It requires user intervention to set the orig_family_num
4234          * to a new value to establish a new container.  The Windows driver in
4235          * this situation fixes up the volume name in place and manages the
4236          * foreign array as an independent entity.
4237          */
4238         s = NULL;
4239         spare = NULL;
4240         conflict = 0;
4241         for (i = 0; i < tbl_size; i++) {
4242                 struct intel_super *tbl_ent = super_table[i];
4243                 int is_spare = 0;
4244
4245                 if (!tbl_ent)
4246                         continue;
4247
4248                 if (tbl_ent->anchor->num_raid_devs == 0) {
4249                         spare = tbl_ent;
4250                         is_spare = 1;
4251                 }
4252
4253                 if (s && !is_spare) {
4254                         show_conflicts(tbl_ent->anchor->family_num, *super_list);
4255                         conflict++;
4256                 } else if (!s && !is_spare)
4257                         s = tbl_ent;
4258         }
4259
4260         if (!s)
4261                 s = spare;
4262         if (!s) {
4263                 champion = NULL;
4264                 goto out;
4265         }
4266         champion = s;
4267
4268         if (conflict)
4269                 pr_err("Chose family %#x on '%s', assemble conflicts to new container with '--update=uuid'\n",
4270                         __le32_to_cpu(s->anchor->family_num), s->disks->devname);
4271
4272         /* collect all dl's onto 'champion', and update them to
4273          * champion's version of the status
4274          */
4275         for (s = *super_list; s; s = s->next) {
4276                 struct imsm_super *mpb = champion->anchor;
4277                 struct dl *dl = s->disks;
4278
4279                 if (s == champion)
4280                         continue;
4281
4282                 mpb->attributes |= s->anchor->attributes & MPB_ATTRIB_2TB_DISK;
4283
4284                 for (i = 0; i < mpb->num_disks; i++) {
4285                         struct imsm_disk *disk;
4286
4287                         disk = __serial_to_disk(dl->serial, mpb, &dl->index);
4288                         if (disk) {
4289                                 dl->disk = *disk;
4290                                 /* only set index on disks that are a member of
4291                                  * a populated contianer, i.e. one with
4292                                  * raid_devs
4293                                  */
4294                                 if (is_failed(&dl->disk))
4295                                         dl->index = -2;
4296                                 else if (is_spare(&dl->disk))
4297                                         dl->index = -1;
4298                                 break;
4299                         }
4300                 }
4301
4302                 if (i >= mpb->num_disks) {
4303                         struct intel_disk *idisk;
4304
4305                         idisk = disk_list_get(dl->serial, disk_list);
4306                         if (idisk && is_spare(&idisk->disk) &&
4307                             !is_failed(&idisk->disk) && !is_configured(&idisk->disk))
4308                                 dl->index = -1;
4309                         else {
4310                                 dl->index = -2;
4311                                 continue;
4312                         }
4313                 }
4314
4315                 dl->next = champion->disks;
4316                 champion->disks = dl;
4317                 s->disks = NULL;
4318         }
4319
4320         /* delete 'champion' from super_list */
4321         for (del = super_list; *del; ) {
4322                 if (*del == champion) {
4323                         *del = (*del)->next;
4324                         break;
4325                 } else
4326                         del = &(*del)->next;
4327         }
4328         champion->next = NULL;
4329
4330  out:
4331         while (disk_list) {
4332                 struct intel_disk *idisk = disk_list;
4333
4334                 disk_list = disk_list->next;
4335                 free(idisk);
4336         }
4337
4338         return champion;
4339 }
4340
4341 static int
4342 get_sra_super_block(int fd, struct intel_super **super_list, char *devname, int *max, int keep_fd);
4343 static int get_super_block(struct intel_super **super_list, char *devnm, char *devname,
4344                            int major, int minor, int keep_fd);
4345 static int
4346 get_devlist_super_block(struct md_list *devlist, struct intel_super **super_list,
4347                         int *max, int keep_fd);
4348
4349 static int load_super_imsm_all(struct supertype *st, int fd, void **sbp,
4350                                char *devname, struct md_list *devlist,
4351                                int keep_fd)
4352 {
4353         struct intel_super *super_list = NULL;
4354         struct intel_super *super = NULL;
4355         int err = 0;
4356         int i = 0;
4357
4358         if (fd >= 0)
4359                 /* 'fd' is an opened container */
4360                 err = get_sra_super_block(fd, &super_list, devname, &i, keep_fd);
4361         else
4362                 /* get super block from devlist devices */
4363                 err = get_devlist_super_block(devlist, &super_list, &i, keep_fd);
4364         if (err)
4365                 goto error;
4366         /* all mpbs enter, maybe one leaves */
4367         super = imsm_thunderdome(&super_list, i);
4368         if (!super) {
4369                 err = 1;
4370                 goto error;
4371         }
4372
4373         if (find_missing(super) != 0) {
4374                 free_imsm(super);
4375                 err = 2;
4376                 goto error;
4377         }
4378
4379         /* load migration record */
4380         err = load_imsm_migr_rec(super, NULL);
4381         if (err == -1) {
4382                 /* migration is in progress,
4383                  * but migr_rec cannot be loaded,
4384                  */
4385                 err = 4;
4386                 goto error;
4387         }
4388
4389         /* Check migration compatibility */
4390         if (err == 0 && check_mpb_migr_compatibility(super) != 0) {
4391                 pr_err("Unsupported migration detected");
4392                 if (devname)
4393                         fprintf(stderr, " on %s\n", devname);
4394                 else
4395                         fprintf(stderr, " (IMSM).\n");
4396
4397                 err = 5;
4398                 goto error;
4399         }
4400
4401         err = 0;
4402
4403  error:
4404         while (super_list) {
4405                 struct intel_super *s = super_list;
4406
4407                 super_list = super_list->next;
4408                 free_imsm(s);
4409         }
4410
4411         if (err)
4412                 return err;
4413
4414         *sbp = super;
4415         if (fd >= 0)
4416                 strcpy(st->container_devnm, fd2devnm(fd));
4417         else
4418                 st->container_devnm[0] = 0;
4419         if (err == 0 && st->ss == NULL) {
4420                 st->ss = &super_imsm;
4421                 st->minor_version = 0;
4422                 st->max_devs = IMSM_MAX_DEVICES;
4423         }
4424         return 0;
4425 }
4426
4427 static int
4428 get_devlist_super_block(struct md_list *devlist, struct intel_super **super_list,
4429                         int *max, int keep_fd)
4430 {
4431         struct md_list *tmpdev;
4432         int err = 0;
4433         int i = 0;
4434
4435         for (i = 0, tmpdev = devlist; tmpdev; tmpdev = tmpdev->next) {
4436                 if (tmpdev->used != 1)
4437                         continue;
4438                 if (tmpdev->container == 1) {
4439                         int lmax = 0;
4440                         int fd = dev_open(tmpdev->devname, O_RDONLY|O_EXCL);
4441                         if (fd < 0) {
4442                                 pr_err("cannot open device %s: %s\n",
4443                                         tmpdev->devname, strerror(errno));
4444                                 err = 8;
4445                                 goto error;
4446                         }
4447                         err = get_sra_super_block(fd, super_list,
4448                                                   tmpdev->devname, &lmax,
4449                                                   keep_fd);
4450                         i += lmax;
4451                         close(fd);
4452                         if (err) {
4453                                 err = 7;
4454                                 goto error;
4455                         }
4456                 } else {
4457                         int major = major(tmpdev->st_rdev);
4458                         int minor = minor(tmpdev->st_rdev);
4459                         err = get_super_block(super_list,
4460                                               NULL,
4461                                               tmpdev->devname,
4462                                               major, minor,
4463                                               keep_fd);
4464                         i++;
4465                         if (err) {
4466                                 err = 6;
4467                                 goto error;
4468                         }
4469                 }
4470         }
4471  error:
4472         *max = i;
4473         return err;
4474 }
4475
4476 static int get_super_block(struct intel_super **super_list, char *devnm, char *devname,
4477                            int major, int minor, int keep_fd)
4478 {
4479         struct intel_super *s;
4480         char nm[32];
4481         int dfd = -1;
4482         int err = 0;
4483         int retry;
4484
4485         s = alloc_super();
4486         if (!s) {
4487                 err = 1;
4488                 goto error;
4489         }
4490
4491         sprintf(nm, "%d:%d", major, minor);
4492         dfd = dev_open(nm, O_RDWR);
4493         if (dfd < 0) {
4494                 err = 2;
4495                 goto error;
4496         }
4497
4498         find_intel_hba_capability(dfd, s, devname);
4499         err = load_and_parse_mpb(dfd, s, NULL, keep_fd);
4500
4501         /* retry the load if we might have raced against mdmon */
4502         if (err == 3 && devnm && mdmon_running(devnm))
4503                 for (retry = 0; retry < 3; retry++) {
4504                         usleep(3000);
4505                         err = load_and_parse_mpb(dfd, s, NULL, keep_fd);
4506                         if (err != 3)
4507                                 break;
4508                 }
4509  error:
4510         if (!err) {
4511                 s->next = *super_list;
4512                 *super_list = s;
4513         } else {
4514                 if (s)
4515                         free(s);
4516                 if (dfd >= 0)
4517                         close(dfd);
4518         }
4519         if (dfd >= 0 && !keep_fd)
4520                 close(dfd);
4521         return err;
4522
4523 }
4524
4525 static int
4526 get_sra_super_block(int fd, struct intel_super **super_list, char *devname, int *max, int keep_fd)
4527 {
4528         struct mdinfo *sra;
4529         char *devnm;
4530         struct mdinfo *sd;
4531         int err = 0;
4532         int i = 0;
4533         sra = sysfs_read(fd, NULL, GET_LEVEL|GET_VERSION|GET_DEVS|GET_STATE);
4534         if (!sra)
4535                 return 1;
4536
4537         if (sra->array.major_version != -1 ||
4538             sra->array.minor_version != -2 ||
4539             strcmp(sra->text_version, "imsm") != 0) {
4540                 err = 1;
4541                 goto error;
4542         }
4543         /* load all mpbs */
4544         devnm = fd2devnm(fd);
4545         for (sd = sra->devs, i = 0; sd; sd = sd->next, i++) {
4546                 if (get_super_block(super_list, devnm, devname,
4547                                     sd->disk.major, sd->disk.minor, keep_fd) != 0) {
4548                         err = 7;
4549                         goto error;
4550                 }
4551         }
4552  error:
4553         sysfs_free(sra);
4554         *max = i;
4555         return err;
4556 }
4557
4558 static int load_container_imsm(struct supertype *st, int fd, char *devname)
4559 {
4560         return load_super_imsm_all(st, fd, &st->sb, devname, NULL, 1);
4561 }
4562 #endif
4563
4564 static int load_super_imsm(struct supertype *st, int fd, char *devname)
4565 {
4566         struct intel_super *super;
4567         int rv;
4568         int retry;
4569
4570         if (test_partition(fd))
4571                 /* IMSM not allowed on partitions */
4572                 return 1;
4573
4574         free_super_imsm(st);
4575
4576         super = alloc_super();
4577         /* Load hba and capabilities if they exist.
4578          * But do not preclude loading metadata in case capabilities or hba are
4579          * non-compliant and ignore_hw_compat is set.
4580          */
4581         rv = find_intel_hba_capability(fd, super, devname);
4582         /* no orom/efi or non-intel hba of the disk */
4583         if (rv != 0 && st->ignore_hw_compat == 0) {
4584                 if (devname)
4585                         pr_err("No OROM/EFI properties for %s\n", devname);
4586                 free_imsm(super);
4587                 return 2;
4588         }
4589         rv = load_and_parse_mpb(fd, super, devname, 0);
4590
4591         /* retry the load if we might have raced against mdmon */
4592         if (rv == 3) {
4593                 struct mdstat_ent *mdstat = NULL;
4594                 char *name = fd2kname(fd);
4595
4596                 if (name)
4597                         mdstat = mdstat_by_component(name);
4598
4599                 if (mdstat && mdmon_running(mdstat->devnm) && getpid() != mdmon_pid(mdstat->devnm)) {
4600                         for (retry = 0; retry < 3; retry++) {
4601                                 usleep(3000);
4602                                 rv = load_and_parse_mpb(fd, super, devname, 0);
4603                                 if (rv != 3)
4604                                         break;
4605                         }
4606                 }
4607
4608                 free_mdstat(mdstat);
4609         }
4610
4611         if (rv) {
4612                 if (devname)
4613                         pr_err("Failed to load all information sections on %s\n", devname);
4614                 free_imsm(super);
4615                 return rv;
4616         }
4617
4618         st->sb = super;
4619         if (st->ss == NULL) {
4620                 st->ss = &super_imsm;
4621                 st->minor_version = 0;
4622                 st->max_devs = IMSM_MAX_DEVICES;
4623         }
4624
4625         /* load migration record */
4626         if (load_imsm_migr_rec(super, NULL) == 0) {
4627                 /* Check for unsupported migration features */
4628                 if (check_mpb_migr_compatibility(super) != 0) {
4629                         pr_err("Unsupported migration detected");
4630                         if (devname)
4631                                 fprintf(stderr, " on %s\n", devname);
4632                         else
4633                                 fprintf(stderr, " (IMSM).\n");
4634                         return 3;
4635                 }
4636         }
4637
4638         return 0;
4639 }
4640
4641 static __u16 info_to_blocks_per_strip(mdu_array_info_t *info)
4642 {
4643         if (info->level == 1)
4644                 return 128;
4645         return info->chunk_size >> 9;
4646 }
4647
4648 static unsigned long long info_to_blocks_per_member(mdu_array_info_t *info,
4649                                                     unsigned long long size)
4650 {
4651         if (info->level == 1)
4652                 return size * 2;
4653         else
4654                 return (size * 2) & ~(info_to_blocks_per_strip(info) - 1);
4655 }
4656
4657 static void imsm_update_version_info(struct intel_super *super)
4658 {
4659         /* update the version and attributes */
4660         struct imsm_super *mpb = super->anchor;
4661         char *version;
4662         struct imsm_dev *dev;
4663         struct imsm_map *map;
4664         int i;
4665
4666         for (i = 0; i < mpb->num_raid_devs; i++) {
4667                 dev = get_imsm_dev(super, i);
4668                 map = get_imsm_map(dev, MAP_0);
4669                 if (__le32_to_cpu(dev->size_high) > 0)
4670                         mpb->attributes |= MPB_ATTRIB_2TB;
4671
4672                 /* FIXME detect when an array spans a port multiplier */
4673                 #if 0
4674                 mpb->attributes |= MPB_ATTRIB_PM;
4675                 #endif
4676
4677                 if (mpb->num_raid_devs > 1 ||
4678                     mpb->attributes != MPB_ATTRIB_CHECKSUM_VERIFY) {
4679                         version = MPB_VERSION_ATTRIBS;
4680                         switch (get_imsm_raid_level(map)) {
4681                         case 0: mpb->attributes |= MPB_ATTRIB_RAID0; break;
4682                         case 1: mpb->attributes |= MPB_ATTRIB_RAID1; break;
4683                         case 10: mpb->attributes |= MPB_ATTRIB_RAID10; break;
4684                         case 5: mpb->attributes |= MPB_ATTRIB_RAID5; break;
4685                         }
4686                 } else {
4687                         if (map->num_members >= 5)
4688                                 version = MPB_VERSION_5OR6_DISK_ARRAY;
4689                         else if (dev->status == DEV_CLONE_N_GO)
4690                                 version = MPB_VERSION_CNG;
4691                         else if (get_imsm_raid_level(map) == 5)
4692                                 version = MPB_VERSION_RAID5;
4693                         else if (map->num_members >= 3)
4694                                 version = MPB_VERSION_3OR4_DISK_ARRAY;
4695                         else if (get_imsm_raid_level(map) == 1)
4696                                 version = MPB_VERSION_RAID1;
4697                         else
4698                                 version = MPB_VERSION_RAID0;
4699                 }
4700                 strcpy(((char *) mpb->sig) + strlen(MPB_SIGNATURE), version);
4701         }
4702 }
4703
4704 static int check_name(struct intel_super *super, char *name, int quiet)
4705 {
4706         struct imsm_super *mpb = super->anchor;
4707         char *reason = NULL;
4708         int i;
4709
4710         if (strlen(name) > MAX_RAID_SERIAL_LEN)
4711                 reason = "must be 16 characters or less";
4712
4713         for (i = 0; i < mpb->num_raid_devs; i++) {
4714                 struct imsm_dev *dev = get_imsm_dev(super, i);
4715
4716                 if (strncmp((char *) dev->volume, name, MAX_RAID_SERIAL_LEN) == 0) {
4717                         reason = "already exists";
4718                         break;
4719                 }
4720         }
4721
4722         if (reason && !quiet)
4723                 pr_err("imsm volume name %s\n", reason);
4724
4725         return !reason;
4726 }
4727
4728 static int init_super_imsm_volume(struct supertype *st, mdu_array_info_t *info,
4729                                   unsigned long long size, char *name,
4730                                   char *homehost, int *uuid,
4731                                   long long data_offset)
4732 {
4733         /* We are creating a volume inside a pre-existing container.
4734          * so st->sb is already set.
4735          */
4736         struct intel_super *super = st->sb;
4737         struct imsm_super *mpb = super->anchor;
4738         struct intel_dev *dv;
4739         struct imsm_dev *dev;
4740         struct imsm_vol *vol;
4741         struct imsm_map *map;
4742         int idx = mpb->num_raid_devs;
4743         int i;
4744         unsigned long long array_blocks;
4745         size_t size_old, size_new;
4746         unsigned long long num_data_stripes;
4747
4748         if (super->orom && mpb->num_raid_devs >= super->orom->vpa) {
4749                 pr_err("This imsm-container already has the maximum of %d volumes\n", super->orom->vpa);
4750                 return 0;
4751         }
4752
4753         /* ensure the mpb is large enough for the new data */
4754         size_old = __le32_to_cpu(mpb->mpb_size);
4755         size_new = disks_to_mpb_size(info->nr_disks);
4756         if (size_new > size_old) {
4757                 void *mpb_new;
4758                 size_t size_round = ROUND_UP(size_new, 512);
4759
4760                 if (posix_memalign(&mpb_new, 512, size_round) != 0) {
4761                         pr_err("could not allocate new mpb\n");
4762                         return 0;
4763                 }
4764                 if (posix_memalign(&super->migr_rec_buf, 512,
4765                                    MIGR_REC_BUF_SIZE) != 0) {
4766                         pr_err("could not allocate migr_rec buffer\n");
4767                         free(super->buf);
4768                         free(super);
4769                         free(mpb_new);
4770                         return 0;
4771                 }
4772                 memcpy(mpb_new, mpb, size_old);
4773                 free(mpb);
4774                 mpb = mpb_new;
4775                 super->anchor = mpb_new;
4776                 mpb->mpb_size = __cpu_to_le32(size_new);
4777                 memset(mpb_new + size_old, 0, size_round - size_old);
4778         }
4779         super->current_vol = idx;
4780
4781         /* handle 'failed_disks' by either:
4782          * a) create dummy disk entries in the table if this the first
4783          *    volume in the array.  We add them here as this is the only
4784          *    opportunity to add them. add_to_super_imsm_volume()
4785          *    handles the non-failed disks and continues incrementing
4786          *    mpb->num_disks.
4787          * b) validate that 'failed_disks' matches the current number
4788          *    of missing disks if the container is populated
4789          */
4790         if (super->current_vol == 0) {
4791                 mpb->num_disks = 0;
4792                 for (i = 0; i < info->failed_disks; i++) {
4793                         struct imsm_disk *disk;
4794
4795                         mpb->num_disks++;
4796                         disk = __get_imsm_disk(mpb, i);
4797                         disk->status = CONFIGURED_DISK | FAILED_DISK;
4798                         disk->scsi_id = __cpu_to_le32(~(__u32)0);
4799                         snprintf((char *) disk->serial, MAX_RAID_SERIAL_LEN,
4800                                  "missing:%d", i);
4801                 }
4802                 find_missing(super);
4803         } else {
4804                 int missing = 0;
4805                 struct dl *d;
4806
4807                 for (d = super->missing; d; d = d->next)
4808                         missing++;
4809                 if (info->failed_disks > missing) {
4810                         pr_err("unable to add 'missing' disk to container\n");
4811                         return 0;
4812                 }
4813         }
4814
4815         if (!check_name(super, name, 0))
4816                 return 0;
4817         dv = xmalloc(sizeof(*dv));
4818         dev = xcalloc(1, sizeof(*dev) + sizeof(__u32) * (info->raid_disks - 1));
4819         strncpy((char *) dev->volume, name, MAX_RAID_SERIAL_LEN);
4820         array_blocks = calc_array_size(info->level, info->raid_disks,
4821                                                info->layout, info->chunk_size,
4822                                                size * 2);
4823         /* round array size down to closest MB */
4824         array_blocks = (array_blocks >> SECT_PER_MB_SHIFT) << SECT_PER_MB_SHIFT;
4825
4826         dev->size_low = __cpu_to_le32((__u32) array_blocks);
4827         dev->size_high = __cpu_to_le32((__u32) (array_blocks >> 32));
4828         dev->status = (DEV_READ_COALESCING | DEV_WRITE_COALESCING);
4829         vol = &dev->vol;
4830         vol->migr_state = 0;
4831         set_migr_type(dev, MIGR_INIT);
4832         vol->dirty = !info->state;
4833         vol->curr_migr_unit = 0;
4834         map = get_imsm_map(dev, MAP_0);
4835         set_pba_of_lba0(map, super->create_offset);
4836         set_blocks_per_member(map, info_to_blocks_per_member(info, size));
4837         map->blocks_per_strip = __cpu_to_le16(info_to_blocks_per_strip(info));
4838         map->failed_disk_num = ~0;
4839         if (info->level > 0)
4840                 map->map_state = (info->state ? IMSM_T_STATE_NORMAL
4841                                   : IMSM_T_STATE_UNINITIALIZED);
4842         else
4843                 map->map_state = info->failed_disks ? IMSM_T_STATE_FAILED :
4844                                                       IMSM_T_STATE_NORMAL;
4845         map->ddf = 1;
4846
4847         if (info->level == 1 && info->raid_disks > 2) {
4848                 free(dev);
4849                 free(dv);
4850                 pr_err("imsm does not support more than 2 disksin a raid1 volume\n");
4851                 return 0;
4852         }
4853
4854         map->raid_level = info->level;
4855         if (info->level == 10) {
4856                 map->raid_level = 1;
4857                 map->num_domains = info->raid_disks / 2;
4858         } else if (info->level == 1)
4859                 map->num_domains = info->raid_disks;
4860         else
4861                 map->num_domains = 1;
4862
4863         /* info->size is only int so use the 'size' parameter instead */
4864         num_data_stripes = (size * 2) / info_to_blocks_per_strip(info);
4865         num_data_stripes /= map->num_domains;
4866         set_num_data_stripes(map, num_data_stripes);
4867
4868         map->num_members = info->raid_disks;
4869         for (i = 0; i < map->num_members; i++) {
4870                 /* initialized in add_to_super */
4871                 set_imsm_ord_tbl_ent(map, i, IMSM_ORD_REBUILD);
4872         }
4873         mpb->num_raid_devs++;
4874
4875         dv->dev = dev;
4876         dv->index = super->current_vol;
4877         dv->next = super->devlist;
4878         super->devlist = dv;
4879
4880         imsm_update_version_info(super);
4881
4882         return 1;
4883 }
4884
4885 static int init_super_imsm(struct supertype *st, mdu_array_info_t *info,
4886                            unsigned long long size, char *name,
4887                            char *homehost, int *uuid,
4888                            unsigned long long data_offset)
4889 {
4890         /* This is primarily called by Create when creating a new array.
4891          * We will then get add_to_super called for each component, and then
4892          * write_init_super called to write it out to each device.
4893          * For IMSM, Create can create on fresh devices or on a pre-existing
4894          * array.
4895          * To create on a pre-existing array a different method will be called.
4896          * This one is just for fresh drives.
4897          */
4898         struct intel_super *super;
4899         struct imsm_super *mpb;
4900         size_t mpb_size;
4901         char *version;
4902
4903         if (data_offset != INVALID_SECTORS) {
4904                 pr_err("data-offset not supported by imsm\n");
4905                 return 0;
4906         }
4907
4908         if (st->sb)
4909                 return init_super_imsm_volume(st, info, size, name, homehost, uuid,
4910                                               data_offset);
4911
4912         if (info)
4913                 mpb_size = disks_to_mpb_size(info->nr_disks);
4914         else
4915                 mpb_size = 512;
4916
4917         super = alloc_super();
4918         if (super && posix_memalign(&super->buf, 512, mpb_size) != 0) {
4919                 free(super);
4920                 super = NULL;
4921         }
4922         if (!super) {
4923                 pr_err("could not allocate superblock\n");
4924                 return 0;
4925         }
4926         if (posix_memalign(&super->migr_rec_buf, 512, MIGR_REC_BUF_SIZE) != 0) {
4927                 pr_err("could not allocate migr_rec buffer\n");
4928                 free(super->buf);
4929                 free(super);
4930                 return 0;
4931         }
4932         memset(super->buf, 0, mpb_size);
4933         mpb = super->buf;
4934         mpb->mpb_size = __cpu_to_le32(mpb_size);
4935         st->sb = super;
4936
4937         if (info == NULL) {
4938                 /* zeroing superblock */
4939                 return 0;
4940         }
4941
4942         mpb->attributes = MPB_ATTRIB_CHECKSUM_VERIFY;
4943
4944         version = (char *) mpb->sig;
4945         strcpy(version, MPB_SIGNATURE);
4946         version += strlen(MPB_SIGNATURE);
4947         strcpy(version, MPB_VERSION_RAID0);
4948
4949         return 1;
4950 }
4951
4952 #ifndef MDASSEMBLE
4953 static int add_to_super_imsm_volume(struct supertype *st, mdu_disk_info_t *dk,
4954                                      int fd, char *devname)
4955 {
4956         struct intel_super *super = st->sb;
4957         struct imsm_super *mpb = super->anchor;
4958         struct imsm_disk *_disk;
4959         struct imsm_dev *dev;
4960         struct imsm_map *map;
4961         struct dl *dl, *df;
4962         int slot;
4963
4964         dev = get_imsm_dev(super, super->current_vol);
4965         map = get_imsm_map(dev, MAP_0);
4966
4967         if (! (dk->state & (1<<MD_DISK_SYNC))) {
4968                 pr_err("%s: Cannot add spare devices to IMSM volume\n",
4969                         devname);
4970                 return 1;
4971         }
4972
4973         if (fd == -1) {
4974                 /* we're doing autolayout so grab the pre-marked (in
4975                  * validate_geometry) raid_disk
4976                  */
4977                 for (dl = super->disks; dl; dl = dl->next)
4978                         if (dl->raiddisk == dk->raid_disk)
4979                                 break;
4980         } else {
4981                 for (dl = super->disks; dl ; dl = dl->next)
4982                         if (dl->major == dk->major &&
4983                             dl->minor == dk->minor)
4984                                 break;
4985         }
4986
4987         if (!dl) {
4988                 pr_err("%s is not a member of the same container\n", devname);
4989                 return 1;
4990         }
4991
4992         /* add a pristine spare to the metadata */
4993         if (dl->index < 0) {
4994                 dl->index = super->anchor->num_disks;
4995                 super->anchor->num_disks++;
4996         }
4997         /* Check the device has not already been added */
4998         slot = get_imsm_disk_slot(map, dl->index);
4999         if (slot >= 0 &&
5000             (get_imsm_ord_tbl_ent(dev, slot, MAP_X) & IMSM_ORD_REBUILD) == 0) {
5001                 pr_err("%s has been included in this array twice\n",
5002                         devname);
5003                 return 1;
5004         }
5005         set_imsm_ord_tbl_ent(map, dk->raid_disk, dl->index);
5006         dl->disk.status = CONFIGURED_DISK;
5007
5008         /* update size of 'missing' disks to be at least as large as the
5009          * largest acitve member (we only have dummy missing disks when
5010          * creating the first volume)
5011          */
5012         if (super->current_vol == 0) {
5013                 for (df = super->missing; df; df = df->next) {
5014                         if (total_blocks(&dl->disk) > total_blocks(&df->disk))
5015                                 set_total_blocks(&df->disk, total_blocks(&dl->disk));
5016                         _disk = __get_imsm_disk(mpb, df->index);
5017                         *_disk = df->disk;
5018                 }
5019         }
5020
5021         /* refresh unset/failed slots to point to valid 'missing' entries */
5022         for (df = super->missing; df; df = df->next)
5023                 for (slot = 0; slot < mpb->num_disks; slot++) {
5024                         __u32 ord = get_imsm_ord_tbl_ent(dev, slot, MAP_X);
5025
5026                         if ((ord & IMSM_ORD_REBUILD) == 0)
5027                                 continue;
5028                         set_imsm_ord_tbl_ent(map, slot, df->index | IMSM_ORD_REBUILD);
5029                         if (is_gen_migration(dev)) {
5030                                 struct imsm_map *map2 = get_imsm_map(dev,
5031                                                                      MAP_1);
5032                                 int slot2 = get_imsm_disk_slot(map2, df->index);
5033                                 if (slot2 < map2->num_members && slot2 >= 0) {
5034                                         __u32 ord2 = get_imsm_ord_tbl_ent(dev,
5035                                                                          slot2,
5036                                                                          MAP_1);
5037                                         if ((unsigned)df->index ==
5038                                                                ord_to_idx(ord2))
5039                                                 set_imsm_ord_tbl_ent(map2,
5040                                                         slot2,
5041                                                         df->index |
5042                                                         IMSM_ORD_REBUILD);
5043                                 }
5044                         }
5045                         dprintf("set slot:%d to missing disk:%d\n", slot, df->index);
5046                         break;
5047                 }
5048
5049         /* if we are creating the first raid device update the family number */
5050         if (super->current_vol == 0) {
5051                 __u32 sum;
5052                 struct imsm_dev *_dev = __get_imsm_dev(mpb, 0);
5053
5054                 _disk = __get_imsm_disk(mpb, dl->index);
5055                 if (!_dev || !_disk) {
5056                         pr_err("BUG mpb setup error\n");
5057                         return 1;
5058                 }
5059                 *_dev = *dev;
5060                 *_disk = dl->disk;
5061                 sum = random32();
5062                 sum += __gen_imsm_checksum(mpb);
5063                 mpb->family_num = __cpu_to_le32(sum);
5064                 mpb->orig_family_num = mpb->family_num;
5065         }
5066         super->current_disk = dl;
5067         return 0;
5068 }
5069
5070 /* mark_spare()
5071  *   Function marks disk as spare and restores disk serial
5072  *   in case it was previously marked as failed by takeover operation
5073  * reruns:
5074  *   -1 : critical error
5075  *    0 : disk is marked as spare but serial is not set
5076  *    1 : success
5077  */
5078 int mark_spare(struct dl *disk)
5079 {
5080         __u8 serial[MAX_RAID_SERIAL_LEN];
5081         int ret_val = -1;
5082
5083         if (!disk)
5084                 return ret_val;
5085
5086         ret_val = 0;
5087         if (!imsm_read_serial(disk->fd, NULL, serial)) {
5088                 /* Restore disk serial number, because takeover marks disk
5089                  * as failed and adds to serial ':0' before it becomes
5090                  * a spare disk.
5091                  */
5092                 serialcpy(disk->serial, serial);
5093                 serialcpy(disk->disk.serial, serial);
5094                 ret_val = 1;
5095         }
5096         disk->disk.status = SPARE_DISK;
5097         disk->index = -1;
5098
5099         return ret_val;
5100 }
5101
5102 static int add_to_super_imsm(struct supertype *st, mdu_disk_info_t *dk,
5103                              int fd, char *devname,
5104                              unsigned long long data_offset)
5105 {
5106         struct intel_super *super = st->sb;
5107         struct dl *dd;
5108         unsigned long long size;
5109         __u32 id;
5110         int rv;
5111         struct stat stb;
5112
5113         /* If we are on an RAID enabled platform check that the disk is
5114          * attached to the raid controller.
5115          * We do not need to test disks attachment for container based additions,
5116          * they shall be already tested when container was created/assembled.
5117          */
5118         rv = find_intel_hba_capability(fd, super, devname);
5119         /* no orom/efi or non-intel hba of the disk */
5120         if (rv != 0) {
5121                 dprintf("capability: %p fd: %d ret: %d\n",
5122                         super->orom, fd, rv);
5123                 return 1;
5124         }
5125
5126         if (super->current_vol >= 0)
5127                 return add_to_super_imsm_volume(st, dk, fd, devname);
5128
5129         fstat(fd, &stb);
5130         dd = xcalloc(sizeof(*dd), 1);
5131         dd->major = major(stb.st_rdev);
5132         dd->minor = minor(stb.st_rdev);
5133         dd->devname = devname ? xstrdup(devname) : NULL;
5134         dd->fd = fd;
5135         dd->e = NULL;
5136         dd->action = DISK_ADD;
5137         rv = imsm_read_serial(fd, devname, dd->serial);
5138         if (rv) {
5139                 pr_err("failed to retrieve scsi serial, aborting\n");
5140                 if (dd->devname)
5141                         free(dd->devname);
5142                 free(dd);
5143                 abort();
5144         }
5145         if (super->hba && ((super->hba->type == SYS_DEV_NVME) ||
5146            (super->hba->type == SYS_DEV_VMD))) {
5147                 int i;
5148                 char *devpath = diskfd_to_devpath(fd);
5149                 char controller_path[PATH_MAX];
5150
5151                 if (!devpath) {
5152                         pr_err("failed to get devpath, aborting\n");
5153                         if (dd->devname)
5154                                 free(dd->devname);
5155                         free(dd);
5156                         return 1;
5157                 }
5158
5159                 snprintf(controller_path, PATH_MAX-1, "%s/device", devpath);
5160                 free(devpath);
5161
5162                 if (devpath_to_vendor(controller_path) == 0x8086) {
5163                         /*
5164                          * If Intel's NVMe drive has serial ended with
5165                          * "-A","-B","-1" or "-2" it means that this is "x8"
5166                          * device (double drive on single PCIe card).
5167                          * User should be warned about potential data loss.
5168                          */
5169                         for (i = MAX_RAID_SERIAL_LEN-1; i > 0; i--) {
5170                                 /* Skip empty character at the end */
5171                                 if (dd->serial[i] == 0)
5172                                         continue;
5173
5174                                 if (((dd->serial[i] == 'A') ||
5175                                    (dd->serial[i] == 'B') ||
5176                                    (dd->serial[i] == '1') ||
5177                                    (dd->serial[i] == '2')) &&
5178                                    (dd->serial[i-1] == '-'))
5179                                         pr_err("\tThe action you are about to take may put your data at risk.\n"
5180                                                 "\tPlease note that x8 devices may consist of two separate x4 devices "
5181                                                 "located on a single PCIe port.\n"
5182                                                 "\tRAID 0 is the only supported configuration for this type of x8 device.\n");
5183                                 break;
5184                         }
5185                 }
5186         }
5187
5188         get_dev_size(fd, NULL, &size);
5189         /* clear migr_rec when adding disk to container */
5190         memset(super->migr_rec_buf, 0, MIGR_REC_BUF_SIZE);
5191         if (lseek64(fd, size - MIGR_REC_POSITION, SEEK_SET) >= 0) {
5192                 if (write(fd, super->migr_rec_buf,
5193                         MIGR_REC_BUF_SIZE) != MIGR_REC_BUF_SIZE)
5194                         perror("Write migr_rec failed");
5195         }
5196
5197         size /= 512;
5198         serialcpy(dd->disk.serial, dd->serial);
5199         set_total_blocks(&dd->disk, size);
5200         if (__le32_to_cpu(dd->disk.total_blocks_hi) > 0) {
5201                 struct imsm_super *mpb = super->anchor;
5202                 mpb->attributes |= MPB_ATTRIB_2TB_DISK;
5203         }
5204         mark_spare(dd);
5205         if (sysfs_disk_to_scsi_id(fd, &id) == 0)
5206                 dd->disk.scsi_id = __cpu_to_le32(id);
5207         else
5208                 dd->disk.scsi_id = __cpu_to_le32(0);
5209
5210         if (st->update_tail) {
5211                 dd->next = super->disk_mgmt_list;
5212                 super->disk_mgmt_list = dd;
5213         } else {
5214                 dd->next = super->disks;
5215                 super->disks = dd;
5216                 super->updates_pending++;
5217         }
5218
5219         return 0;
5220 }
5221
5222 static int remove_from_super_imsm(struct supertype *st, mdu_disk_info_t *dk)
5223 {
5224         struct intel_super *super = st->sb;
5225         struct dl *dd;
5226
5227         /* remove from super works only in mdmon - for communication
5228          * manager - monitor. Check if communication memory buffer
5229          * is prepared.
5230          */
5231         if (!st->update_tail) {
5232                 pr_err("shall be used in mdmon context only\n");
5233                 return 1;
5234         }
5235         dd = xcalloc(1, sizeof(*dd));
5236         dd->major = dk->major;
5237         dd->minor = dk->minor;
5238         dd->fd = -1;
5239         mark_spare(dd);
5240         dd->action = DISK_REMOVE;
5241
5242         dd->next = super->disk_mgmt_list;
5243         super->disk_mgmt_list = dd;
5244
5245         return 0;
5246 }
5247
5248 static int store_imsm_mpb(int fd, struct imsm_super *mpb);
5249
5250 static union {
5251         char buf[512];
5252         struct imsm_super anchor;
5253 } spare_record __attribute__ ((aligned(512)));
5254
5255 /* spare records have their own family number and do not have any defined raid
5256  * devices
5257  */
5258 static int write_super_imsm_spares(struct intel_super *super, int doclose)
5259 {
5260         struct imsm_super *mpb = super->anchor;
5261         struct imsm_super *spare = &spare_record.anchor;
5262         __u32 sum;
5263         struct dl *d;
5264
5265         spare->mpb_size = __cpu_to_le32(sizeof(struct imsm_super));
5266         spare->generation_num = __cpu_to_le32(1UL);
5267         spare->attributes = MPB_ATTRIB_CHECKSUM_VERIFY;
5268         spare->num_disks = 1;
5269         spare->num_raid_devs = 0;
5270         spare->cache_size = mpb->cache_size;
5271         spare->pwr_cycle_count = __cpu_to_le32(1);
5272
5273         snprintf((char *) spare->sig, MAX_SIGNATURE_LENGTH,
5274                  MPB_SIGNATURE MPB_VERSION_RAID0);
5275
5276         for (d = super->disks; d; d = d->next) {
5277                 if (d->index != -1)
5278                         continue;
5279
5280                 spare->disk[0] = d->disk;
5281                 if (__le32_to_cpu(d->disk.total_blocks_hi) > 0)
5282                         spare->attributes |= MPB_ATTRIB_2TB_DISK;
5283
5284                 sum = __gen_imsm_checksum(spare);
5285                 spare->family_num = __cpu_to_le32(sum);
5286                 spare->orig_family_num = 0;
5287                 sum = __gen_imsm_checksum(spare);
5288                 spare->check_sum = __cpu_to_le32(sum);
5289
5290                 if (store_imsm_mpb(d->fd, spare)) {
5291                         pr_err("failed for device %d:%d %s\n",
5292                                 d->major, d->minor, strerror(errno));
5293                         return 1;
5294                 }
5295                 if (doclose) {
5296                         close(d->fd);
5297                         d->fd = -1;
5298                 }
5299         }
5300
5301         return 0;
5302 }
5303
5304 static int write_super_imsm(struct supertype *st, int doclose)
5305 {
5306         struct intel_super *super = st->sb;
5307         struct imsm_super *mpb = super->anchor;
5308         struct dl *d;
5309         __u32 generation;
5310         __u32 sum;
5311         int spares = 0;
5312         int i;
5313         __u32 mpb_size = sizeof(struct imsm_super) - sizeof(struct imsm_disk);
5314         int num_disks = 0;
5315         int clear_migration_record = 1;
5316
5317         /* 'generation' is incremented everytime the metadata is written */
5318         generation = __le32_to_cpu(mpb->generation_num);
5319         generation++;
5320         mpb->generation_num = __cpu_to_le32(generation);
5321
5322         /* fix up cases where previous mdadm releases failed to set
5323          * orig_family_num
5324          */
5325         if (mpb->orig_family_num == 0)
5326                 mpb->orig_family_num = mpb->family_num;
5327
5328         for (d = super->disks; d; d = d->next) {
5329                 if (d->index == -1)
5330                         spares++;
5331                 else {
5332                         mpb->disk[d->index] = d->disk;
5333                         num_disks++;
5334                 }
5335         }
5336         for (d = super->missing; d; d = d->next) {
5337                 mpb->disk[d->index] = d->disk;
5338                 num_disks++;
5339         }
5340         mpb->num_disks = num_disks;
5341         mpb_size += sizeof(struct imsm_disk) * mpb->num_disks;
5342
5343         for (i = 0; i < mpb->num_raid_devs; i++) {
5344                 struct imsm_dev *dev = __get_imsm_dev(mpb, i);
5345                 struct imsm_dev *dev2 = get_imsm_dev(super, i);
5346                 if (dev && dev2) {
5347                         imsm_copy_dev(dev, dev2);
5348                         mpb_size += sizeof_imsm_dev(dev, 0);
5349                 }
5350                 if (is_gen_migration(dev2))
5351                         clear_migration_record = 0;
5352         }
5353         mpb_size += __le32_to_cpu(mpb->bbm_log_size);
5354         mpb->mpb_size = __cpu_to_le32(mpb_size);
5355
5356         /* recalculate checksum */
5357         sum = __gen_imsm_checksum(mpb);
5358         mpb->check_sum = __cpu_to_le32(sum);
5359
5360         if (super->clean_migration_record_by_mdmon) {
5361                 clear_migration_record = 1;
5362                 super->clean_migration_record_by_mdmon = 0;
5363         }
5364         if (clear_migration_record)
5365                 memset(super->migr_rec_buf, 0, MIGR_REC_BUF_SIZE);
5366
5367         /* write the mpb for disks that compose raid devices */
5368         for (d = super->disks; d ; d = d->next) {
5369                 if (d->index < 0 || is_failed(&d->disk))
5370                         continue;
5371
5372                 if (clear_migration_record) {
5373                         unsigned long long dsize;
5374
5375                         get_dev_size(d->fd, NULL, &dsize);
5376                         if (lseek64(d->fd, dsize - 512, SEEK_SET) >= 0) {
5377                                 if (write(d->fd, super->migr_rec_buf,
5378                                         MIGR_REC_BUF_SIZE) != MIGR_REC_BUF_SIZE)
5379                                         perror("Write migr_rec failed");
5380                         }
5381                 }
5382
5383                 if (store_imsm_mpb(d->fd, mpb))
5384                         fprintf(stderr,
5385                                 "failed for device %d:%d (fd: %d)%s\n",
5386                                 d->major, d->minor,
5387                                 d->fd, strerror(errno));
5388
5389                 if (doclose) {
5390                         close(d->fd);
5391                         d->fd = -1;
5392                 }
5393         }
5394
5395         if (spares)
5396                 return write_super_imsm_spares(super, doclose);
5397
5398         return 0;
5399 }
5400
5401 static int create_array(struct supertype *st, int dev_idx)
5402 {
5403         size_t len;
5404         struct imsm_update_create_array *u;
5405         struct intel_super *super = st->sb;
5406         struct imsm_dev *dev = get_imsm_dev(super, dev_idx);
5407         struct imsm_map *map = get_imsm_map(dev, MAP_0);
5408         struct disk_info *inf;
5409         struct imsm_disk *disk;
5410         int i;
5411
5412         len = sizeof(*u) - sizeof(*dev) + sizeof_imsm_dev(dev, 0) +
5413               sizeof(*inf) * map->num_members;
5414         u = xmalloc(len);
5415         u->type = update_create_array;
5416         u->dev_idx = dev_idx;
5417         imsm_copy_dev(&u->dev, dev);
5418         inf = get_disk_info(u);
5419         for (i = 0; i < map->num_members; i++) {
5420                 int idx = get_imsm_disk_idx(dev, i, MAP_X);
5421
5422                 disk = get_imsm_disk(super, idx);
5423                 if (!disk)
5424                         disk = get_imsm_missing(super, idx);
5425                 serialcpy(inf[i].serial, disk->serial);
5426         }
5427         append_metadata_update(st, u, len);
5428
5429         return 0;
5430 }
5431
5432 static int mgmt_disk(struct supertype *st)
5433 {
5434         struct intel_super *super = st->sb;
5435         size_t len;
5436         struct imsm_update_add_remove_disk *u;
5437
5438         if (!super->disk_mgmt_list)
5439                 return 0;
5440
5441         len = sizeof(*u);
5442         u = xmalloc(len);
5443         u->type = update_add_remove_disk;
5444         append_metadata_update(st, u, len);
5445
5446         return 0;
5447 }
5448
5449 static int write_init_super_imsm(struct supertype *st)
5450 {
5451         struct intel_super *super = st->sb;
5452         int current_vol = super->current_vol;
5453
5454         /* we are done with current_vol reset it to point st at the container */
5455         super->current_vol = -1;
5456
5457         if (st->update_tail) {
5458                 /* queue the recently created array / added disk
5459                  * as a metadata update */
5460                 int rv;
5461
5462                 /* determine if we are creating a volume or adding a disk */
5463                 if (current_vol < 0) {
5464                         /* in the mgmt (add/remove) disk case we are running
5465                          * in mdmon context, so don't close fd's
5466                          */
5467                         return mgmt_disk(st);
5468                 } else
5469                         rv = create_array(st, current_vol);
5470
5471                 return rv;
5472         } else {
5473                 struct dl *d;
5474                 for (d = super->disks; d; d = d->next)
5475                         Kill(d->devname, NULL, 0, -1, 1);
5476                 return write_super_imsm(st, 1);
5477         }
5478 }
5479 #endif
5480
5481 static int store_super_imsm(struct supertype *st, int fd)
5482 {
5483         struct intel_super *super = st->sb;
5484         struct imsm_super *mpb = super ? super->anchor : NULL;
5485
5486         if (!mpb)
5487                 return 1;
5488
5489 #ifndef MDASSEMBLE
5490         return store_imsm_mpb(fd, mpb);
5491 #else
5492         return 1;
5493 #endif
5494 }
5495
5496 static int imsm_bbm_log_size(struct imsm_super *mpb)
5497 {
5498         return __le32_to_cpu(mpb->bbm_log_size);
5499 }
5500
5501 #ifndef MDASSEMBLE
5502 static int validate_geometry_imsm_container(struct supertype *st, int level,
5503                                             int layout, int raiddisks, int chunk,
5504                                             unsigned long long size,
5505                                             unsigned long long data_offset,
5506                                             char *dev,
5507                                             unsigned long long *freesize,
5508                                             int verbose)
5509 {
5510         int fd;
5511         unsigned long long ldsize;
5512         struct intel_super *super;
5513         int rv = 0;
5514
5515         if (level != LEVEL_CONTAINER)
5516                 return 0;
5517         if (!dev)
5518                 return 1;
5519
5520         fd = open(dev, O_RDONLY|O_EXCL, 0);
5521         if (fd < 0) {
5522                 if (verbose > 0)
5523                         pr_err("imsm: Cannot open %s: %s\n",
5524                                 dev, strerror(errno));
5525                 return 0;
5526         }
5527         if (!get_dev_size(fd, dev, &ldsize)) {
5528                 close(fd);
5529                 return 0;
5530         }
5531
5532         /* capabilities retrieve could be possible
5533          * note that there is no fd for the disks in array.
5534          */
5535         super = alloc_super();
5536         rv = find_intel_hba_capability(fd, super, verbose > 0 ? dev : NULL);
5537         if (rv != 0) {
5538 #if DEBUG
5539                 char str[256];
5540                 fd2devname(fd, str);
5541                 dprintf("fd: %d %s orom: %p rv: %d raiddisk: %d\n",
5542                         fd, str, super->orom, rv, raiddisks);
5543 #endif
5544                 /* no orom/efi or non-intel hba of the disk */
5545                 close(fd);
5546                 free_imsm(super);
5547                 return 0;
5548         }
5549         close(fd);
5550         if (super->orom) {
5551                 if (raiddisks > super->orom->tds) {
5552                         if (verbose)
5553                                 pr_err("%d exceeds maximum number of platform supported disks: %d\n",
5554                                         raiddisks, super->orom->tds);
5555                         free_imsm(super);
5556                         return 0;
5557                 }
5558                 if ((super->orom->attr & IMSM_OROM_ATTR_2TB_DISK) == 0 &&
5559                     (ldsize >> 9) >> 32 > 0) {
5560                         if (verbose)
5561                                 pr_err("%s exceeds maximum platform supported size\n", dev);
5562                         free_imsm(super);
5563                         return 0;
5564                 }
5565         }
5566
5567         *freesize = avail_size_imsm(st, ldsize >> 9, data_offset);
5568         free_imsm(super);
5569
5570         return 1;
5571 }
5572
5573 static unsigned long long find_size(struct extent *e, int *idx, int num_extents)
5574 {
5575         const unsigned long long base_start = e[*idx].start;
5576         unsigned long long end = base_start + e[*idx].size;
5577         int i;
5578
5579         if (base_start == end)
5580                 return 0;
5581
5582         *idx = *idx + 1;
5583         for (i = *idx; i < num_extents; i++) {
5584                 /* extend overlapping extents */
5585                 if (e[i].start >= base_start &&
5586                     e[i].start <= end) {
5587                         if (e[i].size == 0)
5588                                 return 0;
5589                         if (e[i].start + e[i].size > end)
5590                                 end = e[i].start + e[i].size;
5591                 } else if (e[i].start > end) {
5592                         *idx = i;
5593                         break;
5594                 }
5595         }
5596
5597         return end - base_start;
5598 }
5599
5600 static unsigned long long merge_extents(struct intel_super *super, int sum_extents)
5601 {
5602         /* build a composite disk with all known extents and generate a new
5603          * 'maxsize' given the "all disks in an array must share a common start
5604          * offset" constraint
5605          */
5606         struct extent *e = xcalloc(sum_extents, sizeof(*e));
5607         struct dl *dl;
5608         int i, j;
5609         int start_extent;
5610         unsigned long long pos;
5611         unsigned long long start = 0;
5612         unsigned long long maxsize;
5613         unsigned long reserve;
5614
5615         /* coalesce and sort all extents. also, check to see if we need to
5616          * reserve space between member arrays
5617          */
5618         j = 0;
5619         for (dl = super->disks; dl; dl = dl->next) {
5620                 if (!dl->e)
5621                         continue;
5622                 for (i = 0; i < dl->extent_cnt; i++)
5623                         e[j++] = dl->e[i];
5624         }
5625         qsort(e, sum_extents, sizeof(*e), cmp_extent);
5626
5627         /* merge extents */
5628         i = 0;
5629         j = 0;
5630         while (i < sum_extents) {
5631                 e[j].start = e[i].start;
5632                 e[j].size = find_size(e, &i, sum_extents);
5633                 j++;
5634                 if (e[j-1].size == 0)
5635                         break;
5636         }
5637
5638         pos = 0;
5639         maxsize = 0;
5640         start_extent = 0;
5641         i = 0;
5642         do {
5643                 unsigned long long esize;
5644
5645                 esize = e[i].start - pos;
5646                 if (esize >= maxsize) {
5647                         maxsize = esize;
5648                         start = pos;
5649                         start_extent = i;
5650                 }
5651                 pos = e[i].start + e[i].size;
5652                 i++;
5653         } while (e[i-1].size);
5654         free(e);
5655
5656         if (maxsize == 0)
5657                 return 0;
5658
5659         /* FIXME assumes volume at offset 0 is the first volume in a
5660          * container
5661          */
5662         if (start_extent > 0)
5663                 reserve = IMSM_RESERVED_SECTORS; /* gap between raid regions */
5664         else
5665                 reserve = 0;
5666
5667         if (maxsize < reserve)
5668                 return 0;
5669
5670         super->create_offset = ~((unsigned long long) 0);
5671         if (start + reserve > super->create_offset)
5672                 return 0; /* start overflows create_offset */
5673         super->create_offset = start + reserve;
5674
5675         return maxsize - reserve;
5676 }
5677
5678 static int is_raid_level_supported(const struct imsm_orom *orom, int level, int raiddisks)
5679 {
5680         if (level < 0 || level == 6 || level == 4)
5681                 return 0;
5682
5683         /* if we have an orom prevent invalid raid levels */
5684         if (orom)
5685                 switch (level) {
5686                 case 0: return imsm_orom_has_raid0(orom);
5687                 case 1:
5688                         if (raiddisks > 2)
5689                                 return imsm_orom_has_raid1e(orom);
5690                         return imsm_orom_has_raid1(orom) && raiddisks == 2;
5691                 case 10: return imsm_orom_has_raid10(orom) && raiddisks == 4;
5692                 case 5: return imsm_orom_has_raid5(orom) && raiddisks > 2;
5693                 }
5694         else
5695                 return 1; /* not on an Intel RAID platform so anything goes */
5696
5697         return 0;
5698 }
5699
5700 static int
5701 active_arrays_by_format(char *name, char* hba, struct md_list **devlist,
5702                         int dpa, int verbose)
5703 {
5704         struct mdstat_ent *mdstat = mdstat_read(0, 0);
5705         struct mdstat_ent *memb;
5706         int count = 0;
5707         int num = 0;
5708         struct md_list *dv;
5709         int found;
5710
5711         for (memb = mdstat ; memb ; memb = memb->next) {
5712                 if (memb->metadata_version &&
5713                     (strncmp(memb->metadata_version, "external:", 9) == 0)  &&
5714                     (strcmp(&memb->metadata_version[9], name) == 0) &&
5715                     !is_subarray(memb->metadata_version+9) &&
5716                     memb->members) {
5717                         struct dev_member *dev = memb->members;
5718                         int fd = -1;
5719                         while(dev && (fd < 0)) {
5720                                 char *path = xmalloc(strlen(dev->name) + strlen("/dev/") + 1);
5721                                 num = sprintf(path, "%s%s", "/dev/", dev->name);
5722                                 if (num > 0)
5723                                         fd = open(path, O_RDONLY, 0);
5724                                 if (num <= 0 || fd < 0) {
5725                                         pr_vrb("Cannot open %s: %s\n",
5726                                                dev->name, strerror(errno));
5727                                 }
5728                                 free(path);
5729                                 dev = dev->next;
5730                         }
5731                         found = 0;
5732                         if (fd >= 0 && disk_attached_to_hba(fd, hba)) {
5733                                 struct mdstat_ent *vol;
5734                                 for (vol = mdstat ; vol ; vol = vol->next) {
5735                                         if (vol->active > 0 &&
5736                                             vol->metadata_version &&
5737                                             is_container_member(vol, memb->devnm)) {
5738                                                 found++;
5739                                                 count++;
5740                                         }
5741                                 }
5742                                 if (*devlist && (found < dpa)) {
5743                                         dv = xcalloc(1, sizeof(*dv));
5744                                         dv->devname = xmalloc(strlen(memb->devnm) + strlen("/dev/") + 1);
5745                                         sprintf(dv->devname, "%s%s", "/dev/", memb->devnm);
5746                                         dv->found = found;
5747                                         dv->used = 0;
5748                                         dv->next = *devlist;
5749                                         *devlist = dv;
5750                                 }
5751                         }
5752                         if (fd >= 0)
5753                                 close(fd);
5754                 }
5755         }
5756         free_mdstat(mdstat);
5757         return count;
5758 }
5759
5760 #ifdef DEBUG_LOOP
5761 static struct md_list*
5762 get_loop_devices(void)
5763 {
5764         int i;
5765         struct md_list *devlist = NULL;
5766         struct md_list *dv;
5767
5768         for(i = 0; i < 12; i++) {
5769                 dv = xcalloc(1, sizeof(*dv));
5770                 dv->devname = xmalloc(40);
5771                 sprintf(dv->devname, "/dev/loop%d", i);
5772                 dv->next = devlist;
5773                 devlist = dv;
5774         }
5775         return devlist;
5776 }
5777 #endif
5778
5779 static struct md_list*
5780 get_devices(const char *hba_path)
5781 {
5782         struct md_list *devlist = NULL;
5783         struct md_list *dv;
5784         struct dirent *ent;
5785         DIR *dir;
5786         int err = 0;
5787
5788 #if DEBUG_LOOP
5789         devlist = get_loop_devices();
5790         return devlist;
5791 #endif
5792         /* scroll through /sys/dev/block looking for devices attached to
5793          * this hba
5794          */
5795         dir = opendir("/sys/dev/block");
5796         for (ent = dir ? readdir(dir) : NULL; ent; ent = readdir(dir)) {
5797                 int fd;
5798                 char buf[1024];
5799                 int major, minor;
5800                 char *path = NULL;
5801                 if (sscanf(ent->d_name, "%d:%d", &major, &minor) != 2)
5802                         continue;
5803                 path = devt_to_devpath(makedev(major, minor));
5804                 if (!path)
5805                         continue;
5806                 if (!path_attached_to_hba(path, hba_path)) {
5807                         free(path);
5808                         path = NULL;
5809                         continue;
5810                 }
5811                 free(path);
5812                 path = NULL;
5813                 fd = dev_open(ent->d_name, O_RDONLY);
5814                 if (fd >= 0) {
5815                         fd2devname(fd, buf);
5816                         close(fd);
5817                 } else {
5818                         pr_err("cannot open device: %s\n",
5819                                 ent->d_name);
5820                         continue;
5821                 }
5822
5823                 dv = xcalloc(1, sizeof(*dv));
5824                 dv->devname = xstrdup(buf);
5825                 dv->next = devlist;
5826                 devlist = dv;
5827         }
5828         if (err) {
5829                 while(devlist) {
5830                         dv = devlist;
5831                         devlist = devlist->next;
5832                         free(dv->devname);
5833                         free(dv);
5834                 }
5835         }
5836         closedir(dir);
5837         return devlist;
5838 }
5839
5840 static int
5841 count_volumes_list(struct md_list *devlist, char *homehost,
5842                    int verbose, int *found)
5843 {
5844         struct md_list *tmpdev;
5845         int count = 0;
5846         struct supertype *st;
5847
5848         /* first walk the list of devices to find a consistent set
5849          * that match the criterea, if that is possible.
5850          * We flag the ones we like with 'used'.
5851          */
5852         *found = 0;
5853         st = match_metadata_desc_imsm("imsm");
5854         if (st == NULL) {
5855                 pr_vrb("cannot allocate memory for imsm supertype\n");
5856                 return 0;
5857         }
5858
5859         for (tmpdev = devlist; tmpdev; tmpdev = tmpdev->next) {
5860                 char *devname = tmpdev->devname;
5861                 struct stat stb;
5862                 struct supertype *tst;
5863                 int dfd;
5864                 if (tmpdev->used > 1)
5865                         continue;
5866                 tst = dup_super(st);
5867                 if (tst == NULL) {
5868                         pr_vrb("cannot allocate memory for imsm supertype\n");
5869                         goto err_1;
5870                 }
5871                 tmpdev->container = 0;
5872                 dfd = dev_open(devname, O_RDONLY|O_EXCL);
5873                 if (dfd < 0) {
5874                         dprintf("cannot open device %s: %s\n",
5875                                 devname, strerror(errno));
5876                         tmpdev->used = 2;
5877                 } else if (fstat(dfd, &stb)< 0) {
5878                         /* Impossible! */
5879                         dprintf("fstat failed for %s: %s\n",
5880                                 devname, strerror(errno));
5881                         tmpdev->used = 2;
5882                 } else if ((stb.st_mode & S_IFMT) != S_IFBLK) {
5883                         dprintf("%s is not a block device.\n",
5884                                 devname);
5885                         tmpdev->used = 2;
5886                 } else if (must_be_container(dfd)) {
5887                         struct supertype *cst;
5888                         cst = super_by_fd(dfd, NULL);
5889                         if (cst == NULL) {
5890                                 dprintf("cannot recognize container type %s\n",
5891                                         devname);
5892                                 tmpdev->used = 2;
5893                         } else if (tst->ss != st->ss) {
5894                                 dprintf("non-imsm container - ignore it: %s\n",
5895                                         devname);
5896                                 tmpdev->used = 2;
5897                         } else if (!tst->ss->load_container ||
5898                                    tst->ss->load_container(tst, dfd, NULL))
5899                                 tmpdev->used = 2;
5900                         else {
5901                                 tmpdev->container = 1;
5902                         }
5903                         if (cst)
5904                                 cst->ss->free_super(cst);
5905                 } else {
5906                         tmpdev->st_rdev = stb.st_rdev;
5907                         if (tst->ss->load_super(tst,dfd, NULL)) {
5908                                 dprintf("no RAID superblock on %s\n",
5909                                         devname);
5910                                 tmpdev->used = 2;
5911                         } else if (tst->ss->compare_super == NULL) {
5912                                 dprintf("Cannot assemble %s metadata on %s\n",
5913                                         tst->ss->name, devname);
5914                                 tmpdev->used = 2;
5915                         }
5916                 }
5917                 if (dfd >= 0)
5918                         close(dfd);
5919                 if (tmpdev->used == 2 || tmpdev->used == 4) {
5920                         /* Ignore unrecognised devices during auto-assembly */
5921                         goto loop;
5922                 }
5923                 else {
5924                         struct mdinfo info;
5925                         tst->ss->getinfo_super(tst, &info, NULL);
5926
5927                         if (st->minor_version == -1)
5928                                 st->minor_version = tst->minor_version;
5929
5930                         if (memcmp(info.uuid, uuid_zero,
5931                                    sizeof(int[4])) == 0) {
5932                                 /* this is a floating spare.  It cannot define
5933                                  * an array unless there are no more arrays of
5934                                  * this type to be found.  It can be included
5935                                  * in an array of this type though.
5936                                  */
5937                                 tmpdev->used = 3;
5938                                 goto loop;
5939                         }
5940
5941                         if (st->ss != tst->ss ||
5942                             st->minor_version != tst->minor_version ||
5943                             st->ss->compare_super(st, tst) != 0) {
5944                                 /* Some mismatch. If exactly one array matches this host,
5945                                  * we can resolve on that one.
5946                                  * Or, if we are auto assembling, we just ignore the second
5947                                  * for now.
5948                                  */
5949                                 dprintf("superblock on %s doesn't match others - assembly aborted\n",
5950                                         devname);
5951                                 goto loop;
5952                         }
5953                         tmpdev->used = 1;
5954                         *found = 1;
5955                         dprintf("found: devname: %s\n", devname);
5956                 }
5957         loop:
5958                 if (tst)
5959                         tst->ss->free_super(tst);
5960         }
5961         if (*found != 0) {
5962                 int err;
5963                 if ((err = load_super_imsm_all(st, -1, &st->sb, NULL, devlist, 0)) == 0) {
5964                         struct mdinfo *iter, *head = st->ss->container_content(st, NULL);
5965                         for (iter = head; iter; iter = iter->next) {
5966                                 dprintf("content->text_version: %s vol\n",
5967                                         iter->text_version);
5968                                 if (iter->array.state & (1<<MD_SB_BLOCK_VOLUME)) {
5969                                         /* do not assemble arrays with unsupported
5970                                            configurations */
5971                                         dprintf("Cannot activate member %s.\n",
5972                                                 iter->text_version);
5973                                 } else
5974                                         count++;
5975                         }
5976                         sysfs_free(head);
5977
5978                 } else {
5979                         dprintf("No valid super block on device list: err: %d %p\n",
5980                                 err, st->sb);
5981                 }
5982         } else {
5983                 dprintf("no more devices to examine\n");
5984         }
5985
5986         for (tmpdev = devlist; tmpdev; tmpdev = tmpdev->next) {
5987                 if (tmpdev->used == 1 && tmpdev->found) {
5988                         if (count) {
5989                                 if (count < tmpdev->found)
5990                                         count = 0;
5991                                 else
5992                                         count -= tmpdev->found;
5993                         }
5994                 }
5995                 if (tmpdev->used == 1)
5996                         tmpdev->used = 4;
5997         }
5998         err_1:
5999         if (st)
6000                 st->ss->free_super(st);
6001         return count;
6002 }
6003
6004 static int
6005 count_volumes(struct intel_hba *hba, int dpa, int verbose)
6006 {
6007         struct sys_dev *idev, *intel_devices = find_intel_devices();
6008         int count = 0;
6009         const struct orom_entry *entry;
6010         struct devid_list *dv, *devid_list;
6011
6012         if (!hba || !hba->path)
6013                 return 0;
6014
6015         for (idev = intel_devices; idev; idev = idev->next) {
6016                 if (strstr(idev->path, hba->path))
6017                                 break;
6018         }
6019
6020         if (!idev || !idev->dev_id)
6021                 return 0;
6022
6023         entry = get_orom_entry_by_device_id(idev->dev_id);
6024
6025         if (!entry || !entry->devid_list)
6026                 return 0;
6027
6028         devid_list = entry->devid_list;
6029         for (dv = devid_list; dv; dv = dv->next) {
6030                 struct md_list *devlist;
6031                 struct sys_dev *device = device_by_id(dv->devid);
6032                 char *hba_path;
6033                 int found = 0;
6034
6035                 if (device)
6036                         hba_path = device->path;
6037                 else
6038                         return 0;
6039
6040                 /* VMD has one orom entry for all domain, but spanning is not allowed.
6041                  * VMD arrays should be counted per domain (controller), so skip
6042                  * domains that are not the given one.
6043                  */
6044                 if (hba->type == SYS_DEV_VMD &&
6045                    (strncmp(device->path, hba->path, strlen(device->path)) != 0))
6046                         continue;
6047
6048                 devlist = get_devices(hba_path);
6049                 /* if no intel devices return zero volumes */
6050                 if (devlist == NULL)
6051                         return 0;
6052
6053                 count += active_arrays_by_format("imsm", hba_path, &devlist, dpa, verbose);
6054                 dprintf("path: %s active arrays: %d\n", hba_path, count);
6055                 if (devlist == NULL)
6056                         return 0;
6057                 do  {
6058                         found = 0;
6059                         count += count_volumes_list(devlist,
6060                                                         NULL,
6061                                                         verbose,
6062                                                         &found);
6063                         dprintf("found %d count: %d\n", found, count);
6064                 } while (found);
6065
6066                 dprintf("path: %s total number of volumes: %d\n", hba_path, count);
6067
6068                 while (devlist) {
6069                         struct md_list *dv = devlist;
6070                         devlist = devlist->next;
6071                         free(dv->devname);
6072                         free(dv);
6073                 }
6074         }
6075         return count;
6076 }
6077
6078 static int imsm_default_chunk(const struct imsm_orom *orom)
6079 {
6080         /* up to 512 if the plaform supports it, otherwise the platform max.
6081          * 128 if no platform detected
6082          */
6083         int fs = max(7, orom ? fls(orom->sss) : 0);
6084
6085         return min(512, (1 << fs));
6086 }
6087
6088 static int
6089 validate_geometry_imsm_orom(struct intel_super *super, int level, int layout,
6090                             int raiddisks, int *chunk, unsigned long long size, int verbose)
6091 {
6092         /* check/set platform and metadata limits/defaults */
6093         if (super->orom && raiddisks > super->orom->dpa) {
6094                 pr_vrb("platform supports a maximum of %d disks per array\n",
6095                        super->orom->dpa);
6096                 return 0;
6097         }
6098
6099         /* capabilities of OROM tested - copied from validate_geometry_imsm_volume */
6100         if (!is_raid_level_supported(super->orom, level, raiddisks)) {
6101                 pr_vrb("platform does not support raid%d with %d disk%s\n",
6102                         level, raiddisks, raiddisks > 1 ? "s" : "");
6103                 return 0;
6104         }
6105
6106         if (*chunk == 0 || *chunk == UnSet)
6107                 *chunk = imsm_default_chunk(super->orom);
6108
6109         if (super->orom && !imsm_orom_has_chunk(super->orom, *chunk)) {
6110                 pr_vrb("platform does not support a chunk size of: %d\n", *chunk);
6111                 return 0;
6112         }
6113
6114         if (layout != imsm_level_to_layout(level)) {
6115                 if (level == 5)
6116                         pr_vrb("imsm raid 5 only supports the left-asymmetric layout\n");
6117                 else if (level == 10)
6118                         pr_vrb("imsm raid 10 only supports the n2 layout\n");
6119                 else
6120                         pr_vrb("imsm unknown layout %#x for this raid level %d\n",
6121                                 layout, level);
6122                 return 0;
6123         }
6124
6125         if (super->orom && (super->orom->attr & IMSM_OROM_ATTR_2TB) == 0 &&
6126                         (calc_array_size(level, raiddisks, layout, *chunk, size) >> 32) > 0) {
6127                 pr_vrb("platform does not support a volume size over 2TB\n");
6128                 return 0;
6129         }
6130
6131         return 1;
6132 }
6133
6134 /* validate_geometry_imsm_volume - lifted from validate_geometry_ddf_bvd
6135  * FIX ME add ahci details
6136  */
6137 static int validate_geometry_imsm_volume(struct supertype *st, int level,
6138                                          int layout, int raiddisks, int *chunk,
6139                                          unsigned long long size,
6140                                          unsigned long long data_offset,
6141                                          char *dev,
6142                                          unsigned long long *freesize,
6143                                          int verbose)
6144 {
6145         struct stat stb;
6146         struct intel_super *super = st->sb;
6147         struct imsm_super *mpb;
6148         struct dl *dl;
6149         unsigned long long pos = 0;
6150         unsigned long long maxsize;
6151         struct extent *e;
6152         int i;
6153
6154         /* We must have the container info already read in. */
6155         if (!super)
6156                 return 0;
6157
6158         mpb = super->anchor;
6159
6160         if (!validate_geometry_imsm_orom(super, level, layout, raiddisks, chunk, size, verbose)) {
6161                 pr_err("RAID gemetry validation failed. Cannot proceed with the action(s).\n");
6162                 return 0;
6163         }
6164         if (!dev) {
6165                 /* General test:  make sure there is space for
6166                  * 'raiddisks' device extents of size 'size' at a given
6167                  * offset
6168                  */
6169                 unsigned long long minsize = size;
6170                 unsigned long long start_offset = MaxSector;
6171                 int dcnt = 0;
6172                 if (minsize == 0)
6173                         minsize = MPB_SECTOR_CNT + IMSM_RESERVED_SECTORS;
6174                 for (dl = super->disks; dl ; dl = dl->next) {
6175                         int found = 0;
6176
6177                         pos = 0;
6178                         i = 0;
6179                         e = get_extents(super, dl);
6180                         if (!e) continue;
6181                         do {
6182                                 unsigned long long esize;
6183                                 esize = e[i].start - pos;
6184                                 if (esize >= minsize)
6185                                         found = 1;
6186                                 if (found && start_offset == MaxSector) {
6187                                         start_offset = pos;
6188                                         break;
6189                                 } else if (found && pos != start_offset) {
6190                                         found = 0;
6191                                         break;
6192                                 }
6193                                 pos = e[i].start + e[i].size;
6194                                 i++;
6195                         } while (e[i-1].size);
6196                         if (found)
6197                                 dcnt++;
6198                         free(e);
6199                 }
6200                 if (dcnt < raiddisks) {
6201                         if (verbose)
6202                                 pr_err("imsm: Not enough devices with space for this array (%d < %d)\n",
6203                                         dcnt, raiddisks);
6204                         return 0;
6205                 }
6206                 return 1;
6207         }
6208
6209         /* This device must be a member of the set */
6210         if (stat(dev, &stb) < 0)
6211                 return 0;
6212         if ((S_IFMT & stb.st_mode) != S_IFBLK)
6213                 return 0;
6214         for (dl = super->disks ; dl ; dl = dl->next) {
6215                 if (dl->major == (int)major(stb.st_rdev) &&
6216                     dl->minor == (int)minor(stb.st_rdev))
6217                         break;
6218         }
6219         if (!dl) {
6220                 if (verbose)
6221                         pr_err("%s is not in the same imsm set\n", dev);
6222                 return 0;
6223         } else if (super->orom && dl->index < 0 && mpb->num_raid_devs) {
6224                 /* If a volume is present then the current creation attempt
6225                  * cannot incorporate new spares because the orom may not
6226                  * understand this configuration (all member disks must be
6227                  * members of each array in the container).
6228                  */
6229                 pr_err("%s is a spare and a volume is already defined for this container\n", dev);
6230                 pr_err("The option-rom requires all member disks to be a member of all volumes\n");
6231                 return 0;
6232         } else if (super->orom && mpb->num_raid_devs > 0 &&
6233                    mpb->num_disks != raiddisks) {
6234                 pr_err("The option-rom requires all member disks to be a member of all volumes\n");
6235                 return 0;
6236         }
6237
6238         /* retrieve the largest free space block */
6239         e = get_extents(super, dl);
6240         maxsize = 0;
6241         i = 0;
6242         if (e) {
6243                 do {
6244                         unsigned long long esize;
6245
6246                         esize = e[i].start - pos;
6247                         if (esize >= maxsize)
6248                                 maxsize = esize;
6249                         pos = e[i].start + e[i].size;
6250                         i++;
6251                 } while (e[i-1].size);
6252                 dl->e = e;
6253                 dl->extent_cnt = i;
6254         } else {
6255                 if (verbose)
6256                         pr_err("unable to determine free space for: %s\n",
6257                                 dev);
6258                 return 0;
6259         }
6260         if (maxsize < size) {
6261                 if (verbose)
6262                         pr_err("%s not enough space (%llu < %llu)\n",
6263                                 dev, maxsize, size);
6264                 return 0;
6265         }
6266
6267         /* count total number of extents for merge */
6268         i = 0;
6269         for (dl = super->disks; dl; dl = dl->next)
6270                 if (dl->e)
6271                         i += dl->extent_cnt;
6272
6273         maxsize = merge_extents(super, i);
6274
6275         if (!check_env("IMSM_NO_PLATFORM") &&
6276             mpb->num_raid_devs > 0 && size && size != maxsize) {
6277                 pr_err("attempting to create a second volume with size less then remaining space. Aborting...\n");
6278                 return 0;
6279         }
6280
6281         if (maxsize < size || maxsize == 0) {
6282                 if (verbose) {
6283                         if (maxsize == 0)
6284                                 pr_err("no free space left on device. Aborting...\n");
6285                         else
6286                                 pr_err("not enough space to create volume of given size (%llu < %llu). Aborting...\n",
6287                                                 maxsize, size);
6288                 }
6289                 return 0;
6290         }
6291
6292         *freesize = maxsize;
6293
6294         if (super->orom) {
6295                 int count = count_volumes(super->hba,
6296                                       super->orom->dpa, verbose);
6297                 if (super->orom->vphba <= count) {
6298                         pr_vrb("platform does not support more than %d raid volumes.\n",
6299                                super->orom->vphba);
6300                         return 0;
6301                 }
6302         }
6303         return 1;
6304 }
6305
6306 static int imsm_get_free_size(struct supertype *st, int raiddisks,
6307                          unsigned long long size, int chunk,
6308                          unsigned long long *freesize)
6309 {
6310         struct intel_super *super = st->sb;
6311         struct imsm_super *mpb = super->anchor;
6312         struct dl *dl;
6313         int i;
6314         int extent_cnt;
6315         struct extent *e;
6316         unsigned long long maxsize;
6317         unsigned long long minsize;
6318         int cnt;
6319         int used;
6320
6321         /* find the largest common start free region of the possible disks */
6322         used = 0;
6323         extent_cnt = 0;
6324         cnt = 0;
6325         for (dl = super->disks; dl; dl = dl->next) {
6326                 dl->raiddisk = -1;
6327
6328                 if (dl->index >= 0)
6329                         used++;
6330
6331                 /* don't activate new spares if we are orom constrained
6332                  * and there is already a volume active in the container
6333                  */
6334                 if (super->orom && dl->index < 0 && mpb->num_raid_devs)
6335                         continue;
6336
6337                 e = get_extents(super, dl);
6338                 if (!e)
6339                         continue;
6340                 for (i = 1; e[i-1].size; i++)
6341                         ;
6342                 dl->e = e;
6343                 dl->extent_cnt = i;
6344                 extent_cnt += i;
6345                 cnt++;
6346         }
6347
6348         maxsize = merge_extents(super, extent_cnt);
6349         minsize = size;
6350         if (size == 0)
6351                 /* chunk is in K */
6352                 minsize = chunk * 2;
6353
6354         if (cnt < raiddisks ||
6355             (super->orom && used && used != raiddisks) ||
6356             maxsize < minsize ||
6357             maxsize == 0) {
6358                 pr_err("not enough devices with space to create array.\n");
6359                 return 0; /* No enough free spaces large enough */
6360         }
6361
6362         if (size == 0) {
6363                 size = maxsize;
6364                 if (chunk) {
6365                         size /= 2 * chunk;
6366                         size *= 2 * chunk;
6367                 }
6368                 maxsize = size;
6369         }
6370         if (!check_env("IMSM_NO_PLATFORM") &&
6371             mpb->num_raid_devs > 0 && size && size != maxsize) {
6372                 pr_err("attempting to create a second volume with size less then remaining space. Aborting...\n");
6373                 return 0;
6374         }
6375         cnt = 0;
6376         for (dl = super->disks; dl; dl = dl->next)
6377                 if (dl->e)
6378                         dl->raiddisk = cnt++;
6379
6380         *freesize = size;
6381
6382         dprintf("imsm: imsm_get_free_size() returns : %llu\n", size);
6383
6384         return 1;
6385 }
6386
6387 static int reserve_space(struct supertype *st, int raiddisks,
6388                          unsigned long long size, int chunk,
6389                          unsigned long long *freesize)
6390 {
6391         struct intel_super *super = st->sb;
6392         struct dl *dl;
6393         int cnt;
6394         int rv = 0;
6395
6396         rv = imsm_get_free_size(st, raiddisks, size, chunk, freesize);
6397         if (rv) {
6398                 cnt = 0;
6399                 for (dl = super->disks; dl; dl = dl->next)
6400                         if (dl->e)
6401                                 dl->raiddisk = cnt++;
6402                 rv = 1;
6403         }
6404
6405         return rv;
6406 }
6407
6408 static int validate_geometry_imsm(struct supertype *st, int level, int layout,
6409                                   int raiddisks, int *chunk, unsigned long long size,
6410                                   unsigned long long data_offset,
6411                                   char *dev, unsigned long long *freesize,
6412                                   int verbose)
6413 {
6414         int fd, cfd;
6415         struct mdinfo *sra;
6416         int is_member = 0;
6417
6418         /* load capability
6419          * if given unused devices create a container
6420          * if given given devices in a container create a member volume
6421          */
6422         if (level == LEVEL_CONTAINER) {
6423                 /* Must be a fresh device to add to a container */
6424                 return validate_geometry_imsm_container(st, level, layout,
6425                                                         raiddisks,
6426                                                         *chunk,
6427                                                         size, data_offset,
6428                                                         dev, freesize,
6429                                                         verbose);
6430         }
6431
6432         if (!dev) {
6433                 if (st->sb) {
6434                         struct intel_super *super = st->sb;
6435                         if (!validate_geometry_imsm_orom(st->sb, level, layout,
6436                                                          raiddisks, chunk, size,
6437                                                          verbose))
6438                                 return 0;
6439                         /* we are being asked to automatically layout a
6440                          * new volume based on the current contents of
6441                          * the container.  If the the parameters can be
6442                          * satisfied reserve_space will record the disks,
6443                          * start offset, and size of the volume to be
6444                          * created.  add_to_super and getinfo_super
6445                          * detect when autolayout is in progress.
6446                          */
6447                         /* assuming that freesize is always given when array is
6448                            created */
6449                         if (super->orom && freesize) {
6450                                 int count;
6451                                 count = count_volumes(super->hba,
6452                                                       super->orom->dpa, verbose);
6453                                 if (super->orom->vphba <= count) {
6454                                         pr_vrb("platform does not support more than %d raid volumes.\n",
6455                                                super->orom->vphba);
6456                                         return 0;
6457                                 }
6458                         }
6459                         if (freesize)
6460                                 return reserve_space(st, raiddisks, size,
6461                                                      *chunk, freesize);
6462                 }
6463                 return 1;
6464         }
6465         if (st->sb) {
6466                 /* creating in a given container */
6467                 return validate_geometry_imsm_volume(st, level, layout,
6468                                                      raiddisks, chunk, size,
6469                                                      data_offset,
6470                                                      dev, freesize, verbose);
6471         }
6472
6473         /* This device needs to be a device in an 'imsm' container */
6474         fd = open(dev, O_RDONLY|O_EXCL, 0);
6475         if (fd >= 0) {
6476                 if (verbose)
6477                         pr_err("Cannot create this array on device %s\n",
6478                                dev);
6479                 close(fd);
6480                 return 0;
6481         }
6482         if (errno != EBUSY || (fd = open(dev, O_RDONLY, 0)) < 0) {
6483                 if (verbose)
6484                         pr_err("Cannot open %s: %s\n",
6485                                 dev, strerror(errno));
6486                 return 0;
6487         }
6488         /* Well, it is in use by someone, maybe an 'imsm' container. */
6489         cfd = open_container(fd);
6490         close(fd);
6491         if (cfd < 0) {
6492                 if (verbose)
6493                         pr_err("Cannot use %s: It is busy\n",
6494                                 dev);
6495                 return 0;
6496         }
6497         sra = sysfs_read(cfd, NULL, GET_VERSION);
6498         if (sra && sra->array.major_version == -1 &&
6499             strcmp(sra->text_version, "imsm") == 0)
6500                 is_member = 1;
6501         sysfs_free(sra);
6502         if (is_member) {
6503                 /* This is a member of a imsm container.  Load the container
6504                  * and try to create a volume
6505                  */
6506                 struct intel_super *super;
6507
6508                 if (load_super_imsm_all(st, cfd, (void **) &super, NULL, NULL, 1) == 0) {
6509                         st->sb = super;
6510                         strcpy(st->container_devnm, fd2devnm(cfd));
6511                         close(cfd);
6512                         return validate_geometry_imsm_volume(st, level, layout,
6513                                                              raiddisks, chunk,
6514                                                              size, data_offset, dev,
6515                                                              freesize, 1)
6516                                 ? 1 : -1;
6517                 }
6518         }
6519
6520         if (verbose)
6521                 pr_err("failed container membership check\n");
6522
6523         close(cfd);
6524         return 0;
6525 }
6526
6527 static void default_geometry_imsm(struct supertype *st, int *level, int *layout, int *chunk)
6528 {
6529         struct intel_super *super = st->sb;
6530
6531         if (level && *level == UnSet)
6532                 *level = LEVEL_CONTAINER;
6533
6534         if (level && layout && *layout == UnSet)
6535                 *layout = imsm_level_to_layout(*level);
6536
6537         if (chunk && (*chunk == UnSet || *chunk == 0))
6538                 *chunk = imsm_default_chunk(super->orom);
6539 }
6540
6541 static void handle_missing(struct intel_super *super, struct imsm_dev *dev);
6542
6543 static int kill_subarray_imsm(struct supertype *st)
6544 {
6545         /* remove the subarray currently referenced by ->current_vol */
6546         __u8 i;
6547         struct intel_dev **dp;
6548         struct intel_super *super = st->sb;
6549         __u8 current_vol = super->current_vol;
6550         struct imsm_super *mpb = super->anchor;
6551
6552         if (super->current_vol < 0)
6553                 return 2;
6554         super->current_vol = -1; /* invalidate subarray cursor */
6555
6556         /* block deletions that would change the uuid of active subarrays
6557          *
6558          * FIXME when immutable ids are available, but note that we'll
6559          * also need to fixup the invalidated/active subarray indexes in
6560          * mdstat
6561          */
6562         for (i = 0; i < mpb->num_raid_devs; i++) {
6563                 char subarray[4];
6564
6565                 if (i < current_vol)
6566                         continue;
6567                 sprintf(subarray, "%u", i);
6568                 if (is_subarray_active(subarray, st->devnm)) {
6569                         pr_err("deleting subarray-%d would change the UUID of active subarray-%d, aborting\n",
6570                                current_vol, i);
6571
6572                         return 2;
6573                 }
6574         }
6575
6576         if (st->update_tail) {
6577                 struct imsm_update_kill_array *u = xmalloc(sizeof(*u));
6578
6579                 u->type = update_kill_array;
6580                 u->dev_idx = current_vol;
6581                 append_metadata_update(st, u, sizeof(*u));
6582
6583                 return 0;
6584         }
6585
6586         for (dp = &super->devlist; *dp;)
6587                 if ((*dp)->index == current_vol) {
6588                         *dp = (*dp)->next;
6589                 } else {
6590                         handle_missing(super, (*dp)->dev);
6591                         if ((*dp)->index > current_vol)
6592                                 (*dp)->index--;
6593                         dp = &(*dp)->next;
6594                 }
6595
6596         /* no more raid devices, all active components are now spares,
6597          * but of course failed are still failed
6598          */
6599         if (--mpb->num_raid_devs == 0) {
6600                 struct dl *d;
6601
6602                 for (d = super->disks; d; d = d->next)
6603                         if (d->index > -2)
6604                                 mark_spare(d);
6605         }
6606
6607         super->updates_pending++;
6608
6609         return 0;
6610 }
6611
6612 static int update_subarray_imsm(struct supertype *st, char *subarray,
6613                                 char *update, struct mddev_ident *ident)
6614 {
6615         /* update the subarray currently referenced by ->current_vol */
6616         struct intel_super *super = st->sb;
6617         struct imsm_super *mpb = super->anchor;
6618
6619         if (strcmp(update, "name") == 0) {
6620                 char *name = ident->name;
6621                 char *ep;
6622                 int vol;
6623
6624                 if (is_subarray_active(subarray, st->devnm)) {
6625                         pr_err("Unable to update name of active subarray\n");
6626                         return 2;
6627                 }
6628
6629                 if (!check_name(super, name, 0))
6630                         return 2;
6631
6632                 vol = strtoul(subarray, &ep, 10);
6633                 if (*ep != '\0' || vol >= super->anchor->num_raid_devs)
6634                         return 2;
6635
6636                 if (st->update_tail) {
6637                         struct imsm_update_rename_array *u = xmalloc(sizeof(*u));
6638
6639                         u->type = update_rename_array;
6640                         u->dev_idx = vol;
6641                         snprintf((char *) u->name, MAX_RAID_SERIAL_LEN, "%s", name);
6642                         append_metadata_update(st, u, sizeof(*u));
6643                 } else {
6644                         struct imsm_dev *dev;
6645                         int i;
6646
6647                         dev = get_imsm_dev(super, vol);
6648                         snprintf((char *) dev->volume, MAX_RAID_SERIAL_LEN, "%s", name);
6649                         for (i = 0; i < mpb->num_raid_devs; i++) {
6650                                 dev = get_imsm_dev(super, i);
6651                                 handle_missing(super, dev);
6652                         }
6653                         super->updates_pending++;
6654                 }
6655         } else
6656                 return 2;
6657
6658         return 0;
6659 }
6660 #endif /* MDASSEMBLE */
6661
6662 static int is_gen_migration(struct imsm_dev *dev)
6663 {
6664         if (dev == NULL)
6665                 return 0;
6666
6667         if (!dev->vol.migr_state)
6668                 return 0;
6669
6670         if (migr_type(dev) == MIGR_GEN_MIGR)
6671                 return 1;
6672
6673         return 0;
6674 }
6675
6676 static int is_rebuilding(struct imsm_dev *dev)
6677 {
6678         struct imsm_map *migr_map;
6679
6680         if (!dev->vol.migr_state)
6681                 return 0;
6682
6683         if (migr_type(dev) != MIGR_REBUILD)
6684                 return 0;
6685
6686         migr_map = get_imsm_map(dev, MAP_1);
6687
6688         if (migr_map->map_state == IMSM_T_STATE_DEGRADED)
6689                 return 1;
6690         else
6691                 return 0;
6692 }
6693
6694 #ifndef MDASSEMBLE
6695 static int is_initializing(struct imsm_dev *dev)
6696 {
6697         struct imsm_map *migr_map;
6698
6699         if (!dev->vol.migr_state)
6700                 return 0;
6701
6702         if (migr_type(dev) != MIGR_INIT)
6703                 return 0;
6704
6705         migr_map = get_imsm_map(dev, MAP_1);
6706
6707         if (migr_map->map_state == IMSM_T_STATE_UNINITIALIZED)
6708                 return 1;
6709
6710         return 0;
6711 }
6712 #endif
6713
6714 static void update_recovery_start(struct intel_super *super,
6715                                         struct imsm_dev *dev,
6716                                         struct mdinfo *array)
6717 {
6718         struct mdinfo *rebuild = NULL;
6719         struct mdinfo *d;
6720         __u32 units;
6721
6722         if (!is_rebuilding(dev))
6723                 return;
6724
6725         /* Find the rebuild target, but punt on the dual rebuild case */
6726         for (d = array->devs; d; d = d->next)
6727                 if (d->recovery_start == 0) {
6728                         if (rebuild)
6729                                 return;
6730                         rebuild = d;
6731                 }
6732
6733         if (!rebuild) {
6734                 /* (?) none of the disks are marked with
6735                  * IMSM_ORD_REBUILD, so assume they are missing and the
6736                  * disk_ord_tbl was not correctly updated
6737                  */
6738                 dprintf("failed to locate out-of-sync disk\n");
6739                 return;
6740         }
6741
6742         units = __le32_to_cpu(dev->vol.curr_migr_unit);
6743         rebuild->recovery_start = units * blocks_per_migr_unit(super, dev);
6744 }
6745
6746 #ifndef MDASSEMBLE
6747 static int recover_backup_imsm(struct supertype *st, struct mdinfo *info);
6748 #endif
6749
6750 static struct mdinfo *container_content_imsm(struct supertype *st, char *subarray)
6751 {
6752         /* Given a container loaded by load_super_imsm_all,
6753          * extract information about all the arrays into
6754          * an mdinfo tree.
6755          * If 'subarray' is given, just extract info about that array.
6756          *
6757          * For each imsm_dev create an mdinfo, fill it in,
6758          *  then look for matching devices in super->disks
6759          *  and create appropriate device mdinfo.
6760          */
6761         struct intel_super *super = st->sb;
6762         struct imsm_super *mpb = super->anchor;
6763         struct mdinfo *rest = NULL;
6764         unsigned int i;
6765         int sb_errors = 0;
6766         struct dl *d;
6767         int spare_disks = 0;
6768
6769         /* do not assemble arrays when not all attributes are supported */
6770         if (imsm_check_attributes(mpb->attributes) == 0) {
6771                 sb_errors = 1;
6772                 pr_err("Unsupported attributes in IMSM metadata.Arrays activation is blocked.\n");
6773         }
6774
6775         /* check for bad blocks */
6776         if (imsm_bbm_log_size(super->anchor)) {
6777                 pr_err("BBM log found in IMSM metadata.Arrays activation is blocked.\n");
6778                 sb_errors = 1;
6779         }
6780
6781         /* count spare devices, not used in maps
6782          */
6783         for (d = super->disks; d; d = d->next)
6784                 if (d->index == -1)
6785                         spare_disks++;
6786
6787         for (i = 0; i < mpb->num_raid_devs; i++) {
6788                 struct imsm_dev *dev;
6789                 struct imsm_map *map;
6790                 struct imsm_map *map2;
6791                 struct mdinfo *this;
6792                 int slot;
6793 #ifndef MDASSEMBLE
6794                 int chunk;
6795 #endif
6796                 char *ep;
6797
6798                 if (subarray &&
6799                     (i != strtoul(subarray, &ep, 10) || *ep != '\0'))
6800                         continue;
6801
6802                 dev = get_imsm_dev(super, i);
6803                 map = get_imsm_map(dev, MAP_0);
6804                 map2 = get_imsm_map(dev, MAP_1);
6805
6806                 /* do not publish arrays that are in the middle of an
6807                  * unsupported migration
6808                  */
6809                 if (dev->vol.migr_state &&
6810                     (migr_type(dev) == MIGR_STATE_CHANGE)) {
6811                         pr_err("cannot assemble volume '%.16s': unsupported migration in progress\n",
6812                                 dev->volume);
6813                         continue;
6814                 }
6815                 /* do not publish arrays that are not support by controller's
6816                  * OROM/EFI
6817                  */
6818
6819                 this = xmalloc(sizeof(*this));
6820
6821                 super->current_vol = i;
6822                 getinfo_super_imsm_volume(st, this, NULL);
6823                 this->next = rest;
6824 #ifndef MDASSEMBLE
6825                 chunk = __le16_to_cpu(map->blocks_per_strip) >> 1;
6826                 /* mdadm does not support all metadata features- set the bit in all arrays state */
6827                 if (!validate_geometry_imsm_orom(super,
6828                                                  get_imsm_raid_level(map), /* RAID level */
6829                                                  imsm_level_to_layout(get_imsm_raid_level(map)),
6830                                                  map->num_members, /* raid disks */
6831                                                  &chunk, join_u32(dev->size_low, dev->size_high),
6832                                                  1 /* verbose */)) {
6833                         pr_err("IMSM RAID geometry validation failed.  Array %s activation is blocked.\n",
6834                                 dev->volume);
6835                         this->array.state |=
6836                           (1<<MD_SB_BLOCK_CONTAINER_RESHAPE) |
6837                           (1<<MD_SB_BLOCK_VOLUME);
6838                 }
6839 #endif
6840
6841                 /* if array has bad blocks, set suitable bit in all arrays state */
6842                 if (sb_errors)
6843                         this->array.state |=
6844                           (1<<MD_SB_BLOCK_CONTAINER_RESHAPE) |
6845                           (1<<MD_SB_BLOCK_VOLUME);
6846
6847                 for (slot = 0 ; slot <  map->num_members; slot++) {
6848                         unsigned long long recovery_start;
6849                         struct mdinfo *info_d;
6850                         struct dl *d;
6851                         int idx;
6852                         int skip;
6853                         __u32 ord;
6854
6855                         skip = 0;
6856                         idx = get_imsm_disk_idx(dev, slot, MAP_0);
6857                         ord = get_imsm_ord_tbl_ent(dev, slot, MAP_X);
6858                         for (d = super->disks; d ; d = d->next)
6859                                 if (d->index == idx)
6860                                         break;
6861
6862                         recovery_start = MaxSector;
6863                         if (d == NULL)
6864                                 skip = 1;
6865                         if (d && is_failed(&d->disk))
6866                                 skip = 1;
6867                         if (ord & IMSM_ORD_REBUILD)
6868                                 recovery_start = 0;
6869
6870                         /*
6871                          * if we skip some disks the array will be assmebled degraded;
6872                          * reset resync start to avoid a dirty-degraded
6873                          * situation when performing the intial sync
6874                          *
6875                          * FIXME handle dirty degraded
6876                          */
6877                         if ((skip || recovery_start == 0) && !dev->vol.dirty)
6878                                 this->resync_start = MaxSector;
6879                         if (skip)
6880                                 continue;
6881
6882                         info_d = xcalloc(1, sizeof(*info_d));
6883                         info_d->next = this->devs;
6884                         this->devs = info_d;
6885
6886                         info_d->disk.number = d->index;
6887                         info_d->disk.major = d->major;
6888                         info_d->disk.minor = d->minor;
6889                         info_d->disk.raid_disk = slot;
6890                         info_d->recovery_start = recovery_start;
6891                         if (map2) {
6892                                 if (slot < map2->num_members)
6893                                         info_d->disk.state = (1 << MD_DISK_ACTIVE);
6894                                 else
6895                                         this->array.spare_disks++;
6896                         } else {
6897                                 if (slot < map->num_members)
6898                                         info_d->disk.state = (1 << MD_DISK_ACTIVE);
6899                                 else
6900                                         this->array.spare_disks++;
6901                         }
6902                         if (info_d->recovery_start == MaxSector)
6903                                 this->array.working_disks++;
6904
6905                         info_d->events = __le32_to_cpu(mpb->generation_num);
6906                         info_d->data_offset = pba_of_lba0(map);
6907                         info_d->component_size = blocks_per_member(map);
6908                 }
6909                 /* now that the disk list is up-to-date fixup recovery_start */
6910                 update_recovery_start(super, dev, this);
6911                 this->array.spare_disks += spare_disks;
6912
6913 #ifndef MDASSEMBLE
6914                 /* check for reshape */
6915                 if (this->reshape_active == 1)
6916                         recover_backup_imsm(st, this);
6917 #endif
6918                 rest = this;
6919         }
6920
6921         return rest;
6922 }
6923
6924 static __u8 imsm_check_degraded(struct intel_super *super, struct imsm_dev *dev,
6925                                 int failed, int look_in_map)
6926 {
6927         struct imsm_map *map;
6928
6929         map = get_imsm_map(dev, look_in_map);
6930
6931         if (!failed)
6932                 return map->map_state == IMSM_T_STATE_UNINITIALIZED ?
6933                         IMSM_T_STATE_UNINITIALIZED : IMSM_T_STATE_NORMAL;
6934
6935         switch (get_imsm_raid_level(map)) {
6936         case 0:
6937                 return IMSM_T_STATE_FAILED;
6938                 break;
6939         case 1:
6940                 if (failed < map->num_members)
6941                         return IMSM_T_STATE_DEGRADED;
6942                 else
6943                         return IMSM_T_STATE_FAILED;
6944                 break;
6945         case 10:
6946         {
6947                 /**
6948                  * check to see if any mirrors have failed, otherwise we
6949                  * are degraded.  Even numbered slots are mirrored on
6950                  * slot+1
6951                  */
6952                 int i;
6953                 /* gcc -Os complains that this is unused */
6954                 int insync = insync;
6955
6956                 for (i = 0; i < map->num_members; i++) {
6957                         __u32 ord = get_imsm_ord_tbl_ent(dev, i, MAP_X);
6958                         int idx = ord_to_idx(ord);
6959                         struct imsm_disk *disk;
6960
6961                         /* reset the potential in-sync count on even-numbered
6962                          * slots.  num_copies is always 2 for imsm raid10
6963                          */
6964                         if ((i & 1) == 0)
6965                                 insync = 2;
6966
6967                         disk = get_imsm_disk(super, idx);
6968                         if (!disk || is_failed(disk) || ord & IMSM_ORD_REBUILD)
6969                                 insync--;
6970
6971                         /* no in-sync disks left in this mirror the
6972                          * array has failed
6973                          */
6974                         if (insync == 0)
6975                                 return IMSM_T_STATE_FAILED;
6976                 }
6977
6978                 return IMSM_T_STATE_DEGRADED;
6979         }
6980         case 5:
6981                 if (failed < 2)
6982                         return IMSM_T_STATE_DEGRADED;
6983                 else
6984                         return IMSM_T_STATE_FAILED;
6985                 break;
6986         default:
6987                 break;
6988         }
6989
6990         return map->map_state;
6991 }
6992
6993 static int imsm_count_failed(struct intel_super *super, struct imsm_dev *dev,
6994                              int look_in_map)
6995 {
6996         int i;
6997         int failed = 0;
6998         struct imsm_disk *disk;
6999         struct imsm_map *map = get_imsm_map(dev, MAP_0);
7000         struct imsm_map *prev = get_imsm_map(dev, MAP_1);
7001         struct imsm_map *map_for_loop;
7002         __u32 ord;
7003         int idx;
7004         int idx_1;
7005
7006         /* at the beginning of migration we set IMSM_ORD_REBUILD on
7007          * disks that are being rebuilt.  New failures are recorded to
7008          * map[0].  So we look through all the disks we started with and
7009          * see if any failures are still present, or if any new ones
7010          * have arrived
7011          */
7012         map_for_loop = map;
7013         if (prev && (map->num_members < prev->num_members))
7014                 map_for_loop = prev;
7015
7016         for (i = 0; i < map_for_loop->num_members; i++) {
7017                 idx_1 = -255;
7018                 /* when MAP_X is passed both maps failures are counted
7019                  */
7020                 if (prev &&
7021                     (look_in_map == MAP_1 || look_in_map == MAP_X) &&
7022                     i < prev->num_members) {
7023                         ord = __le32_to_cpu(prev->disk_ord_tbl[i]);
7024                         idx_1 = ord_to_idx(ord);
7025
7026                         disk = get_imsm_disk(super, idx_1);
7027                         if (!disk || is_failed(disk) || ord & IMSM_ORD_REBUILD)
7028                                 failed++;
7029                 }
7030                 if ((look_in_map == MAP_0 || look_in_map == MAP_X) &&
7031                     i < map->num_members) {
7032                         ord = __le32_to_cpu(map->disk_ord_tbl[i]);
7033                         idx = ord_to_idx(ord);
7034
7035                         if (idx != idx_1) {
7036                                 disk = get_imsm_disk(super, idx);
7037                                 if (!disk || is_failed(disk) ||
7038                                     ord & IMSM_ORD_REBUILD)
7039                                         failed++;
7040                         }
7041                 }
7042         }
7043
7044         return failed;
7045 }
7046
7047 #ifndef MDASSEMBLE
7048 static int imsm_open_new(struct supertype *c, struct active_array *a,
7049                          char *inst)
7050 {
7051         struct intel_super *super = c->sb;
7052         struct imsm_super *mpb = super->anchor;
7053
7054         if (atoi(inst) >= mpb->num_raid_devs) {
7055                 pr_err("subarry index %d, out of range\n", atoi(inst));
7056                 return -ENODEV;
7057         }
7058
7059         dprintf("imsm: open_new %s\n", inst);
7060         a->info.container_member = atoi(inst);
7061         return 0;
7062 }
7063
7064 static int is_resyncing(struct imsm_dev *dev)
7065 {
7066         struct imsm_map *migr_map;
7067
7068         if (!dev->vol.migr_state)
7069                 return 0;
7070
7071         if (migr_type(dev) == MIGR_INIT ||
7072             migr_type(dev) == MIGR_REPAIR)
7073                 return 1;
7074
7075         if (migr_type(dev) == MIGR_GEN_MIGR)
7076                 return 0;
7077
7078         migr_map = get_imsm_map(dev, MAP_1);
7079
7080         if (migr_map->map_state == IMSM_T_STATE_NORMAL &&
7081             dev->vol.migr_type != MIGR_GEN_MIGR)
7082                 return 1;
7083         else
7084                 return 0;
7085 }
7086
7087 /* return true if we recorded new information */
7088 static int mark_failure(struct imsm_dev *dev, struct imsm_disk *disk, int idx)
7089 {
7090         __u32 ord;
7091         int slot;
7092         struct imsm_map *map;
7093         char buf[MAX_RAID_SERIAL_LEN+3];
7094         unsigned int len, shift = 0;
7095
7096         /* new failures are always set in map[0] */
7097         map = get_imsm_map(dev, MAP_0);
7098
7099         slot = get_imsm_disk_slot(map, idx);
7100         if (slot < 0)
7101                 return 0;
7102
7103         ord = __le32_to_cpu(map->disk_ord_tbl[slot]);
7104         if (is_failed(disk) && (ord & IMSM_ORD_REBUILD))
7105                 return 0;
7106
7107         memcpy(buf, disk->serial, MAX_RAID_SERIAL_LEN);
7108         buf[MAX_RAID_SERIAL_LEN] = '\000';
7109         strcat(buf, ":0");
7110         if ((len = strlen(buf)) >= MAX_RAID_SERIAL_LEN)
7111                 shift = len - MAX_RAID_SERIAL_LEN + 1;
7112         strncpy((char *)disk->serial, &buf[shift], MAX_RAID_SERIAL_LEN);
7113
7114         disk->status |= FAILED_DISK;
7115         set_imsm_ord_tbl_ent(map, slot, idx | IMSM_ORD_REBUILD);
7116         /* mark failures in second map if second map exists and this disk
7117          * in this slot.
7118          * This is valid for migration, initialization and rebuild
7119          */
7120         if (dev->vol.migr_state) {
7121                 struct imsm_map *map2 = get_imsm_map(dev, MAP_1);
7122                 int slot2 = get_imsm_disk_slot(map2, idx);
7123
7124                 if (slot2 < map2->num_members && slot2 >= 0)
7125                         set_imsm_ord_tbl_ent(map2, slot2,
7126                                              idx | IMSM_ORD_REBUILD);
7127         }
7128         if (map->failed_disk_num == 0xff)
7129                 map->failed_disk_num = slot;
7130         return 1;
7131 }
7132
7133 static void mark_missing(struct imsm_dev *dev, struct imsm_disk *disk, int idx)
7134 {
7135         mark_failure(dev, disk, idx);
7136
7137         if (disk->scsi_id == __cpu_to_le32(~(__u32)0))
7138                 return;
7139
7140         disk->scsi_id = __cpu_to_le32(~(__u32)0);
7141         memmove(&disk->serial[0], &disk->serial[1], MAX_RAID_SERIAL_LEN - 1);
7142 }
7143
7144 static void handle_missing(struct intel_super *super, struct imsm_dev *dev)
7145 {
7146         struct dl *dl;
7147
7148         if (!super->missing)
7149                 return;
7150
7151         /* When orom adds replacement for missing disk it does
7152          * not remove entry of missing disk, but just updates map with
7153          * new added disk. So it is not enough just to test if there is
7154          * any missing disk, we have to look if there are any failed disks
7155          * in map to stop migration */
7156
7157         dprintf("imsm: mark missing\n");
7158         /* end process for initialization and rebuild only
7159          */
7160         if (is_gen_migration(dev) == 0) {
7161                 __u8 map_state;
7162                 int failed;
7163
7164                 failed = imsm_count_failed(super, dev, MAP_0);
7165                 map_state = imsm_check_degraded(super, dev, failed, MAP_0);
7166
7167                 if (failed)
7168                         end_migration(dev, super, map_state);
7169         }
7170         for (dl = super->missing; dl; dl = dl->next)
7171                 mark_missing(dev, &dl->disk, dl->index);
7172         super->updates_pending++;
7173 }
7174
7175 static unsigned long long imsm_set_array_size(struct imsm_dev *dev,
7176                                               long long new_size)
7177 {
7178         int used_disks = imsm_num_data_members(dev, MAP_0);
7179         unsigned long long array_blocks;
7180         struct imsm_map *map;
7181
7182         if (used_disks == 0) {
7183                 /* when problems occures
7184                  * return current array_blocks value
7185                  */
7186                 array_blocks = __le32_to_cpu(dev->size_high);
7187                 array_blocks = array_blocks << 32;
7188                 array_blocks += __le32_to_cpu(dev->size_low);
7189
7190                 return array_blocks;
7191         }
7192
7193         /* set array size in metadata
7194          */
7195         if (new_size <= 0) {
7196                 /* OLCE size change is caused by added disks
7197                  */
7198                 map = get_imsm_map(dev, MAP_0);
7199                 array_blocks = blocks_per_member(map) * used_disks;
7200         } else {
7201                 /* Online Volume Size Change
7202                  * Using  available free space
7203                  */
7204                 array_blocks = new_size;
7205         }
7206
7207         /* round array size down to closest MB
7208          */
7209         array_blocks = (array_blocks >> SECT_PER_MB_SHIFT) << SECT_PER_MB_SHIFT;
7210         dev->size_low = __cpu_to_le32((__u32)array_blocks);
7211         dev->size_high = __cpu_to_le32((__u32)(array_blocks >> 32));
7212
7213         return array_blocks;
7214 }
7215
7216 static void imsm_set_disk(struct active_array *a, int n, int state);
7217
7218 static void imsm_progress_container_reshape(struct intel_super *super)
7219 {
7220         /* if no device has a migr_state, but some device has a
7221          * different number of members than the previous device, start
7222          * changing the number of devices in this device to match
7223          * previous.
7224          */
7225         struct imsm_super *mpb = super->anchor;
7226         int prev_disks = -1;
7227         int i;
7228         int copy_map_size;
7229
7230         for (i = 0; i < mpb->num_raid_devs; i++) {
7231                 struct imsm_dev *dev = get_imsm_dev(super, i);
7232                 struct imsm_map *map = get_imsm_map(dev, MAP_0);
7233                 struct imsm_map *map2;
7234                 int prev_num_members;
7235
7236                 if (dev->vol.migr_state)
7237                         return;
7238
7239                 if (prev_disks == -1)
7240                         prev_disks = map->num_members;
7241                 if (prev_disks == map->num_members)
7242                         continue;
7243
7244                 /* OK, this array needs to enter reshape mode.
7245                  * i.e it needs a migr_state
7246                  */
7247
7248                 copy_map_size = sizeof_imsm_map(map);
7249                 prev_num_members = map->num_members;
7250                 map->num_members = prev_disks;
7251                 dev->vol.migr_state = 1;
7252                 dev->vol.curr_migr_unit = 0;
7253                 set_migr_type(dev, MIGR_GEN_MIGR);
7254                 for (i = prev_num_members;
7255                      i < map->num_members; i++)
7256                         set_imsm_ord_tbl_ent(map, i, i);
7257                 map2 = get_imsm_map(dev, MAP_1);
7258                 /* Copy the current map */
7259                 memcpy(map2, map, copy_map_size);
7260                 map2->num_members = prev_num_members;
7261
7262                 imsm_set_array_size(dev, -1);
7263                 super->clean_migration_record_by_mdmon = 1;
7264                 super->updates_pending++;
7265         }
7266 }
7267
7268 /* Handle dirty -> clean transititions, resync and reshape.  Degraded and rebuild
7269  * states are handled in imsm_set_disk() with one exception, when a
7270  * resync is stopped due to a new failure this routine will set the
7271  * 'degraded' state for the array.
7272  */
7273 static int imsm_set_array_state(struct active_array *a, int consistent)
7274 {
7275         int inst = a->info.container_member;
7276         struct intel_super *super = a->container->sb;
7277         struct imsm_dev *dev = get_imsm_dev(super, inst);
7278         struct imsm_map *map = get_imsm_map(dev, MAP_0);
7279         int failed = imsm_count_failed(super, dev, MAP_0);
7280         __u8 map_state = imsm_check_degraded(super, dev, failed, MAP_0);
7281         __u32 blocks_per_unit;
7282
7283         if (dev->vol.migr_state &&
7284             dev->vol.migr_type  == MIGR_GEN_MIGR) {
7285                 /* array state change is blocked due to reshape action
7286                  * We might need to
7287                  * - abort the reshape (if last_checkpoint is 0 and action!= reshape)
7288                  * - finish the reshape (if last_checkpoint is big and action != reshape)
7289                  * - update curr_migr_unit
7290                  */
7291                 if (a->curr_action == reshape) {
7292                         /* still reshaping, maybe update curr_migr_unit */
7293                         goto mark_checkpoint;
7294                 } else {
7295                         if (a->last_checkpoint == 0 && a->prev_action == reshape) {
7296                                 /* for some reason we aborted the reshape.
7297                                  *
7298                                  * disable automatic metadata rollback
7299                                  * user action is required to recover process
7300                                  */
7301                                 if (0) {
7302                                         struct imsm_map *map2 =
7303                                                 get_imsm_map(dev, MAP_1);
7304                                         dev->vol.migr_state = 0;
7305                                         set_migr_type(dev, 0);
7306                                         dev->vol.curr_migr_unit = 0;
7307                                         memcpy(map, map2,
7308                                                sizeof_imsm_map(map2));
7309                                         super->updates_pending++;
7310                                 }
7311                         }
7312                         if (a->last_checkpoint >= a->info.component_size) {
7313                                 unsigned long long array_blocks;
7314                                 int used_disks;
7315                                 struct mdinfo *mdi;
7316
7317                                 used_disks = imsm_num_data_members(dev, MAP_0);
7318                                 if (used_disks > 0) {
7319                                         array_blocks =
7320                                                 blocks_per_member(map) *
7321                                                 used_disks;
7322                                         /* round array size down to closest MB
7323                                          */
7324                                         array_blocks = (array_blocks
7325                                                         >> SECT_PER_MB_SHIFT)
7326                                                 << SECT_PER_MB_SHIFT;
7327                                         a->info.custom_array_size = array_blocks;
7328                                         /* encourage manager to update array
7329                                          * size
7330                                          */
7331
7332                                         a->check_reshape = 1;
7333                                 }
7334                                 /* finalize online capacity expansion/reshape */
7335                                 for (mdi = a->info.devs; mdi; mdi = mdi->next)
7336                                         imsm_set_disk(a,
7337                                                       mdi->disk.raid_disk,
7338                                                       mdi->curr_state);
7339
7340                                 imsm_progress_container_reshape(super);
7341                         }
7342                 }
7343         }
7344
7345         /* before we activate this array handle any missing disks */
7346         if (consistent == 2)
7347                 handle_missing(super, dev);
7348
7349         if (consistent == 2 &&
7350             (!is_resync_complete(&a->info) ||
7351              map_state != IMSM_T_STATE_NORMAL ||
7352              dev->vol.migr_state))
7353                 consistent = 0;
7354
7355         if (is_resync_complete(&a->info)) {
7356                 /* complete intialization / resync,
7357                  * recovery and interrupted recovery is completed in
7358                  * ->set_disk
7359                  */
7360                 if (is_resyncing(dev)) {
7361                         dprintf("imsm: mark resync done\n");
7362                         end_migration(dev, super, map_state);
7363                         super->updates_pending++;
7364                         a->last_checkpoint = 0;
7365                 }
7366         } else if ((!is_resyncing(dev) && !failed) &&
7367                    (imsm_reshape_blocks_arrays_changes(super) == 0)) {
7368                 /* mark the start of the init process if nothing is failed */
7369                 dprintf("imsm: mark resync start\n");
7370                 if (map->map_state == IMSM_T_STATE_UNINITIALIZED)
7371                         migrate(dev, super, IMSM_T_STATE_NORMAL, MIGR_INIT);
7372                 else
7373                         migrate(dev, super, IMSM_T_STATE_NORMAL, MIGR_REPAIR);
7374                 super->updates_pending++;
7375         }
7376
7377 mark_checkpoint:
7378         /* skip checkpointing for general migration,
7379          * it is controlled in mdadm
7380          */
7381         if (is_gen_migration(dev))
7382                 goto skip_mark_checkpoint;
7383
7384         /* check if we can update curr_migr_unit from resync_start, recovery_start */
7385         blocks_per_unit = blocks_per_migr_unit(super, dev);
7386         if (blocks_per_unit) {
7387                 __u32 units32;
7388                 __u64 units;
7389
7390                 units = a->last_checkpoint / blocks_per_unit;
7391                 units32 = units;
7392
7393                 /* check that we did not overflow 32-bits, and that
7394                  * curr_migr_unit needs updating
7395                  */
7396                 if (units32 == units &&
7397                     units32 != 0 &&
7398                     __le32_to_cpu(dev->vol.curr_migr_unit) != units32) {
7399                         dprintf("imsm: mark checkpoint (%u)\n", units32);
7400                         dev->vol.curr_migr_unit = __cpu_to_le32(units32);
7401                         super->updates_pending++;
7402                 }
7403         }
7404
7405 skip_mark_checkpoint:
7406         /* mark dirty / clean */
7407         if (dev->vol.dirty != !consistent) {
7408                 dprintf("imsm: mark '%s'\n", consistent ? "clean" : "dirty");
7409                 if (consistent)
7410                         dev->vol.dirty = 0;
7411                 else
7412                         dev->vol.dirty = 1;
7413                 super->updates_pending++;
7414         }
7415
7416         return consistent;
7417 }
7418
7419 static void imsm_set_disk(struct active_array *a, int n, int state)
7420 {
7421         int inst = a->info.container_member;
7422         struct intel_super *super = a->container->sb;
7423         struct imsm_dev *dev = get_imsm_dev(super, inst);
7424         struct imsm_map *map = get_imsm_map(dev, MAP_0);
7425         struct imsm_disk *disk;
7426         struct mdinfo *mdi;
7427         int recovery_not_finished = 0;
7428         int failed;
7429         __u32 ord;
7430         __u8 map_state;
7431
7432         if (n > map->num_members)
7433                 pr_err("imsm: set_disk %d out of range 0..%d\n",
7434                         n, map->num_members - 1);
7435
7436         if (n < 0)
7437                 return;
7438
7439         dprintf("imsm: set_disk %d:%x\n", n, state);
7440
7441         ord = get_imsm_ord_tbl_ent(dev, n, MAP_0);
7442         disk = get_imsm_disk(super, ord_to_idx(ord));
7443
7444         /* check for new failures */
7445         if (state & DS_FAULTY) {
7446                 if (mark_failure(dev, disk, ord_to_idx(ord)))
7447                         super->updates_pending++;
7448         }
7449
7450         /* check if in_sync */
7451         if (state & DS_INSYNC && ord & IMSM_ORD_REBUILD && is_rebuilding(dev)) {
7452                 struct imsm_map *migr_map = get_imsm_map(dev, MAP_1);
7453
7454                 set_imsm_ord_tbl_ent(migr_map, n, ord_to_idx(ord));
7455                 super->updates_pending++;
7456         }
7457
7458         failed = imsm_count_failed(super, dev, MAP_0);
7459         map_state = imsm_check_degraded(super, dev, failed, MAP_0);
7460
7461         /* check if recovery complete, newly degraded, or failed */
7462         dprintf("imsm: Detected transition to state ");
7463         switch (map_state) {
7464         case IMSM_T_STATE_NORMAL: /* transition to normal state */
7465                 dprintf("normal: ");
7466                 if (is_rebuilding(dev)) {
7467                         dprintf_cont("while rebuilding");
7468                         /* check if recovery is really finished */
7469                         for (mdi = a->info.devs; mdi ; mdi = mdi->next)
7470                                 if (mdi->recovery_start != MaxSector) {
7471                                         recovery_not_finished = 1;
7472                                         break;
7473                                 }
7474                         if (recovery_not_finished) {
7475                                 dprintf_cont("\n");
7476                                 dprintf("Rebuild has not finished yet, state not changed");
7477                                 if (a->last_checkpoint < mdi->recovery_start) {
7478                                         a->last_checkpoint = mdi->recovery_start;
7479                                         super->updates_pending++;
7480                                 }
7481                                 break;
7482                         }
7483                         end_migration(dev, super, map_state);
7484                         map = get_imsm_map(dev, MAP_0);
7485                         map->failed_disk_num = ~0;
7486                         super->updates_pending++;
7487                         a->last_checkpoint = 0;
7488                         break;
7489                 }
7490                 if (is_gen_migration(dev)) {
7491                         dprintf_cont("while general migration");
7492                         if (a->last_checkpoint >= a->info.component_size)
7493                                 end_migration(dev, super, map_state);
7494                         else
7495                                 map->map_state = map_state;
7496                         map = get_imsm_map(dev, MAP_0);
7497                         map->failed_disk_num = ~0;
7498                         super->updates_pending++;
7499                         break;
7500                 }
7501         break;
7502         case IMSM_T_STATE_DEGRADED: /* transition to degraded state */
7503                 dprintf_cont("degraded: ");
7504                 if (map->map_state != map_state && !dev->vol.migr_state) {
7505                         dprintf_cont("mark degraded");
7506                         map->map_state = map_state;
7507                         super->updates_pending++;
7508                         a->last_checkpoint = 0;
7509                         break;
7510                 }
7511                 if (is_rebuilding(dev)) {
7512                         dprintf_cont("while rebuilding.");
7513                         if (map->map_state != map_state)  {
7514                                 dprintf_cont(" Map state change");
7515                                 end_migration(dev, super, map_state);
7516                                 super->updates_pending++;
7517                         }
7518                         break;
7519                 }
7520                 if (is_gen_migration(dev)) {
7521                         dprintf_cont("while general migration");
7522                         if (a->last_checkpoint >= a->info.component_size)
7523                                 end_migration(dev, super, map_state);
7524                         else {
7525                                 map->map_state = map_state;
7526                                 manage_second_map(super, dev);
7527                         }
7528                         super->updates_pending++;
7529                         break;
7530                 }
7531                 if (is_initializing(dev)) {
7532                         dprintf_cont("while initialization.");
7533                         map->map_state = map_state;
7534                         super->updates_pending++;
7535                         break;
7536                 }
7537         break;
7538         case IMSM_T_STATE_FAILED: /* transition to failed state */
7539                 dprintf_cont("failed: ");
7540                 if (is_gen_migration(dev)) {
7541                         dprintf_cont("while general migration");
7542                         map->map_state = map_state;
7543                         super->updates_pending++;
7544                         break;
7545                 }
7546                 if (map->map_state != map_state) {
7547                         dprintf_cont("mark failed");
7548                         end_migration(dev, super, map_state);
7549                         super->updates_pending++;
7550                         a->last_checkpoint = 0;
7551                         break;
7552                 }
7553         break;
7554         default:
7555                 dprintf_cont("state %i\n", map_state);
7556         }
7557         dprintf_cont("\n");
7558 }
7559
7560 static int store_imsm_mpb(int fd, struct imsm_super *mpb)
7561 {
7562         void *buf = mpb;
7563         __u32 mpb_size = __le32_to_cpu(mpb->mpb_size);
7564         unsigned long long dsize;
7565         unsigned long long sectors;
7566
7567         get_dev_size(fd, NULL, &dsize);
7568
7569         if (mpb_size > 512) {
7570                 /* -1 to account for anchor */
7571                 sectors = mpb_sectors(mpb) - 1;
7572
7573                 /* write the extended mpb to the sectors preceeding the anchor */
7574                 if (lseek64(fd, dsize - (512 * (2 + sectors)), SEEK_SET) < 0)
7575                         return 1;
7576
7577                 if ((unsigned long long)write(fd, buf + 512, 512 * sectors)
7578                     != 512 * sectors)
7579                         return 1;
7580         }
7581
7582         /* first block is stored on second to last sector of the disk */
7583         if (lseek64(fd, dsize - (512 * 2), SEEK_SET) < 0)
7584                 return 1;
7585
7586         if (write(fd, buf, 512) != 512)
7587                 return 1;
7588
7589         return 0;
7590 }
7591
7592 static void imsm_sync_metadata(struct supertype *container)
7593 {
7594         struct intel_super *super = container->sb;
7595
7596         dprintf("sync metadata: %d\n", super->updates_pending);
7597         if (!super->updates_pending)
7598                 return;
7599
7600         write_super_imsm(container, 0);
7601
7602         super->updates_pending = 0;
7603 }
7604
7605 static struct dl *imsm_readd(struct intel_super *super, int idx, struct active_array *a)
7606 {
7607         struct imsm_dev *dev = get_imsm_dev(super, a->info.container_member);
7608         int i = get_imsm_disk_idx(dev, idx, MAP_X);
7609         struct dl *dl;
7610
7611         for (dl = super->disks; dl; dl = dl->next)
7612                 if (dl->index == i)
7613                         break;
7614
7615         if (dl && is_failed(&dl->disk))
7616                 dl = NULL;
7617
7618         if (dl)
7619                 dprintf("found %x:%x\n", dl->major, dl->minor);
7620
7621         return dl;
7622 }
7623
7624 static struct dl *imsm_add_spare(struct intel_super *super, int slot,
7625                                  struct active_array *a, int activate_new,
7626                                  struct mdinfo *additional_test_list)
7627 {
7628         struct imsm_dev *dev = get_imsm_dev(super, a->info.container_member);
7629         int idx = get_imsm_disk_idx(dev, slot, MAP_X);
7630         struct imsm_super *mpb = super->anchor;
7631         struct imsm_map *map;
7632         unsigned long long pos;
7633         struct mdinfo *d;
7634         struct extent *ex;
7635         int i, j;
7636         int found;
7637         __u32 array_start = 0;
7638         __u32 array_end = 0;
7639         struct dl *dl;
7640         struct mdinfo *test_list;
7641
7642         for (dl = super->disks; dl; dl = dl->next) {
7643                 /* If in this array, skip */
7644                 for (d = a->info.devs ; d ; d = d->next)
7645                         if (d->state_fd >= 0 &&
7646                             d->disk.major == dl->major &&
7647                             d->disk.minor == dl->minor) {
7648                                 dprintf("%x:%x already in array\n",
7649                                         dl->major, dl->minor);
7650                                 break;
7651                         }
7652                 if (d)
7653                         continue;
7654                 test_list = additional_test_list;
7655                 while (test_list) {
7656                         if (test_list->disk.major == dl->major &&
7657                             test_list->disk.minor == dl->minor) {
7658                                 dprintf("%x:%x already in additional test list\n",
7659                                         dl->major, dl->minor);
7660                                 break;
7661                         }
7662                         test_list = test_list->next;
7663                 }
7664                 if (test_list)
7665                         continue;
7666
7667                 /* skip in use or failed drives */
7668                 if (is_failed(&dl->disk) || idx == dl->index ||
7669                     dl->index == -2) {
7670                         dprintf("%x:%x status (failed: %d index: %d)\n",
7671                                 dl->major, dl->minor, is_failed(&dl->disk), idx);
7672                         continue;
7673                 }
7674
7675                 /* skip pure spares when we are looking for partially
7676                  * assimilated drives
7677                  */
7678                 if (dl->index == -1 && !activate_new)
7679                         continue;
7680
7681                 /* Does this unused device have the requisite free space?
7682                  * It needs to be able to cover all member volumes
7683                  */
7684                 ex = get_extents(super, dl);
7685                 if (!ex) {
7686                         dprintf("cannot get extents\n");
7687                         continue;
7688                 }
7689                 for (i = 0; i < mpb->num_raid_devs; i++) {
7690                         dev = get_imsm_dev(super, i);
7691                         map = get_imsm_map(dev, MAP_0);
7692
7693                         /* check if this disk is already a member of
7694                          * this array
7695                          */
7696                         if (get_imsm_disk_slot(map, dl->index) >= 0)
7697                                 continue;
7698
7699                         found = 0;
7700                         j = 0;
7701                         pos = 0;
7702                         array_start = pba_of_lba0(map);
7703                         array_end = array_start +
7704                                     blocks_per_member(map) - 1;
7705
7706                         do {
7707                                 /* check that we can start at pba_of_lba0 with
7708                                  * blocks_per_member of space
7709                                  */
7710                                 if (array_start >= pos && array_end < ex[j].start) {
7711                                         found = 1;
7712                                         break;
7713                                 }
7714                                 pos = ex[j].start + ex[j].size;
7715                                 j++;
7716                         } while (ex[j-1].size);
7717
7718                         if (!found)
7719                                 break;
7720                 }
7721
7722                 free(ex);
7723                 if (i < mpb->num_raid_devs) {
7724                         dprintf("%x:%x does not have %u to %u available\n",
7725                                 dl->major, dl->minor, array_start, array_end);
7726                         /* No room */
7727                         continue;
7728                 }
7729                 return dl;
7730         }
7731
7732         return dl;
7733 }
7734
7735 static int imsm_rebuild_allowed(struct supertype *cont, int dev_idx, int failed)
7736 {
7737         struct imsm_dev *dev2;
7738         struct imsm_map *map;
7739         struct dl *idisk;
7740         int slot;
7741         int idx;
7742         __u8 state;
7743
7744         dev2 = get_imsm_dev(cont->sb, dev_idx);
7745         if (dev2) {
7746                 state = imsm_check_degraded(cont->sb, dev2, failed, MAP_0);
7747                 if (state == IMSM_T_STATE_FAILED) {
7748                         map = get_imsm_map(dev2, MAP_0);
7749                         if (!map)
7750                                 return 1;
7751                         for (slot = 0; slot < map->num_members; slot++) {
7752                                 /*
7753                                  * Check if failed disks are deleted from intel
7754                                  * disk list or are marked to be deleted
7755                                  */
7756                                 idx = get_imsm_disk_idx(dev2, slot, MAP_X);
7757                                 idisk = get_imsm_dl_disk(cont->sb, idx);
7758                                 /*
7759                                  * Do not rebuild the array if failed disks
7760                                  * from failed sub-array are not removed from
7761                                  * container.
7762                                  */
7763                                 if (idisk &&
7764                                     is_failed(&idisk->disk) &&
7765                                     (idisk->action != DISK_REMOVE))
7766                                         return 0;
7767                         }
7768                 }
7769         }
7770         return 1;
7771 }
7772
7773 static struct mdinfo *imsm_activate_spare(struct active_array *a,
7774                                           struct metadata_update **updates)
7775 {
7776         /**
7777          * Find a device with unused free space and use it to replace a
7778          * failed/vacant region in an array.  We replace failed regions one a
7779          * array at a time.  The result is that a new spare disk will be added
7780          * to the first failed array and after the monitor has finished
7781          * propagating failures the remainder will be consumed.
7782          *
7783          * FIXME add a capability for mdmon to request spares from another
7784          * container.
7785          */
7786
7787         struct intel_super *super = a->container->sb;
7788         int inst = a->info.container_member;
7789         struct imsm_dev *dev = get_imsm_dev(super, inst);
7790         struct imsm_map *map = get_imsm_map(dev, MAP_0);
7791         int failed = a->info.array.raid_disks;
7792         struct mdinfo *rv = NULL;
7793         struct mdinfo *d;
7794         struct mdinfo *di;
7795         struct metadata_update *mu;
7796         struct dl *dl;
7797         struct imsm_update_activate_spare *u;
7798         int num_spares = 0;
7799         int i;
7800         int allowed;
7801
7802         for (d = a->info.devs ; d ; d = d->next) {
7803                 if ((d->curr_state & DS_FAULTY) &&
7804                         d->state_fd >= 0)
7805                         /* wait for Removal to happen */
7806                         return NULL;
7807                 if (d->state_fd >= 0)
7808                         failed--;
7809         }
7810
7811         dprintf("imsm: activate spare: inst=%d failed=%d (%d) level=%d\n",
7812                 inst, failed, a->info.array.raid_disks, a->info.array.level);
7813
7814         if (imsm_reshape_blocks_arrays_changes(super))
7815                         return NULL;
7816
7817         /* Cannot activate another spare if rebuild is in progress already
7818          */
7819         if (is_rebuilding(dev)) {
7820                 dprintf("imsm: No spare activation allowed. Rebuild in progress already.\n");
7821                 return NULL;
7822         }
7823
7824         if (a->info.array.level == 4)
7825                 /* No repair for takeovered array
7826                  * imsm doesn't support raid4
7827                  */
7828                 return NULL;
7829
7830         if (imsm_check_degraded(super, dev, failed, MAP_0) !=
7831                         IMSM_T_STATE_DEGRADED)
7832                 return NULL;
7833
7834         if (get_imsm_map(dev, MAP_0)->map_state == IMSM_T_STATE_UNINITIALIZED) {
7835                 dprintf("imsm: No spare activation allowed. Volume is not initialized.\n");
7836                 return NULL;
7837         }
7838
7839         /*
7840          * If there are any failed disks check state of the other volume.
7841          * Block rebuild if the another one is failed until failed disks
7842          * are removed from container.
7843          */
7844         if (failed) {
7845                 dprintf("found failed disks in %.*s, check if there anotherfailed sub-array.\n",
7846                         MAX_RAID_SERIAL_LEN, dev->volume);
7847                 /* check if states of the other volumes allow for rebuild */
7848                 for (i = 0; i <  super->anchor->num_raid_devs; i++) {
7849                         if (i != inst) {
7850                                 allowed = imsm_rebuild_allowed(a->container,
7851                                                                i, failed);
7852                                 if (!allowed)
7853                                         return NULL;
7854                         }
7855                 }
7856         }
7857
7858         /* For each slot, if it is not working, find a spare */
7859         for (i = 0; i < a->info.array.raid_disks; i++) {
7860                 for (d = a->info.devs ; d ; d = d->next)
7861                         if (d->disk.raid_disk == i)
7862                                 break;
7863                 dprintf("found %d: %p %x\n", i, d, d?d->curr_state:0);
7864                 if (d && (d->state_fd >= 0))
7865                         continue;
7866
7867                 /*
7868                  * OK, this device needs recovery.  Try to re-add the
7869                  * previous occupant of this slot, if this fails see if
7870                  * we can continue the assimilation of a spare that was
7871                  * partially assimilated, finally try to activate a new
7872                  * spare.
7873                  */
7874                 dl = imsm_readd(super, i, a);
7875                 if (!dl)
7876                         dl = imsm_add_spare(super, i, a, 0, rv);
7877                 if (!dl)
7878                         dl = imsm_add_spare(super, i, a, 1, rv);
7879                 if (!dl)
7880                         continue;
7881
7882                 /* found a usable disk with enough space */
7883                 di = xcalloc(1, sizeof(*di));
7884
7885                 /* dl->index will be -1 in the case we are activating a
7886                  * pristine spare.  imsm_process_update() will create a
7887                  * new index in this case.  Once a disk is found to be
7888                  * failed in all member arrays it is kicked from the
7889                  * metadata
7890                  */
7891                 di->disk.number = dl->index;
7892
7893                 /* (ab)use di->devs to store a pointer to the device
7894                  * we chose
7895                  */
7896                 di->devs = (struct mdinfo *) dl;
7897
7898                 di->disk.raid_disk = i;
7899                 di->disk.major = dl->major;
7900                 di->disk.minor = dl->minor;
7901                 di->disk.state = 0;
7902                 di->recovery_start = 0;
7903                 di->data_offset = pba_of_lba0(map);
7904                 di->component_size = a->info.component_size;
7905                 di->container_member = inst;
7906                 super->random = random32();
7907                 di->next = rv;
7908                 rv = di;
7909                 num_spares++;
7910                 dprintf("%x:%x to be %d at %llu\n", dl->major, dl->minor,
7911                         i, di->data_offset);
7912         }
7913
7914         if (!rv)
7915                 /* No spares found */
7916                 return rv;
7917         /* Now 'rv' has a list of devices to return.
7918          * Create a metadata_update record to update the
7919          * disk_ord_tbl for the array
7920          */
7921         mu = xmalloc(sizeof(*mu));
7922         mu->buf = xcalloc(num_spares,
7923                           sizeof(struct imsm_update_activate_spare));
7924         mu->space = NULL;
7925         mu->space_list = NULL;
7926         mu->len = sizeof(struct imsm_update_activate_spare) * num_spares;
7927         mu->next = *updates;
7928         u = (struct imsm_update_activate_spare *) mu->buf;
7929
7930         for (di = rv ; di ; di = di->next) {
7931                 u->type = update_activate_spare;
7932                 u->dl = (struct dl *) di->devs;
7933                 di->devs = NULL;
7934                 u->slot = di->disk.raid_disk;
7935                 u->array = inst;
7936                 u->next = u + 1;
7937                 u++;
7938         }
7939         (u-1)->next = NULL;
7940         *updates = mu;
7941
7942         return rv;
7943 }
7944
7945 static int disks_overlap(struct intel_super *super, int idx, struct imsm_update_create_array *u)
7946 {
7947         struct imsm_dev *dev = get_imsm_dev(super, idx);
7948         struct imsm_map *map = get_imsm_map(dev, MAP_0);
7949         struct imsm_map *new_map = get_imsm_map(&u->dev, MAP_0);
7950         struct disk_info *inf = get_disk_info(u);
7951         struct imsm_disk *disk;
7952         int i;
7953         int j;
7954
7955         for (i = 0; i < map->num_members; i++) {
7956                 disk = get_imsm_disk(super, get_imsm_disk_idx(dev, i, MAP_X));
7957                 for (j = 0; j < new_map->num_members; j++)
7958                         if (serialcmp(disk->serial, inf[j].serial) == 0)
7959                                 return 1;
7960         }
7961
7962         return 0;
7963 }
7964
7965 static struct dl *get_disk_super(struct intel_super *super, int major, int minor)
7966 {
7967         struct dl *dl;
7968
7969         for (dl = super->disks; dl; dl = dl->next)
7970                 if (dl->major == major &&  dl->minor == minor)
7971                         return dl;
7972         return NULL;
7973 }
7974
7975 static int remove_disk_super(struct intel_super *super, int major, int minor)
7976 {
7977         struct dl *prev;
7978         struct dl *dl;
7979
7980         prev = NULL;
7981         for (dl = super->disks; dl; dl = dl->next) {
7982                 if (dl->major == major && dl->minor == minor) {
7983                         /* remove */
7984                         if (prev)
7985                                 prev->next = dl->next;
7986                         else
7987                                 super->disks = dl->next;
7988                         dl->next = NULL;
7989                         __free_imsm_disk(dl);
7990                         dprintf("removed %x:%x\n", major, minor);
7991                         break;
7992                 }
7993                 prev = dl;
7994         }
7995         return 0;
7996 }
7997
7998 static void imsm_delete(struct intel_super *super, struct dl **dlp, unsigned index);
7999
8000 static int add_remove_disk_update(struct intel_super *super)
8001 {
8002         int check_degraded = 0;
8003         struct dl *disk;
8004
8005         /* add/remove some spares to/from the metadata/contrainer */
8006         while (super->disk_mgmt_list) {
8007                 struct dl *disk_cfg;
8008
8009                 disk_cfg = super->disk_mgmt_list;
8010                 super->disk_mgmt_list = disk_cfg->next;
8011                 disk_cfg->next = NULL;
8012
8013                 if (disk_cfg->action == DISK_ADD) {
8014                         disk_cfg->next = super->disks;
8015                         super->disks = disk_cfg;
8016                         check_degraded = 1;
8017                         dprintf("added %x:%x\n",
8018                                 disk_cfg->major, disk_cfg->minor);
8019                 } else if (disk_cfg->action == DISK_REMOVE) {
8020                         dprintf("Disk remove action processed: %x.%x\n",
8021                                 disk_cfg->major, disk_cfg->minor);
8022                         disk = get_disk_super(super,
8023                                               disk_cfg->major,
8024                                               disk_cfg->minor);
8025                         if (disk) {
8026                                 /* store action status */
8027                                 disk->action = DISK_REMOVE;
8028                                 /* remove spare disks only */
8029                                 if (disk->index == -1) {
8030                                         remove_disk_super(super,
8031                                                           disk_cfg->major,
8032                                                           disk_cfg->minor);
8033                                 }
8034                         }
8035                         /* release allocate disk structure */
8036                         __free_imsm_disk(disk_cfg);
8037                 }
8038         }
8039         return check_degraded;
8040 }
8041
8042 static int apply_reshape_migration_update(struct imsm_update_reshape_migration *u,
8043                                                 struct intel_super *super,
8044                                                 void ***space_list)
8045 {
8046         struct intel_dev *id;
8047         void **tofree = NULL;
8048         int ret_val = 0;
8049
8050         dprintf("(enter)\n");
8051         if (u->subdev < 0 || u->subdev > 1) {
8052                 dprintf("imsm: Error: Wrong subdev: %i\n", u->subdev);
8053                 return ret_val;
8054         }
8055         if (space_list == NULL || *space_list == NULL) {
8056                 dprintf("imsm: Error: Memory is not allocated\n");
8057                 return ret_val;
8058         }
8059
8060         for (id = super->devlist ; id; id = id->next) {
8061                 if (id->index == (unsigned)u->subdev) {
8062                         struct imsm_dev *dev = get_imsm_dev(super, u->subdev);
8063                         struct imsm_map *map;
8064                         struct imsm_dev *new_dev =
8065                                 (struct imsm_dev *)*space_list;
8066                         struct imsm_map *migr_map = get_imsm_map(dev, MAP_1);
8067                         int to_state;
8068                         struct dl *new_disk;
8069
8070                         if (new_dev == NULL)
8071                                 return ret_val;
8072                         *space_list = **space_list;
8073                         memcpy(new_dev, dev, sizeof_imsm_dev(dev, 0));
8074                         map = get_imsm_map(new_dev, MAP_0);
8075                         if (migr_map) {
8076                                 dprintf("imsm: Error: migration in progress");
8077                                 return ret_val;
8078                         }
8079
8080                         to_state = map->map_state;
8081                         if ((u->new_level == 5) && (map->raid_level == 0)) {
8082                                 map->num_members++;
8083                                 /* this should not happen */
8084                                 if (u->new_disks[0] < 0) {
8085                                         map->failed_disk_num =
8086                                                 map->num_members - 1;
8087                                         to_state = IMSM_T_STATE_DEGRADED;
8088                                 } else
8089                                         to_state = IMSM_T_STATE_NORMAL;
8090                         }
8091                         migrate(new_dev, super, to_state, MIGR_GEN_MIGR);
8092                         if (u->new_level > -1)
8093                                 map->raid_level = u->new_level;
8094                         migr_map = get_imsm_map(new_dev, MAP_1);
8095                         if ((u->new_level == 5) &&
8096                             (migr_map->raid_level == 0)) {
8097                                 int ord = map->num_members - 1;
8098                                 migr_map->num_members--;
8099                                 if (u->new_disks[0] < 0)
8100                                         ord |= IMSM_ORD_REBUILD;
8101                                 set_imsm_ord_tbl_ent(map,
8102                                                      map->num_members - 1,
8103                                                      ord);
8104                         }
8105                         id->dev = new_dev;
8106                         tofree = (void **)dev;
8107
8108                         /* update chunk size
8109                          */
8110                         if (u->new_chunksize > 0)
8111                                 map->blocks_per_strip =
8112                                         __cpu_to_le16(u->new_chunksize * 2);
8113
8114                         /* add disk
8115                          */
8116                         if (u->new_level != 5 || migr_map->raid_level != 0 ||
8117                             migr_map->raid_level == map->raid_level)
8118                                 goto skip_disk_add;
8119
8120                         if (u->new_disks[0] >= 0) {
8121                                 /* use passes spare
8122                                  */
8123                                 new_disk = get_disk_super(super,
8124                                                         major(u->new_disks[0]),
8125                                                         minor(u->new_disks[0]));
8126                                 dprintf("imsm: new disk for reshape is: %i:%i (%p, index = %i)\n",
8127                                         major(u->new_disks[0]),
8128                                         minor(u->new_disks[0]),
8129                                         new_disk, new_disk->index);
8130                                 if (new_disk == NULL)
8131                                         goto error_disk_add;
8132
8133                                 new_disk->index = map->num_members - 1;
8134                                 /* slot to fill in autolayout
8135                                  */
8136                                 new_disk->raiddisk = new_disk->index;
8137                                 new_disk->disk.status |= CONFIGURED_DISK;
8138                                 new_disk->disk.status &= ~SPARE_DISK;
8139                         } else
8140                                 goto error_disk_add;
8141
8142 skip_disk_add:
8143                         *tofree = *space_list;
8144                         /* calculate new size
8145                          */
8146                         imsm_set_array_size(new_dev, -1);
8147
8148                         ret_val = 1;
8149                 }
8150         }
8151
8152         if (tofree)
8153                 *space_list = tofree;
8154         return ret_val;
8155
8156 error_disk_add:
8157         dprintf("Error: imsm: Cannot find disk.\n");
8158         return ret_val;
8159 }
8160
8161 static int apply_size_change_update(struct imsm_update_size_change *u,
8162                 struct intel_super *super)
8163 {
8164         struct intel_dev *id;
8165         int ret_val = 0;
8166
8167         dprintf("(enter)\n");
8168         if (u->subdev < 0 || u->subdev > 1) {
8169                 dprintf("imsm: Error: Wrong subdev: %i\n", u->subdev);
8170                 return ret_val;
8171         }
8172
8173         for (id = super->devlist ; id; id = id->next) {
8174                 if (id->index == (unsigned)u->subdev) {
8175                         struct imsm_dev *dev = get_imsm_dev(super, u->subdev);
8176                         struct imsm_map *map = get_imsm_map(dev, MAP_0);
8177                         int used_disks = imsm_num_data_members(dev, MAP_0);
8178                         unsigned long long blocks_per_member;
8179
8180                         /* calculate new size
8181                          */
8182                         blocks_per_member = u->new_size / used_disks;
8183                         dprintf("(size: %llu, blocks per member: %llu)\n",
8184                                 u->new_size, blocks_per_member);
8185                         set_blocks_per_member(map, blocks_per_member);
8186                         imsm_set_array_size(dev, u->new_size);
8187
8188                         ret_val = 1;
8189                         break;
8190                 }
8191         }
8192
8193         return ret_val;
8194 }
8195
8196 static int apply_update_activate_spare(struct imsm_update_activate_spare *u,
8197                                        struct intel_super *super,
8198                                        struct active_array *active_array)
8199 {
8200         struct imsm_super *mpb = super->anchor;
8201         struct imsm_dev *dev = get_imsm_dev(super, u->array);
8202         struct imsm_map *map = get_imsm_map(dev, MAP_0);
8203         struct imsm_map *migr_map;
8204         struct active_array *a;
8205         struct imsm_disk *disk;
8206         __u8 to_state;
8207         struct dl *dl;
8208         unsigned int found;
8209         int failed;
8210         int victim;
8211         int i;
8212         int second_map_created = 0;
8213
8214         for (; u; u = u->next) {
8215                 victim = get_imsm_disk_idx(dev, u->slot, MAP_X);
8216
8217                 if (victim < 0)
8218                         return 0;
8219
8220                 for (dl = super->disks; dl; dl = dl->next)
8221                         if (dl == u->dl)
8222                                 break;
8223
8224                 if (!dl) {
8225                         pr_err("error: imsm_activate_spare passed an unknown disk (index: %d)\n",
8226                                 u->dl->index);
8227                         return 0;
8228                 }
8229
8230                 /* count failures (excluding rebuilds and the victim)
8231                  * to determine map[0] state
8232                  */
8233                 failed = 0;
8234                 for (i = 0; i < map->num_members; i++) {
8235                         if (i == u->slot)
8236                                 continue;
8237                         disk = get_imsm_disk(super,
8238                                              get_imsm_disk_idx(dev, i, MAP_X));
8239                         if (!disk || is_failed(disk))
8240                                 failed++;
8241                 }
8242
8243                 /* adding a pristine spare, assign a new index */
8244                 if (dl->index < 0) {
8245                         dl->index = super->anchor->num_disks;
8246                         super->anchor->num_disks++;
8247                 }
8248                 disk = &dl->disk;
8249                 disk->status |= CONFIGURED_DISK;
8250                 disk->status &= ~SPARE_DISK;
8251
8252                 /* mark rebuild */
8253                 to_state = imsm_check_degraded(super, dev, failed, MAP_0);
8254                 if (!second_map_created) {
8255                         second_map_created = 1;
8256                         map->map_state = IMSM_T_STATE_DEGRADED;
8257                         migrate(dev, super, to_state, MIGR_REBUILD);
8258                 } else
8259                         map->map_state = to_state;
8260                 migr_map = get_imsm_map(dev, MAP_1);
8261                 set_imsm_ord_tbl_ent(map, u->slot, dl->index);
8262                 set_imsm_ord_tbl_ent(migr_map, u->slot,
8263                                      dl->index | IMSM_ORD_REBUILD);
8264
8265                 /* update the family_num to mark a new container
8266                  * generation, being careful to record the existing
8267                  * family_num in orig_family_num to clean up after
8268                  * earlier mdadm versions that neglected to set it.
8269                  */
8270                 if (mpb->orig_family_num == 0)
8271                         mpb->orig_family_num = mpb->family_num;
8272                 mpb->family_num += super->random;
8273
8274                 /* count arrays using the victim in the metadata */
8275                 found = 0;
8276                 for (a = active_array; a ; a = a->next) {
8277                         dev = get_imsm_dev(super, a->info.container_member);
8278                         map = get_imsm_map(dev, MAP_0);
8279
8280                         if (get_imsm_disk_slot(map, victim) >= 0)
8281                                 found++;
8282                 }
8283
8284                 /* delete the victim if it is no longer being
8285                  * utilized anywhere
8286                  */
8287                 if (!found) {
8288                         struct dl **dlp;
8289
8290                         /* We know that 'manager' isn't touching anything,
8291                          * so it is safe to delete
8292                          */
8293                         for (dlp = &super->disks; *dlp; dlp = &(*dlp)->next)
8294                                 if ((*dlp)->index == victim)
8295                                         break;
8296
8297                         /* victim may be on the missing list */
8298                         if (!*dlp)
8299                                 for (dlp = &super->missing; *dlp;
8300                                      dlp = &(*dlp)->next)
8301                                         if ((*dlp)->index == victim)
8302                                                 break;
8303                         imsm_delete(super, dlp, victim);
8304                 }
8305         }
8306
8307         return 1;
8308 }
8309
8310 static int apply_reshape_container_disks_update(struct imsm_update_reshape *u,
8311                                                 struct intel_super *super,
8312                                                 void ***space_list)
8313 {
8314         struct dl *new_disk;
8315         struct intel_dev *id;
8316         int i;
8317         int delta_disks = u->new_raid_disks - u->old_raid_disks;
8318         int disk_count = u->old_raid_disks;
8319         void **tofree = NULL;
8320         int devices_to_reshape = 1;
8321         struct imsm_super *mpb = super->anchor;
8322         int ret_val = 0;
8323         unsigned int dev_id;
8324
8325         dprintf("(enter)\n");
8326
8327         /* enable spares to use in array */
8328         for (i = 0; i < delta_disks; i++) {
8329                 new_disk = get_disk_super(super,
8330                                           major(u->new_disks[i]),
8331                                           minor(u->new_disks[i]));
8332                 dprintf("imsm: new disk for reshape is: %i:%i (%p, index = %i)\n",
8333                         major(u->new_disks[i]), minor(u->new_disks[i]),
8334                         new_disk, new_disk->index);
8335                 if (new_disk == NULL ||
8336                     (new_disk->index >= 0 &&
8337                      new_disk->index < u->old_raid_disks))
8338                         goto update_reshape_exit;
8339                 new_disk->index = disk_count++;
8340                 /* slot to fill in autolayout
8341                  */
8342                 new_disk->raiddisk = new_disk->index;
8343                 new_disk->disk.status |=
8344                         CONFIGURED_DISK;
8345                 new_disk->disk.status &= ~SPARE_DISK;
8346         }
8347
8348         dprintf("imsm: volume set mpb->num_raid_devs = %i\n",
8349                 mpb->num_raid_devs);
8350         /* manage changes in volume
8351          */
8352         for (dev_id = 0; dev_id < mpb->num_raid_devs; dev_id++) {
8353                 void **sp = *space_list;
8354                 struct imsm_dev *newdev;
8355                 struct imsm_map *newmap, *oldmap;
8356
8357                 for (id = super->devlist ; id; id = id->next) {
8358                         if (id->index == dev_id)
8359                                 break;
8360                 }
8361                 if (id == NULL)
8362                         break;
8363                 if (!sp)
8364                         continue;
8365                 *space_list = *sp;
8366                 newdev = (void*)sp;
8367                 /* Copy the dev, but not (all of) the map */
8368                 memcpy(newdev, id->dev, sizeof(*newdev));
8369                 oldmap = get_imsm_map(id->dev, MAP_0);
8370                 newmap = get_imsm_map(newdev, MAP_0);
8371                 /* Copy the current map */
8372                 memcpy(newmap, oldmap, sizeof_imsm_map(oldmap));
8373                 /* update one device only
8374                  */
8375                 if (devices_to_reshape) {
8376                         dprintf("imsm: modifying subdev: %i\n",
8377                                 id->index);
8378                         devices_to_reshape--;
8379                         newdev->vol.migr_state = 1;
8380                         newdev->vol.curr_migr_unit = 0;
8381                         set_migr_type(newdev, MIGR_GEN_MIGR);
8382                         newmap->num_members = u->new_raid_disks;
8383                         for (i = 0; i < delta_disks; i++) {
8384                                 set_imsm_ord_tbl_ent(newmap,
8385                                                      u->old_raid_disks + i,
8386                                                      u->old_raid_disks + i);
8387                         }
8388                         /* New map is correct, now need to save old map
8389                          */
8390                         newmap = get_imsm_map(newdev, MAP_1);
8391                         memcpy(newmap, oldmap, sizeof_imsm_map(oldmap));
8392
8393                         imsm_set_array_size(newdev, -1);
8394                 }
8395
8396                 sp = (void **)id->dev;
8397                 id->dev = newdev;
8398                 *sp = tofree;
8399                 tofree = sp;
8400
8401                 /* Clear migration record */
8402                 memset(super->migr_rec, 0, sizeof(struct migr_record));
8403         }
8404         if (tofree)
8405                 *space_list = tofree;
8406         ret_val = 1;
8407
8408 update_reshape_exit:
8409
8410         return ret_val;
8411 }
8412
8413 static int apply_takeover_update(struct imsm_update_takeover *u,
8414                                  struct intel_super *super,
8415                                  void ***space_list)
8416 {
8417         struct imsm_dev *dev = NULL;
8418         struct intel_dev *dv;
8419         struct imsm_dev *dev_new;
8420         struct imsm_map *map;
8421         struct dl *dm, *du;
8422         int i;
8423
8424         for (dv = super->devlist; dv; dv = dv->next)
8425                 if (dv->index == (unsigned int)u->subarray) {
8426                         dev = dv->dev;
8427                         break;
8428                 }
8429
8430         if (dev == NULL)
8431                 return 0;
8432
8433         map = get_imsm_map(dev, MAP_0);
8434
8435         if (u->direction == R10_TO_R0) {
8436                 /* Number of failed disks must be half of initial disk number */
8437                 if (imsm_count_failed(super, dev, MAP_0) !=
8438                                 (map->num_members / 2))
8439                         return 0;
8440
8441                 /* iterate through devices to mark removed disks as spare */
8442                 for (dm = super->disks; dm; dm = dm->next) {
8443                         if (dm->disk.status & FAILED_DISK) {
8444                                 int idx = dm->index;
8445                                 /* update indexes on the disk list */
8446 /* FIXME this loop-with-the-loop looks wrong,  I'm not convinced
8447    the index values will end up being correct.... NB */
8448                                 for (du = super->disks; du; du = du->next)
8449                                         if (du->index > idx)
8450                                                 du->index--;
8451                                 /* mark as spare disk */
8452                                 mark_spare(dm);
8453                         }
8454                 }
8455                 /* update map */
8456                 map->num_members = map->num_members / 2;
8457                 map->map_state = IMSM_T_STATE_NORMAL;
8458                 map->num_domains = 1;
8459                 map->raid_level = 0;
8460                 map->failed_disk_num = -1;
8461         }
8462
8463         if (u->direction == R0_TO_R10) {
8464                 void **space;
8465                 /* update slots in current disk list */
8466                 for (dm = super->disks; dm; dm = dm->next) {
8467                         if (dm->index >= 0)
8468                                 dm->index *= 2;
8469                 }
8470                 /* create new *missing* disks */
8471                 for (i = 0; i < map->num_members; i++) {
8472                         space = *space_list;
8473                         if (!space)
8474                                 continue;
8475                         *space_list = *space;
8476                         du = (void *)space;
8477                         memcpy(du, super->disks, sizeof(*du));
8478                         du->fd = -1;
8479                         du->minor = 0;
8480                         du->major = 0;
8481                         du->index = (i * 2) + 1;
8482                         sprintf((char *)du->disk.serial,
8483                                 " MISSING_%d", du->index);
8484                         sprintf((char *)du->serial,
8485                                 "MISSING_%d", du->index);
8486                         du->next = super->missing;
8487                         super->missing = du;
8488                 }
8489                 /* create new dev and map */
8490                 space = *space_list;
8491                 if (!space)
8492                         return 0;
8493                 *space_list = *space;
8494                 dev_new = (void *)space;
8495                 memcpy(dev_new, dev, sizeof(*dev));
8496                 /* update new map */
8497                 map = get_imsm_map(dev_new, MAP_0);
8498                 map->num_members = map->num_members * 2;
8499                 map->map_state = IMSM_T_STATE_DEGRADED;
8500                 map->num_domains = 2;
8501                 map->raid_level = 1;
8502                 /* replace dev<->dev_new */
8503                 dv->dev = dev_new;
8504         }
8505         /* update disk order table */
8506         for (du = super->disks; du; du = du->next)
8507                 if (du->index >= 0)
8508                         set_imsm_ord_tbl_ent(map, du->index, du->index);
8509         for (du = super->missing; du; du = du->next)
8510                 if (du->index >= 0) {
8511                         set_imsm_ord_tbl_ent(map, du->index, du->index);
8512                         mark_missing(dv->dev, &du->disk, du->index);
8513                 }
8514
8515         return 1;
8516 }
8517
8518 static void imsm_process_update(struct supertype *st,
8519                                 struct metadata_update *update)
8520 {
8521         /**
8522          * crack open the metadata_update envelope to find the update record
8523          * update can be one of:
8524          *    update_reshape_container_disks - all the arrays in the container
8525          *      are being reshaped to have more devices.  We need to mark
8526          *      the arrays for general migration and convert selected spares
8527          *      into active devices.
8528          *    update_activate_spare - a spare device has replaced a failed
8529          *      device in an array, update the disk_ord_tbl.  If this disk is
8530          *      present in all member arrays then also clear the SPARE_DISK
8531          *      flag
8532          *    update_create_array
8533          *    update_kill_array
8534          *    update_rename_array
8535          *    update_add_remove_disk
8536          */
8537         struct intel_super *super = st->sb;
8538         struct imsm_super *mpb;
8539         enum imsm_update_type type = *(enum imsm_update_type *) update->buf;
8540
8541         /* update requires a larger buf but the allocation failed */
8542         if (super->next_len && !super->next_buf) {
8543                 super->next_len = 0;
8544                 return;
8545         }
8546
8547         if (super->next_buf) {
8548                 memcpy(super->next_buf, super->buf, super->len);
8549                 free(super->buf);
8550                 super->len = super->next_len;
8551                 super->buf = super->next_buf;
8552
8553                 super->next_len = 0;
8554                 super->next_buf = NULL;
8555         }
8556
8557         mpb = super->anchor;
8558
8559         switch (type) {
8560         case update_general_migration_checkpoint: {
8561                 struct intel_dev *id;
8562                 struct imsm_update_general_migration_checkpoint *u =
8563                                                         (void *)update->buf;
8564
8565                 dprintf("called for update_general_migration_checkpoint\n");
8566
8567                 /* find device under general migration */
8568                 for (id = super->devlist ; id; id = id->next) {
8569                         if (is_gen_migration(id->dev)) {
8570                                 id->dev->vol.curr_migr_unit =
8571                                         __cpu_to_le32(u->curr_migr_unit);
8572                                 super->updates_pending++;
8573                         }
8574                 }
8575                 break;
8576         }
8577         case update_takeover: {
8578                 struct imsm_update_takeover *u = (void *)update->buf;
8579                 if (apply_takeover_update(u, super, &update->space_list)) {
8580                         imsm_update_version_info(super);
8581                         super->updates_pending++;
8582                 }
8583                 break;
8584         }
8585
8586         case update_reshape_container_disks: {
8587                 struct imsm_update_reshape *u = (void *)update->buf;
8588                 if (apply_reshape_container_disks_update(
8589                             u, super, &update->space_list))
8590                         super->updates_pending++;
8591                 break;
8592         }
8593         case update_reshape_migration: {
8594                 struct imsm_update_reshape_migration *u = (void *)update->buf;
8595                 if (apply_reshape_migration_update(
8596                             u, super, &update->space_list))
8597                         super->updates_pending++;
8598                 break;
8599         }
8600         case update_size_change: {
8601                 struct imsm_update_size_change *u = (void *)update->buf;
8602                 if (apply_size_change_update(u, super))
8603                         super->updates_pending++;
8604                 break;
8605         }
8606         case update_activate_spare: {
8607                 struct imsm_update_activate_spare *u = (void *) update->buf;
8608                 if (apply_update_activate_spare(u, super, st->arrays))
8609                         super->updates_pending++;
8610                 break;
8611         }
8612         case update_create_array: {
8613                 /* someone wants to create a new array, we need to be aware of
8614                  * a few races/collisions:
8615                  * 1/ 'Create' called by two separate instances of mdadm
8616                  * 2/ 'Create' versus 'activate_spare': mdadm has chosen
8617                  *     devices that have since been assimilated via
8618                  *     activate_spare.
8619                  * In the event this update can not be carried out mdadm will
8620                  * (FIX ME) notice that its update did not take hold.
8621                  */
8622                 struct imsm_update_create_array *u = (void *) update->buf;
8623                 struct intel_dev *dv;
8624                 struct imsm_dev *dev;
8625                 struct imsm_map *map, *new_map;
8626                 unsigned long long start, end;
8627                 unsigned long long new_start, new_end;
8628                 int i;
8629                 struct disk_info *inf;
8630                 struct dl *dl;
8631
8632                 /* handle racing creates: first come first serve */
8633                 if (u->dev_idx < mpb->num_raid_devs) {
8634                         dprintf("subarray %d already defined\n", u->dev_idx);
8635                         goto create_error;
8636                 }
8637
8638                 /* check update is next in sequence */
8639                 if (u->dev_idx != mpb->num_raid_devs) {
8640                         dprintf("can not create array %d expected index %d\n",
8641                                 u->dev_idx, mpb->num_raid_devs);
8642                         goto create_error;
8643                 }
8644
8645                 new_map = get_imsm_map(&u->dev, MAP_0);
8646                 new_start = pba_of_lba0(new_map);
8647                 new_end = new_start + blocks_per_member(new_map);
8648                 inf = get_disk_info(u);
8649
8650                 /* handle activate_spare versus create race:
8651                  * check to make sure that overlapping arrays do not include
8652                  * overalpping disks
8653                  */
8654                 for (i = 0; i < mpb->num_raid_devs; i++) {
8655                         dev = get_imsm_dev(super, i);
8656                         map = get_imsm_map(dev, MAP_0);
8657                         start = pba_of_lba0(map);
8658                         end = start + blocks_per_member(map);
8659                         if ((new_start >= start && new_start <= end) ||
8660                             (start >= new_start && start <= new_end))
8661                                 /* overlap */;
8662                         else
8663                                 continue;
8664
8665                         if (disks_overlap(super, i, u)) {
8666                                 dprintf("arrays overlap\n");
8667                                 goto create_error;
8668                         }
8669                 }
8670
8671                 /* check that prepare update was successful */
8672                 if (!update->space) {
8673                         dprintf("prepare update failed\n");
8674                         goto create_error;
8675                 }
8676
8677                 /* check that all disks are still active before committing
8678                  * changes.  FIXME: could we instead handle this by creating a
8679                  * degraded array?  That's probably not what the user expects,
8680                  * so better to drop this update on the floor.
8681                  */
8682                 for (i = 0; i < new_map->num_members; i++) {
8683                         dl = serial_to_dl(inf[i].serial, super);
8684                         if (!dl) {
8685                                 dprintf("disk disappeared\n");
8686                                 goto create_error;
8687                         }
8688                 }
8689
8690                 super->updates_pending++;
8691
8692                 /* convert spares to members and fixup ord_tbl */
8693                 for (i = 0; i < new_map->num_members; i++) {
8694                         dl = serial_to_dl(inf[i].serial, super);
8695                         if (dl->index == -1) {
8696                                 dl->index = mpb->num_disks;
8697                                 mpb->num_disks++;
8698                                 dl->disk.status |= CONFIGURED_DISK;
8699                                 dl->disk.status &= ~SPARE_DISK;
8700                         }
8701                         set_imsm_ord_tbl_ent(new_map, i, dl->index);
8702                 }
8703
8704                 dv = update->space;
8705                 dev = dv->dev;
8706                 update->space = NULL;
8707                 imsm_copy_dev(dev, &u->dev);
8708                 dv->index = u->dev_idx;
8709                 dv->next = super->devlist;
8710                 super->devlist = dv;
8711                 mpb->num_raid_devs++;
8712
8713                 imsm_update_version_info(super);
8714                 break;
8715  create_error:
8716                 /* mdmon knows how to release update->space, but not
8717                  * ((struct intel_dev *) update->space)->dev
8718                  */
8719                 if (update->space) {
8720                         dv = update->space;
8721                         free(dv->dev);
8722                 }
8723                 break;
8724         }
8725         case update_kill_array: {
8726                 struct imsm_update_kill_array *u = (void *) update->buf;
8727                 int victim = u->dev_idx;
8728                 struct active_array *a;
8729                 struct intel_dev **dp;
8730                 struct imsm_dev *dev;
8731
8732                 /* sanity check that we are not affecting the uuid of
8733                  * active arrays, or deleting an active array
8734                  *
8735                  * FIXME when immutable ids are available, but note that
8736                  * we'll also need to fixup the invalidated/active
8737                  * subarray indexes in mdstat
8738                  */
8739                 for (a = st->arrays; a; a = a->next)
8740                         if (a->info.container_member >= victim)
8741                                 break;
8742                 /* by definition if mdmon is running at least one array
8743                  * is active in the container, so checking
8744                  * mpb->num_raid_devs is just extra paranoia
8745                  */
8746                 dev = get_imsm_dev(super, victim);
8747                 if (a || !dev || mpb->num_raid_devs == 1) {
8748                         dprintf("failed to delete subarray-%d\n", victim);
8749                         break;
8750                 }
8751
8752                 for (dp = &super->devlist; *dp;)
8753                         if ((*dp)->index == (unsigned)super->current_vol) {
8754                                 *dp = (*dp)->next;
8755                         } else {
8756                                 if ((*dp)->index > (unsigned)victim)
8757                                         (*dp)->index--;
8758                                 dp = &(*dp)->next;
8759                         }
8760                 mpb->num_raid_devs--;
8761                 super->updates_pending++;
8762                 break;
8763         }
8764         case update_rename_array: {
8765                 struct imsm_update_rename_array *u = (void *) update->buf;
8766                 char name[MAX_RAID_SERIAL_LEN+1];
8767                 int target = u->dev_idx;
8768                 struct active_array *a;
8769                 struct imsm_dev *dev;
8770
8771                 /* sanity check that we are not affecting the uuid of
8772                  * an active array
8773                  */
8774                 snprintf(name, MAX_RAID_SERIAL_LEN, "%s", (char *) u->name);
8775                 name[MAX_RAID_SERIAL_LEN] = '\0';
8776                 for (a = st->arrays; a; a = a->next)
8777                         if (a->info.container_member == target)
8778                                 break;
8779                 dev = get_imsm_dev(super, u->dev_idx);
8780                 if (a || !dev || !check_name(super, name, 1)) {
8781                         dprintf("failed to rename subarray-%d\n", target);
8782                         break;
8783                 }
8784
8785                 snprintf((char *) dev->volume, MAX_RAID_SERIAL_LEN, "%s", name);
8786                 super->updates_pending++;
8787                 break;
8788         }
8789         case update_add_remove_disk: {
8790                 /* we may be able to repair some arrays if disks are
8791                  * being added, check the status of add_remove_disk
8792                  * if discs has been added.
8793                  */
8794                 if (add_remove_disk_update(super)) {
8795                         struct active_array *a;
8796
8797                         super->updates_pending++;
8798                         for (a = st->arrays; a; a = a->next)
8799                                 a->check_degraded = 1;
8800                 }
8801                 break;
8802         }
8803         default:
8804                 pr_err("error: unsuported process update type:(type: %d)\n",    type);
8805         }
8806 }
8807
8808 static struct mdinfo *get_spares_for_grow(struct supertype *st);
8809
8810 static int imsm_prepare_update(struct supertype *st,
8811                                struct metadata_update *update)
8812 {
8813         /**
8814          * Allocate space to hold new disk entries, raid-device entries or a new
8815          * mpb if necessary.  The manager synchronously waits for updates to
8816          * complete in the monitor, so new mpb buffers allocated here can be
8817          * integrated by the monitor thread without worrying about live pointers
8818          * in the manager thread.
8819          */
8820         enum imsm_update_type type;
8821         struct intel_super *super = st->sb;
8822         struct imsm_super *mpb = super->anchor;
8823         size_t buf_len;
8824         size_t len = 0;
8825
8826         if (update->len < (int)sizeof(type))
8827                 return 0;
8828
8829         type = *(enum imsm_update_type *) update->buf;
8830
8831         switch (type) {
8832         case update_general_migration_checkpoint:
8833                 if (update->len < (int)sizeof(struct imsm_update_general_migration_checkpoint))
8834                         return 0;
8835                 dprintf("called for update_general_migration_checkpoint\n");
8836                 break;
8837         case update_takeover: {
8838                 struct imsm_update_takeover *u = (void *)update->buf;
8839                 if (update->len < (int)sizeof(*u))
8840                         return 0;
8841                 if (u->direction == R0_TO_R10) {
8842                         void **tail = (void **)&update->space_list;
8843                         struct imsm_dev *dev = get_imsm_dev(super, u->subarray);
8844                         struct imsm_map *map = get_imsm_map(dev, MAP_0);
8845                         int num_members = map->num_members;
8846                         void *space;
8847                         int size, i;
8848                         /* allocate memory for added disks */
8849                         for (i = 0; i < num_members; i++) {
8850                                 size = sizeof(struct dl);
8851                                 space = xmalloc(size);
8852                                 *tail = space;
8853                                 tail = space;
8854                                 *tail = NULL;
8855                         }
8856                         /* allocate memory for new device */
8857                         size = sizeof_imsm_dev(super->devlist->dev, 0) +
8858                                 (num_members * sizeof(__u32));
8859                         space = xmalloc(size);
8860                         *tail = space;
8861                         tail = space;
8862                         *tail = NULL;
8863                         len = disks_to_mpb_size(num_members * 2);
8864                 }
8865
8866                 break;
8867         }
8868         case update_reshape_container_disks: {
8869                 /* Every raid device in the container is about to
8870                  * gain some more devices, and we will enter a
8871                  * reconfiguration.
8872                  * So each 'imsm_map' will be bigger, and the imsm_vol
8873                  * will now hold 2 of them.
8874                  * Thus we need new 'struct imsm_dev' allocations sized
8875                  * as sizeof_imsm_dev but with more devices in both maps.
8876                  */
8877                 struct imsm_update_reshape *u = (void *)update->buf;
8878                 struct intel_dev *dl;
8879                 void **space_tail = (void**)&update->space_list;
8880
8881                 if (update->len < (int)sizeof(*u))
8882                         return 0;
8883
8884                 dprintf("for update_reshape\n");
8885
8886                 for (dl = super->devlist; dl; dl = dl->next) {
8887                         int size = sizeof_imsm_dev(dl->dev, 1);
8888                         void *s;
8889                         if (u->new_raid_disks > u->old_raid_disks)
8890                                 size += sizeof(__u32)*2*
8891                                         (u->new_raid_disks - u->old_raid_disks);
8892                         s = xmalloc(size);
8893                         *space_tail = s;
8894                         space_tail = s;
8895                         *space_tail = NULL;
8896                 }
8897
8898                 len = disks_to_mpb_size(u->new_raid_disks);
8899                 dprintf("New anchor length is %llu\n", (unsigned long long)len);
8900                 break;
8901         }
8902         case update_reshape_migration: {
8903                 /* for migration level 0->5 we need to add disks
8904                  * so the same as for container operation we will copy
8905                  * device to the bigger location.
8906                  * in memory prepared device and new disk area are prepared
8907                  * for usage in process update
8908                  */
8909                 struct imsm_update_reshape_migration *u = (void *)update->buf;
8910                 struct intel_dev *id;
8911                 void **space_tail = (void **)&update->space_list;
8912                 int size;
8913                 void *s;
8914                 int current_level = -1;
8915
8916                 if (update->len < (int)sizeof(*u))
8917                         return 0;
8918
8919                 dprintf("for update_reshape\n");
8920
8921                 /* add space for bigger array in update
8922                  */
8923                 for (id = super->devlist; id; id = id->next) {
8924                         if (id->index == (unsigned)u->subdev) {
8925                                 size = sizeof_imsm_dev(id->dev, 1);
8926                                 if (u->new_raid_disks > u->old_raid_disks)
8927                                         size += sizeof(__u32)*2*
8928                                         (u->new_raid_disks - u->old_raid_disks);
8929                                 s = xmalloc(size);
8930                                 *space_tail = s;
8931                                 space_tail = s;
8932                                 *space_tail = NULL;
8933                                 break;
8934                         }
8935                 }
8936                 if (update->space_list == NULL)
8937                         break;
8938
8939                 /* add space for disk in update
8940                  */
8941                 size = sizeof(struct dl);
8942                 s = xmalloc(size);
8943                 *space_tail = s;
8944                 space_tail = s;
8945                 *space_tail = NULL;
8946
8947                 /* add spare device to update
8948                  */
8949                 for (id = super->devlist ; id; id = id->next)
8950                         if (id->index == (unsigned)u->subdev) {
8951                                 struct imsm_dev *dev;
8952                                 struct imsm_map *map;
8953
8954                                 dev = get_imsm_dev(super, u->subdev);
8955                                 map = get_imsm_map(dev, MAP_0);
8956                                 current_level = map->raid_level;
8957                                 break;
8958                         }
8959                 if (u->new_level == 5 && u->new_level != current_level) {
8960                         struct mdinfo *spares;
8961
8962                         spares = get_spares_for_grow(st);
8963                         if (spares) {
8964                                 struct dl *dl;
8965                                 struct mdinfo *dev;
8966
8967                                 dev = spares->devs;
8968                                 if (dev) {
8969                                         u->new_disks[0] =
8970                                                 makedev(dev->disk.major,
8971                                                         dev->disk.minor);
8972                                         dl = get_disk_super(super,
8973                                                             dev->disk.major,
8974                                                             dev->disk.minor);
8975                                         dl->index = u->old_raid_disks;
8976                                         dev = dev->next;
8977                                 }
8978                                 sysfs_free(spares);
8979                         }
8980                 }
8981                 len = disks_to_mpb_size(u->new_raid_disks);
8982                 dprintf("New anchor length is %llu\n", (unsigned long long)len);
8983                 break;
8984         }
8985         case update_size_change: {
8986                 if (update->len < (int)sizeof(struct imsm_update_size_change))
8987                         return 0;
8988                 break;
8989         }
8990         case update_activate_spare: {
8991                 if (update->len < (int)sizeof(struct imsm_update_activate_spare))
8992                         return 0;
8993                 break;
8994         }
8995         case update_create_array: {
8996                 struct imsm_update_create_array *u = (void *) update->buf;
8997                 struct intel_dev *dv;
8998                 struct imsm_dev *dev = &u->dev;
8999                 struct imsm_map *map = get_imsm_map(dev, MAP_0);
9000                 struct dl *dl;
9001                 struct disk_info *inf;
9002                 int i;
9003                 int activate = 0;
9004
9005                 if (update->len < (int)sizeof(*u))
9006                         return 0;
9007
9008                 inf = get_disk_info(u);
9009                 len = sizeof_imsm_dev(dev, 1);
9010                 /* allocate a new super->devlist entry */
9011                 dv = xmalloc(sizeof(*dv));
9012                 dv->dev = xmalloc(len);
9013                 update->space = dv;
9014
9015                 /* count how many spares will be converted to members */
9016                 for (i = 0; i < map->num_members; i++) {
9017                         dl = serial_to_dl(inf[i].serial, super);
9018                         if (!dl) {
9019                                 /* hmm maybe it failed?, nothing we can do about
9020                                  * it here
9021                                  */
9022                                 continue;
9023                         }
9024                         if (count_memberships(dl, super) == 0)
9025                                 activate++;
9026                 }
9027                 len += activate * sizeof(struct imsm_disk);
9028                 break;
9029         }
9030         case update_kill_array: {
9031                 if (update->len < (int)sizeof(struct imsm_update_kill_array))
9032                         return 0;
9033                 break;
9034         }
9035         case update_rename_array: {
9036                 if (update->len < (int)sizeof(struct imsm_update_rename_array))
9037                         return 0;
9038                 break;
9039         }
9040         case update_add_remove_disk:
9041                 /* no update->len needed */
9042                 break;
9043         default:
9044                 return 0;
9045         }
9046
9047         /* check if we need a larger metadata buffer */
9048         if (super->next_buf)
9049                 buf_len = super->next_len;
9050         else
9051                 buf_len = super->len;
9052
9053         if (__le32_to_cpu(mpb->mpb_size) + len > buf_len) {
9054                 /* ok we need a larger buf than what is currently allocated
9055                  * if this allocation fails process_update will notice that
9056                  * ->next_len is set and ->next_buf is NULL
9057                  */
9058                 buf_len = ROUND_UP(__le32_to_cpu(mpb->mpb_size) + len, 512);
9059                 if (super->next_buf)
9060                         free(super->next_buf);
9061
9062                 super->next_len = buf_len;
9063                 if (posix_memalign(&super->next_buf, 512, buf_len) == 0)
9064                         memset(super->next_buf, 0, buf_len);
9065                 else
9066                         super->next_buf = NULL;
9067         }
9068         return 1;
9069 }
9070
9071 /* must be called while manager is quiesced */
9072 static void imsm_delete(struct intel_super *super, struct dl **dlp, unsigned index)
9073 {
9074         struct imsm_super *mpb = super->anchor;
9075         struct dl *iter;
9076         struct imsm_dev *dev;
9077         struct imsm_map *map;
9078         int i, j, num_members;
9079         __u32 ord;
9080
9081         dprintf("deleting device[%d] from imsm_super\n", index);
9082
9083         /* shift all indexes down one */
9084         for (iter = super->disks; iter; iter = iter->next)
9085                 if (iter->index > (int)index)
9086                         iter->index--;
9087         for (iter = super->missing; iter; iter = iter->next)
9088                 if (iter->index > (int)index)
9089                         iter->index--;
9090
9091         for (i = 0; i < mpb->num_raid_devs; i++) {
9092                 dev = get_imsm_dev(super, i);
9093                 map = get_imsm_map(dev, MAP_0);
9094                 num_members = map->num_members;
9095                 for (j = 0; j < num_members; j++) {
9096                         /* update ord entries being careful not to propagate
9097                          * ord-flags to the first map
9098                          */
9099                         ord = get_imsm_ord_tbl_ent(dev, j, MAP_X);
9100
9101                         if (ord_to_idx(ord) <= index)
9102                                 continue;
9103
9104                         map = get_imsm_map(dev, MAP_0);
9105                         set_imsm_ord_tbl_ent(map, j, ord_to_idx(ord - 1));
9106                         map = get_imsm_map(dev, MAP_1);
9107                         if (map)
9108                                 set_imsm_ord_tbl_ent(map, j, ord - 1);
9109                 }
9110         }
9111
9112         mpb->num_disks--;
9113         super->updates_pending++;
9114         if (*dlp) {
9115                 struct dl *dl = *dlp;
9116
9117                 *dlp = (*dlp)->next;
9118                 __free_imsm_disk(dl);
9119         }
9120 }
9121 #endif /* MDASSEMBLE */
9122
9123 static void close_targets(int *targets, int new_disks)
9124 {
9125         int i;
9126
9127         if (!targets)
9128                 return;
9129
9130         for (i = 0; i < new_disks; i++) {
9131                 if (targets[i] >= 0) {
9132                         close(targets[i]);
9133                         targets[i] = -1;
9134                 }
9135         }
9136 }
9137
9138 static int imsm_get_allowed_degradation(int level, int raid_disks,
9139                                         struct intel_super *super,
9140                                         struct imsm_dev *dev)
9141 {
9142         switch (level) {
9143         case 1:
9144         case 10:{
9145                 int ret_val = 0;
9146                 struct imsm_map *map;
9147                 int i;
9148
9149                 ret_val = raid_disks/2;
9150                 /* check map if all disks pairs not failed
9151                  * in both maps
9152                  */
9153                 map = get_imsm_map(dev, MAP_0);
9154                 for (i = 0; i < ret_val; i++) {
9155                         int degradation = 0;
9156                         if (get_imsm_disk(super, i) == NULL)
9157                                 degradation++;
9158                         if (get_imsm_disk(super, i + 1) == NULL)
9159                                 degradation++;
9160                         if (degradation == 2)
9161                                 return 0;
9162                 }
9163                 map = get_imsm_map(dev, MAP_1);
9164                 /* if there is no second map
9165                  * result can be returned
9166                  */
9167                 if (map == NULL)
9168                         return ret_val;
9169                 /* check degradation in second map
9170                  */
9171                 for (i = 0; i < ret_val; i++) {
9172                         int degradation = 0;
9173                 if (get_imsm_disk(super, i) == NULL)
9174                                 degradation++;
9175                         if (get_imsm_disk(super, i + 1) == NULL)
9176                                 degradation++;
9177                         if (degradation == 2)
9178                                 return 0;
9179                 }
9180                 return ret_val;
9181         }
9182         case 5:
9183                 return 1;
9184         case 6:
9185                 return 2;
9186         default:
9187                 return 0;
9188         }
9189 }
9190
9191 /*******************************************************************************
9192  * Function:    open_backup_targets
9193  * Description: Function opens file descriptors for all devices given in
9194  *              info->devs
9195  * Parameters:
9196  *      info            : general array info
9197  *      raid_disks      : number of disks
9198  *      raid_fds        : table of device's file descriptors
9199  *      super           : intel super for raid10 degradation check
9200  *      dev             : intel device for raid10 degradation check
9201  * Returns:
9202  *       0 : success
9203  *      -1 : fail
9204  ******************************************************************************/
9205 int open_backup_targets(struct mdinfo *info, int raid_disks, int *raid_fds,
9206                         struct intel_super *super, struct imsm_dev *dev)
9207 {
9208         struct mdinfo *sd;
9209         int i;
9210         int opened = 0;
9211
9212         for (i = 0; i < raid_disks; i++)
9213                 raid_fds[i] = -1;
9214
9215         for (sd = info->devs ; sd ; sd = sd->next) {
9216                 char *dn;
9217
9218                 if (sd->disk.state & (1<<MD_DISK_FAULTY)) {
9219                         dprintf("disk is faulty!!\n");
9220                         continue;
9221                 }
9222
9223                 if (sd->disk.raid_disk >= raid_disks || sd->disk.raid_disk < 0)
9224                         continue;
9225
9226                 dn = map_dev(sd->disk.major,
9227                              sd->disk.minor, 1);
9228                 raid_fds[sd->disk.raid_disk] = dev_open(dn, O_RDWR);
9229                 if (raid_fds[sd->disk.raid_disk] < 0) {
9230                         pr_err("cannot open component\n");
9231                         continue;
9232                 }
9233                 opened++;
9234         }
9235         /* check if maximum array degradation level is not exceeded
9236         */
9237         if ((raid_disks - opened) >
9238             imsm_get_allowed_degradation(info->new_level, raid_disks,
9239                                          super, dev)) {
9240                 pr_err("Not enough disks can be opened.\n");
9241                 close_targets(raid_fds, raid_disks);
9242                 return -2;
9243         }
9244         return 0;
9245 }
9246
9247 /*******************************************************************************
9248  * Function:    validate_container_imsm
9249  * Description: This routine validates container after assemble,
9250  *              eg. if devices in container are under the same controller.
9251  *
9252  * Parameters:
9253  *      info    : linked list with info about devices used in array
9254  * Returns:
9255  *      1 : HBA mismatch
9256  *      0 : Success
9257  ******************************************************************************/
9258 int validate_container_imsm(struct mdinfo *info)
9259 {
9260         if (check_env("IMSM_NO_PLATFORM"))
9261                 return 0;
9262
9263         struct sys_dev *idev;
9264         struct sys_dev *hba = NULL;
9265         struct sys_dev *intel_devices = find_intel_devices();
9266         char *dev_path = devt_to_devpath(makedev(info->disk.major,
9267                                                                         info->disk.minor));
9268
9269         for (idev = intel_devices; idev; idev = idev->next) {
9270                 if (dev_path && strstr(dev_path, idev->path)) {
9271                         hba = idev;
9272                         break;
9273                 }
9274         }
9275         if (dev_path)
9276                 free(dev_path);
9277
9278         if (!hba) {
9279                 pr_err("WARNING - Cannot detect HBA for device %s!\n",
9280                                 devid2kname(makedev(info->disk.major, info->disk.minor)));
9281                 return 1;
9282         }
9283
9284         const struct imsm_orom *orom = get_orom_by_device_id(hba->dev_id);
9285         struct mdinfo *dev;
9286
9287         for (dev = info->next; dev; dev = dev->next) {
9288                 dev_path = devt_to_devpath(makedev(dev->disk.major, dev->disk.minor));
9289
9290                 struct sys_dev *hba2 = NULL;
9291                 for (idev = intel_devices; idev; idev = idev->next) {
9292                         if (dev_path && strstr(dev_path, idev->path)) {
9293                                 hba2 = idev;
9294                                 break;
9295                         }
9296                 }
9297                 if (dev_path)
9298                         free(dev_path);
9299
9300                 const struct imsm_orom *orom2 = hba2 == NULL ? NULL :
9301                                 get_orom_by_device_id(hba2->dev_id);
9302
9303                 if (hba2 && hba->type != hba2->type) {
9304                         pr_err("WARNING - HBAs of devices do not match %s != %s\n",
9305                                 get_sys_dev_type(hba->type), get_sys_dev_type(hba2->type));
9306                         return 1;
9307                 }
9308
9309                 if (orom != orom2 ||
9310                     (hba->type == SYS_DEV_VMD && hba != hba2)) {
9311                         pr_err("WARNING - IMSM container assembled with disks under different HBAs!\n"
9312                                 "       This operation is not supported and can lead to data loss.\n");
9313                         return 1;
9314                 }
9315
9316                 if (!orom) {
9317                         pr_err("WARNING - IMSM container assembled with disks under HBAs without IMSM platform support!\n"
9318                                 "       This operation is not supported and can lead to data loss.\n");
9319                         return 1;
9320                 }
9321         }
9322
9323         return 0;
9324 }
9325 #ifndef MDASSEMBLE
9326 /*******************************************************************************
9327  * Function:    init_migr_record_imsm
9328  * Description: Function inits imsm migration record
9329  * Parameters:
9330  *      super   : imsm internal array info
9331  *      dev     : device under migration
9332  *      info    : general array info to find the smallest device
9333  * Returns:
9334  *      none
9335  ******************************************************************************/
9336 void init_migr_record_imsm(struct supertype *st, struct imsm_dev *dev,
9337                            struct mdinfo *info)
9338 {
9339         struct intel_super *super = st->sb;
9340         struct migr_record *migr_rec = super->migr_rec;
9341         int new_data_disks;
9342         unsigned long long dsize, dev_sectors;
9343         long long unsigned min_dev_sectors = -1LLU;
9344         struct mdinfo *sd;
9345         char nm[30];
9346         int fd;
9347         struct imsm_map *map_dest = get_imsm_map(dev, MAP_0);
9348         struct imsm_map *map_src = get_imsm_map(dev, MAP_1);
9349         unsigned long long num_migr_units;
9350         unsigned long long array_blocks;
9351
9352         memset(migr_rec, 0, sizeof(struct migr_record));
9353         migr_rec->family_num = __cpu_to_le32(super->anchor->family_num);
9354
9355         /* only ascending reshape supported now */
9356         migr_rec->ascending_migr = __cpu_to_le32(1);
9357
9358         migr_rec->dest_depth_per_unit = GEN_MIGR_AREA_SIZE /
9359                 max(map_dest->blocks_per_strip, map_src->blocks_per_strip);
9360         migr_rec->dest_depth_per_unit *=
9361                 max(map_dest->blocks_per_strip, map_src->blocks_per_strip);
9362         new_data_disks = imsm_num_data_members(dev, MAP_0);
9363         migr_rec->blocks_per_unit =
9364                 __cpu_to_le32(migr_rec->dest_depth_per_unit * new_data_disks);
9365         migr_rec->dest_depth_per_unit =
9366                 __cpu_to_le32(migr_rec->dest_depth_per_unit);
9367         array_blocks = info->component_size * new_data_disks;
9368         num_migr_units =
9369                 array_blocks / __le32_to_cpu(migr_rec->blocks_per_unit);
9370
9371         if (array_blocks % __le32_to_cpu(migr_rec->blocks_per_unit))
9372                 num_migr_units++;
9373         migr_rec->num_migr_units = __cpu_to_le32(num_migr_units);
9374
9375         migr_rec->post_migr_vol_cap =  dev->size_low;
9376         migr_rec->post_migr_vol_cap_hi = dev->size_high;
9377
9378         /* Find the smallest dev */
9379         for (sd = info->devs ; sd ; sd = sd->next) {
9380                 sprintf(nm, "%d:%d", sd->disk.major, sd->disk.minor);
9381                 fd = dev_open(nm, O_RDONLY);
9382                 if (fd < 0)
9383                         continue;
9384                 get_dev_size(fd, NULL, &dsize);
9385                 dev_sectors = dsize / 512;
9386                 if (dev_sectors < min_dev_sectors)
9387                         min_dev_sectors = dev_sectors;
9388                 close(fd);
9389         }
9390         migr_rec->ckpt_area_pba = __cpu_to_le32(min_dev_sectors -
9391                                         RAID_DISK_RESERVED_BLOCKS_IMSM_HI);
9392
9393         write_imsm_migr_rec(st);
9394
9395         return;
9396 }
9397
9398 /*******************************************************************************
9399  * Function:    save_backup_imsm
9400  * Description: Function saves critical data stripes to Migration Copy Area
9401  *              and updates the current migration unit status.
9402  *              Use restore_stripes() to form a destination stripe,
9403  *              and to write it to the Copy Area.
9404  * Parameters:
9405  *      st              : supertype information
9406  *      dev             : imsm device that backup is saved for
9407  *      info            : general array info
9408  *      buf             : input buffer
9409  *      length          : length of data to backup (blocks_per_unit)
9410  * Returns:
9411  *       0 : success
9412  *,     -1 : fail
9413  ******************************************************************************/
9414 int save_backup_imsm(struct supertype *st,
9415                      struct imsm_dev *dev,
9416                      struct mdinfo *info,
9417                      void *buf,
9418                      int length)
9419 {
9420         int rv = -1;
9421         struct intel_super *super = st->sb;
9422         unsigned long long *target_offsets;
9423         int *targets;
9424         int i;
9425         struct imsm_map *map_dest = get_imsm_map(dev, MAP_0);
9426         int new_disks = map_dest->num_members;
9427         int dest_layout = 0;
9428         int dest_chunk;
9429         unsigned long long start;
9430         int data_disks = imsm_num_data_members(dev, MAP_0);
9431
9432         targets = xmalloc(new_disks * sizeof(int));
9433
9434         for (i = 0; i < new_disks; i++)
9435                 targets[i] = -1;
9436
9437         target_offsets = xcalloc(new_disks, sizeof(unsigned long long));
9438
9439         start = info->reshape_progress * 512;
9440         for (i = 0; i < new_disks; i++) {
9441                 target_offsets[i] = (unsigned long long)
9442                   __le32_to_cpu(super->migr_rec->ckpt_area_pba) * 512;
9443                 /* move back copy area adderss, it will be moved forward
9444                  * in restore_stripes() using start input variable
9445                  */
9446                 target_offsets[i] -= start/data_disks;
9447         }
9448
9449         if (open_backup_targets(info, new_disks, targets,
9450                                 super, dev))
9451                 goto abort;
9452
9453         dest_layout = imsm_level_to_layout(map_dest->raid_level);
9454         dest_chunk = __le16_to_cpu(map_dest->blocks_per_strip) * 512;
9455
9456         if (restore_stripes(targets, /* list of dest devices */
9457                             target_offsets, /* migration record offsets */
9458                             new_disks,
9459                             dest_chunk,
9460                             map_dest->raid_level,
9461                             dest_layout,
9462                             -1,    /* source backup file descriptor */
9463                             0,     /* input buf offset
9464                                     * always 0 buf is already offseted */
9465                             start,
9466                             length,
9467                             buf) != 0) {
9468                 pr_err("Error restoring stripes\n");
9469                 goto abort;
9470         }
9471
9472         rv = 0;
9473
9474 abort:
9475         if (targets) {
9476                 close_targets(targets, new_disks);
9477                 free(targets);
9478         }
9479         free(target_offsets);
9480
9481         return rv;
9482 }
9483
9484 /*******************************************************************************
9485  * Function:    save_checkpoint_imsm
9486  * Description: Function called for current unit status update
9487  *              in the migration record. It writes it to disk.
9488  * Parameters:
9489  *      super   : imsm internal array info
9490  *      info    : general array info
9491  * Returns:
9492  *      0: success
9493  *      1: failure
9494  *      2: failure, means no valid migration record
9495  *                 / no general migration in progress /
9496  ******************************************************************************/
9497 int save_checkpoint_imsm(struct supertype *st, struct mdinfo *info, int state)
9498 {
9499         struct intel_super *super = st->sb;
9500         unsigned long long blocks_per_unit;
9501         unsigned long long curr_migr_unit;
9502
9503         if (load_imsm_migr_rec(super, info) != 0) {
9504                 dprintf("imsm: ERROR: Cannot read migration record for checkpoint save.\n");
9505                 return 1;
9506         }
9507
9508         blocks_per_unit = __le32_to_cpu(super->migr_rec->blocks_per_unit);
9509         if (blocks_per_unit == 0) {
9510                 dprintf("imsm: no migration in progress.\n");
9511                 return 2;
9512         }
9513         curr_migr_unit = info->reshape_progress / blocks_per_unit;
9514         /* check if array is alligned to copy area
9515          * if it is not alligned, add one to current migration unit value
9516          * this can happend on array reshape finish only
9517          */
9518         if (info->reshape_progress % blocks_per_unit)
9519                 curr_migr_unit++;
9520
9521         super->migr_rec->curr_migr_unit =
9522                 __cpu_to_le32(curr_migr_unit);
9523         super->migr_rec->rec_status = __cpu_to_le32(state);
9524         super->migr_rec->dest_1st_member_lba =
9525                 __cpu_to_le32(curr_migr_unit *
9526                               __le32_to_cpu(super->migr_rec->dest_depth_per_unit));
9527         if (write_imsm_migr_rec(st) < 0) {
9528                 dprintf("imsm: Cannot write migration record outside backup area\n");
9529                 return 1;
9530         }
9531
9532         return 0;
9533 }
9534
9535 /*******************************************************************************
9536  * Function:    recover_backup_imsm
9537  * Description: Function recovers critical data from the Migration Copy Area
9538  *              while assembling an array.
9539  * Parameters:
9540  *      super   : imsm internal array info
9541  *      info    : general array info
9542  * Returns:
9543  *      0 : success (or there is no data to recover)
9544  *      1 : fail
9545  ******************************************************************************/
9546 int recover_backup_imsm(struct supertype *st, struct mdinfo *info)
9547 {
9548         struct intel_super *super = st->sb;
9549         struct migr_record *migr_rec = super->migr_rec;
9550         struct imsm_map *map_dest;
9551         struct intel_dev *id = NULL;
9552         unsigned long long read_offset;
9553         unsigned long long write_offset;
9554         unsigned unit_len;
9555         int *targets = NULL;
9556         int new_disks, i, err;
9557         char *buf = NULL;
9558         int retval = 1;
9559         unsigned long curr_migr_unit = __le32_to_cpu(migr_rec->curr_migr_unit);
9560         unsigned long num_migr_units = __le32_to_cpu(migr_rec->num_migr_units);
9561         char buffer[20];
9562         int skipped_disks = 0;
9563
9564         err = sysfs_get_str(info, NULL, "array_state", (char *)buffer, 20);
9565         if (err < 1)
9566                 return 1;
9567
9568         /* recover data only during assemblation */
9569         if (strncmp(buffer, "inactive", 8) != 0)
9570                 return 0;
9571         /* no data to recover */
9572         if (__le32_to_cpu(migr_rec->rec_status) == UNIT_SRC_NORMAL)
9573                 return 0;
9574         if (curr_migr_unit >= num_migr_units)
9575                 return 1;
9576
9577         /* find device during reshape */
9578         for (id = super->devlist; id; id = id->next)
9579                 if (is_gen_migration(id->dev))
9580                         break;
9581         if (id == NULL)
9582                 return 1;
9583
9584         map_dest = get_imsm_map(id->dev, MAP_0);
9585         new_disks = map_dest->num_members;
9586
9587         read_offset = (unsigned long long)
9588                         __le32_to_cpu(migr_rec->ckpt_area_pba) * 512;
9589
9590         write_offset = ((unsigned long long)
9591                         __le32_to_cpu(migr_rec->dest_1st_member_lba) +
9592                         pba_of_lba0(map_dest)) * 512;
9593
9594         unit_len = __le32_to_cpu(migr_rec->dest_depth_per_unit) * 512;
9595         if (posix_memalign((void **)&buf, 512, unit_len) != 0)
9596                 goto abort;
9597         targets = xcalloc(new_disks, sizeof(int));
9598
9599         if (open_backup_targets(info, new_disks, targets, super, id->dev)) {
9600                 pr_err("Cannot open some devices belonging to array.\n");
9601                 goto abort;
9602         }
9603
9604         for (i = 0; i < new_disks; i++) {
9605                 if (targets[i] < 0) {
9606                         skipped_disks++;
9607                         continue;
9608                 }
9609                 if (lseek64(targets[i], read_offset, SEEK_SET) < 0) {
9610                         pr_err("Cannot seek to block: %s\n",
9611                                strerror(errno));
9612                         skipped_disks++;
9613                         continue;
9614                 }
9615                 if ((unsigned)read(targets[i], buf, unit_len) != unit_len) {
9616                         pr_err("Cannot read copy area block: %s\n",
9617                                strerror(errno));
9618                         skipped_disks++;
9619                         continue;
9620                 }
9621                 if (lseek64(targets[i], write_offset, SEEK_SET) < 0) {
9622                         pr_err("Cannot seek to block: %s\n",
9623                                strerror(errno));
9624                         skipped_disks++;
9625                         continue;
9626                 }
9627                 if ((unsigned)write(targets[i], buf, unit_len) != unit_len) {
9628                         pr_err("Cannot restore block: %s\n",
9629                                strerror(errno));
9630                         skipped_disks++;
9631                         continue;
9632                 }
9633         }
9634
9635         if (skipped_disks > imsm_get_allowed_degradation(info->new_level,
9636                                                          new_disks,
9637                                                          super,
9638                                                          id->dev)) {
9639                 pr_err("Cannot restore data from backup. Too many failed disks\n");
9640                 goto abort;
9641         }
9642
9643         if (save_checkpoint_imsm(st, info, UNIT_SRC_NORMAL)) {
9644                 /* ignore error == 2, this can mean end of reshape here
9645                  */
9646                 dprintf("imsm: Cannot write checkpoint to migration record (UNIT_SRC_NORMAL) during restart\n");
9647         } else
9648                 retval = 0;
9649
9650 abort:
9651         if (targets) {
9652                 for (i = 0; i < new_disks; i++)
9653                         if (targets[i])
9654                                 close(targets[i]);
9655                 free(targets);
9656         }
9657         free(buf);
9658         return retval;
9659 }
9660
9661 static char disk_by_path[] = "/dev/disk/by-path/";
9662
9663 static const char *imsm_get_disk_controller_domain(const char *path)
9664 {
9665         char disk_path[PATH_MAX];
9666         char *drv=NULL;
9667         struct stat st;
9668
9669         strcpy(disk_path, disk_by_path);
9670         strncat(disk_path, path, PATH_MAX - strlen(disk_path) - 1);
9671         if (stat(disk_path, &st) == 0) {
9672                 struct sys_dev* hba;
9673                 char *path;
9674
9675                 path = devt_to_devpath(st.st_rdev);
9676                 if (path == NULL)
9677                         return "unknown";
9678                 hba = find_disk_attached_hba(-1, path);
9679                 if (hba && hba->type == SYS_DEV_SAS)
9680                         drv = "isci";
9681                 else if (hba && hba->type == SYS_DEV_SATA)
9682                         drv = "ahci";
9683                 else
9684                         drv = "unknown";
9685                 dprintf("path: %s hba: %s attached: %s\n",
9686                         path, (hba) ? hba->path : "NULL", drv);
9687                 free(path);
9688         }
9689         return drv;
9690 }
9691
9692 static char *imsm_find_array_devnm_by_subdev(int subdev, char *container)
9693 {
9694         static char devnm[32];
9695         char subdev_name[20];
9696         struct mdstat_ent *mdstat;
9697
9698         sprintf(subdev_name, "%d", subdev);
9699         mdstat = mdstat_by_subdev(subdev_name, container);
9700         if (!mdstat)
9701                 return NULL;
9702
9703         strcpy(devnm, mdstat->devnm);
9704         free_mdstat(mdstat);
9705         return devnm;
9706 }
9707
9708 static int imsm_reshape_is_allowed_on_container(struct supertype *st,
9709                                                 struct geo_params *geo,
9710                                                 int *old_raid_disks,
9711                                                 int direction)
9712 {
9713         /* currently we only support increasing the number of devices
9714          * for a container.  This increases the number of device for each
9715          * member array.  They must all be RAID0 or RAID5.
9716          */
9717         int ret_val = 0;
9718         struct mdinfo *info, *member;
9719         int devices_that_can_grow = 0;
9720
9721         dprintf("imsm: imsm_reshape_is_allowed_on_container(ENTER): st->devnm = (%s)\n", st->devnm);
9722
9723         if (geo->size > 0 ||
9724             geo->level != UnSet ||
9725             geo->layout != UnSet ||
9726             geo->chunksize != 0 ||
9727             geo->raid_disks == UnSet) {
9728                 dprintf("imsm: Container operation is allowed for raid disks number change only.\n");
9729                 return ret_val;
9730         }
9731
9732         if (direction == ROLLBACK_METADATA_CHANGES) {
9733                 dprintf("imsm: Metadata changes rollback is not supported for container operation.\n");
9734                 return ret_val;
9735         }
9736
9737         info = container_content_imsm(st, NULL);
9738         for (member = info; member; member = member->next) {
9739                 char *result;
9740
9741                 dprintf("imsm: checking device_num: %i\n",
9742                         member->container_member);
9743
9744                 if (geo->raid_disks <= member->array.raid_disks) {
9745                         /* we work on container for Online Capacity Expansion
9746                          * only so raid_disks has to grow
9747                          */
9748                         dprintf("imsm: for container operation raid disks increase is required\n");
9749                         break;
9750                 }
9751
9752                 if (info->array.level != 0 && info->array.level != 5) {
9753                         /* we cannot use this container with other raid level
9754                          */
9755                         dprintf("imsm: for container operation wrong raid level (%i) detected\n",
9756                                 info->array.level);
9757                         break;
9758                 } else {
9759                         /* check for platform support
9760                          * for this raid level configuration
9761                          */
9762                         struct intel_super *super = st->sb;
9763                         if (!is_raid_level_supported(super->orom,
9764                                                      member->array.level,
9765                                                      geo->raid_disks)) {
9766                                 dprintf("platform does not support raid%d with %d disk%s\n",
9767                                          info->array.level,
9768                                          geo->raid_disks,
9769                                          geo->raid_disks > 1 ? "s" : "");
9770                                 break;
9771                         }
9772                         /* check if component size is aligned to chunk size
9773                          */
9774                         if (info->component_size %
9775                             (info->array.chunk_size/512)) {
9776                                 dprintf("Component size is not aligned to chunk size\n");
9777                                 break;
9778                         }
9779                 }
9780
9781                 if (*old_raid_disks &&
9782                     info->array.raid_disks != *old_raid_disks)
9783                         break;
9784                 *old_raid_disks = info->array.raid_disks;
9785
9786                 /* All raid5 and raid0 volumes in container
9787                  * have to be ready for Online Capacity Expansion
9788                  * so they need to be assembled.  We have already
9789                  * checked that no recovery etc is happening.
9790                  */
9791                 result = imsm_find_array_devnm_by_subdev(member->container_member,
9792                                                          st->container_devnm);
9793                 if (result == NULL) {
9794                         dprintf("imsm: cannot find array\n");
9795                         break;
9796                 }
9797                 devices_that_can_grow++;
9798         }
9799         sysfs_free(info);
9800         if (!member && devices_that_can_grow)
9801                 ret_val = 1;
9802
9803         if (ret_val)
9804                 dprintf("Container operation allowed\n");
9805         else
9806                 dprintf("Error: %i\n", ret_val);
9807
9808         return ret_val;
9809 }
9810
9811 /* Function: get_spares_for_grow
9812  * Description: Allocates memory and creates list of spare devices
9813  *              avaliable in container. Checks if spare drive size is acceptable.
9814  * Parameters: Pointer to the supertype structure
9815  * Returns: Pointer to the list of spare devices (mdinfo structure) on success,
9816  *              NULL if fail
9817  */
9818 static struct mdinfo *get_spares_for_grow(struct supertype *st)
9819 {
9820         unsigned long long min_size = min_acceptable_spare_size_imsm(st);
9821         return container_choose_spares(st, min_size, NULL, NULL, NULL, 0);
9822 }
9823
9824 /******************************************************************************
9825  * function: imsm_create_metadata_update_for_reshape
9826  * Function creates update for whole IMSM container.
9827  *
9828  ******************************************************************************/
9829 static int imsm_create_metadata_update_for_reshape(
9830         struct supertype *st,
9831         struct geo_params *geo,
9832         int old_raid_disks,
9833         struct imsm_update_reshape **updatep)
9834 {
9835         struct intel_super *super = st->sb;
9836         struct imsm_super *mpb = super->anchor;
9837         int update_memory_size;
9838         struct imsm_update_reshape *u;
9839         struct mdinfo *spares;
9840         int i;
9841         int delta_disks;
9842         struct mdinfo *dev;
9843
9844         dprintf("(enter) raid_disks = %i\n", geo->raid_disks);
9845
9846         delta_disks = geo->raid_disks - old_raid_disks;
9847
9848         /* size of all update data without anchor */
9849         update_memory_size = sizeof(struct imsm_update_reshape);
9850
9851         /* now add space for spare disks that we need to add. */
9852         update_memory_size += sizeof(u->new_disks[0]) * (delta_disks - 1);
9853
9854         u = xcalloc(1, update_memory_size);
9855         u->type = update_reshape_container_disks;
9856         u->old_raid_disks = old_raid_disks;
9857         u->new_raid_disks = geo->raid_disks;
9858
9859         /* now get spare disks list
9860          */
9861         spares = get_spares_for_grow(st);
9862
9863         if (spares == NULL
9864             || delta_disks > spares->array.spare_disks) {
9865                 pr_err("imsm: ERROR: Cannot get spare devices for %s.\n", geo->dev_name);
9866                 i = -1;
9867                 goto abort;
9868         }
9869
9870         /* we have got spares
9871          * update disk list in imsm_disk list table in anchor
9872          */
9873         dprintf("imsm: %i spares are available.\n\n",
9874                 spares->array.spare_disks);
9875
9876         dev = spares->devs;
9877         for (i = 0; i < delta_disks; i++) {
9878                 struct dl *dl;
9879
9880                 if (dev == NULL)
9881                         break;
9882                 u->new_disks[i] = makedev(dev->disk.major,
9883                                           dev->disk.minor);
9884                 dl = get_disk_super(super, dev->disk.major, dev->disk.minor);
9885                 dl->index = mpb->num_disks;
9886                 mpb->num_disks++;
9887                 dev = dev->next;
9888         }
9889
9890 abort:
9891         /* free spares
9892          */
9893         sysfs_free(spares);
9894
9895         dprintf("imsm: reshape update preparation :");
9896         if (i == delta_disks) {
9897                 dprintf_cont(" OK\n");
9898                 *updatep = u;
9899                 return update_memory_size;
9900         }
9901         free(u);
9902         dprintf_cont(" Error\n");
9903
9904         return 0;
9905 }
9906
9907 /******************************************************************************
9908  * function: imsm_create_metadata_update_for_size_change()
9909  *           Creates update for IMSM array for array size change.
9910  *
9911  ******************************************************************************/
9912 static int imsm_create_metadata_update_for_size_change(
9913                                 struct supertype *st,
9914                                 struct geo_params *geo,
9915                                 struct imsm_update_size_change **updatep)
9916 {
9917         struct intel_super *super = st->sb;
9918         int update_memory_size;
9919         struct imsm_update_size_change *u;
9920
9921         dprintf("(enter) New size = %llu\n", geo->size);
9922
9923         /* size of all update data without anchor */
9924         update_memory_size = sizeof(struct imsm_update_size_change);
9925
9926         u = xcalloc(1, update_memory_size);
9927         u->type = update_size_change;
9928         u->subdev = super->current_vol;
9929         u->new_size = geo->size;
9930
9931         dprintf("imsm: reshape update preparation : OK\n");
9932         *updatep = u;
9933
9934         return update_memory_size;
9935 }
9936
9937 /******************************************************************************
9938  * function: imsm_create_metadata_update_for_migration()
9939  *           Creates update for IMSM array.
9940  *
9941  ******************************************************************************/
9942 static int imsm_create_metadata_update_for_migration(
9943                                         struct supertype *st,
9944                                         struct geo_params *geo,
9945                                         struct imsm_update_reshape_migration **updatep)
9946 {
9947         struct intel_super *super = st->sb;
9948         int update_memory_size;
9949         struct imsm_update_reshape_migration *u;
9950         struct imsm_dev *dev;
9951         int previous_level = -1;
9952
9953         dprintf("(enter) New Level = %i\n", geo->level);
9954
9955         /* size of all update data without anchor */
9956         update_memory_size = sizeof(struct imsm_update_reshape_migration);
9957
9958         u = xcalloc(1, update_memory_size);
9959         u->type = update_reshape_migration;
9960         u->subdev = super->current_vol;
9961         u->new_level = geo->level;
9962         u->new_layout = geo->layout;
9963         u->new_raid_disks = u->old_raid_disks = geo->raid_disks;
9964         u->new_disks[0] = -1;
9965         u->new_chunksize = -1;
9966
9967         dev = get_imsm_dev(super, u->subdev);
9968         if (dev) {
9969                 struct imsm_map *map;
9970
9971                 map = get_imsm_map(dev, MAP_0);
9972                 if (map) {
9973                         int current_chunk_size =
9974                                 __le16_to_cpu(map->blocks_per_strip) / 2;
9975
9976                         if (geo->chunksize != current_chunk_size) {
9977                                 u->new_chunksize = geo->chunksize / 1024;
9978                                 dprintf("imsm: chunk size change from %i to %i\n",
9979                                         current_chunk_size, u->new_chunksize);
9980                         }
9981                         previous_level = map->raid_level;
9982                 }
9983         }
9984         if (geo->level == 5 && previous_level == 0) {
9985                 struct mdinfo *spares = NULL;
9986
9987                 u->new_raid_disks++;
9988                 spares = get_spares_for_grow(st);
9989                 if (spares == NULL || spares->array.spare_disks < 1) {
9990                         free(u);
9991                         sysfs_free(spares);
9992                         update_memory_size = 0;
9993                         dprintf("error: cannot get spare device for requested migration");
9994                         return 0;
9995                 }
9996                 sysfs_free(spares);
9997         }
9998         dprintf("imsm: reshape update preparation : OK\n");
9999         *updatep = u;
10000
10001         return update_memory_size;
10002 }
10003
10004 static void imsm_update_metadata_locally(struct supertype *st,
10005                                          void *buf, int len)
10006 {
10007         struct metadata_update mu;
10008
10009         mu.buf = buf;
10010         mu.len = len;
10011         mu.space = NULL;
10012         mu.space_list = NULL;
10013         mu.next = NULL;
10014         if (imsm_prepare_update(st, &mu))
10015                 imsm_process_update(st, &mu);
10016
10017         while (mu.space_list) {
10018                 void **space = mu.space_list;
10019                 mu.space_list = *space;
10020                 free(space);
10021         }
10022 }
10023
10024 /***************************************************************************
10025 * Function:     imsm_analyze_change
10026 * Description:  Function analyze change for single volume
10027 *               and validate if transition is supported
10028 * Parameters:   Geometry parameters, supertype structure,
10029 *               metadata change direction (apply/rollback)
10030 * Returns:      Operation type code on success, -1 if fail
10031 ****************************************************************************/
10032 enum imsm_reshape_type imsm_analyze_change(struct supertype *st,
10033                                            struct geo_params *geo,
10034                                            int direction)
10035 {
10036         struct mdinfo info;
10037         int change = -1;
10038         int check_devs = 0;
10039         int chunk;
10040         /* number of added/removed disks in operation result */
10041         int devNumChange = 0;
10042         /* imsm compatible layout value for array geometry verification */
10043         int imsm_layout = -1;
10044         int data_disks;
10045         struct imsm_dev *dev;
10046         struct intel_super *super;
10047         unsigned long long current_size;
10048         unsigned long long free_size;
10049         unsigned long long max_size;
10050         int rv;
10051
10052         getinfo_super_imsm_volume(st, &info, NULL);
10053         if (geo->level != info.array.level && geo->level >= 0 &&
10054             geo->level != UnSet) {
10055                 switch (info.array.level) {
10056                 case 0:
10057                         if (geo->level == 5) {
10058                                 change = CH_MIGRATION;
10059                                 if (geo->layout != ALGORITHM_LEFT_ASYMMETRIC) {
10060                                         pr_err("Error. Requested Layout not supported (left-asymmetric layout is supported only)!\n");
10061                                         change = -1;
10062                                         goto analyse_change_exit;
10063                                 }
10064                                 imsm_layout =  geo->layout;
10065                                 check_devs = 1;
10066                                 devNumChange = 1; /* parity disk added */
10067                         } else if (geo->level == 10) {
10068                                 change = CH_TAKEOVER;
10069                                 check_devs = 1;
10070                                 devNumChange = 2; /* two mirrors added */
10071                                 imsm_layout = 0x102; /* imsm supported layout */
10072                         }
10073                         break;
10074                 case 1:
10075                 case 10:
10076                         if (geo->level == 0) {
10077                                 change = CH_TAKEOVER;
10078                                 check_devs = 1;
10079                                 devNumChange = -(geo->raid_disks/2);
10080                                 imsm_layout = 0; /* imsm raid0 layout */
10081                         }
10082                         break;
10083                 }
10084                 if (change == -1) {
10085                         pr_err("Error. Level Migration from %d to %d not supported!\n",
10086                                info.array.level, geo->level);
10087                         goto analyse_change_exit;
10088                 }
10089         } else
10090                 geo->level = info.array.level;
10091
10092         if (geo->layout != info.array.layout &&
10093             (geo->layout != UnSet && geo->layout != -1)) {
10094                 change = CH_MIGRATION;
10095                 if (info.array.layout == 0 && info.array.level == 5 &&
10096                     geo->layout == 5) {
10097                         /* reshape 5 -> 4 */
10098                 } else if (info.array.layout == 5 && info.array.level == 5 &&
10099                            geo->layout == 0) {
10100                         /* reshape 4 -> 5 */
10101                         geo->layout = 0;
10102                         geo->level = 5;
10103                 } else {
10104                         pr_err("Error. Layout Migration from %d to %d not supported!\n",
10105                                info.array.layout, geo->layout);
10106                         change = -1;
10107                         goto analyse_change_exit;
10108                 }
10109         } else {
10110                 geo->layout = info.array.layout;
10111                 if (imsm_layout == -1)
10112                         imsm_layout = info.array.layout;
10113         }
10114
10115         if (geo->chunksize > 0 && geo->chunksize != UnSet &&
10116             geo->chunksize != info.array.chunk_size) {
10117                 if (info.array.level == 10) {
10118                         pr_err("Error. Chunk size change for RAID 10 is not supported.\n");
10119                         change = -1;
10120                         goto analyse_change_exit;
10121                 }
10122                 change = CH_MIGRATION;
10123         } else {
10124                 geo->chunksize = info.array.chunk_size;
10125         }
10126
10127         chunk = geo->chunksize / 1024;
10128
10129         super = st->sb;
10130         dev = get_imsm_dev(super, super->current_vol);
10131         data_disks = imsm_num_data_members(dev , MAP_0);
10132         /* compute current size per disk member
10133          */
10134         current_size = info.custom_array_size / data_disks;
10135
10136         if (geo->size > 0 && geo->size != MAX_SIZE) {
10137                 /* align component size
10138                  */
10139                 geo->size = imsm_component_size_aligment_check(
10140                                     get_imsm_raid_level(dev->vol.map),
10141                                     chunk * 1024,
10142                                     geo->size * 2);
10143                 if (geo->size == 0) {
10144                         pr_err("Error. Size expansion is supported only (current size is %llu, requested size /rounded/ is 0).\n",
10145                                    current_size);
10146                         goto analyse_change_exit;
10147                 }
10148         }
10149
10150         if (current_size != geo->size && geo->size > 0) {
10151                 if (change != -1) {
10152                         pr_err("Error. Size change should be the only one at a time.\n");
10153                         change = -1;
10154                         goto analyse_change_exit;
10155                 }
10156                 if ((super->current_vol + 1) != super->anchor->num_raid_devs) {
10157                         pr_err("Error. The last volume in container can be expanded only (%i/%s).\n",
10158                                super->current_vol, st->devnm);
10159                         goto analyse_change_exit;
10160                 }
10161                 /* check the maximum available size
10162                  */
10163                 rv =  imsm_get_free_size(st, dev->vol.map->num_members,
10164                                          0, chunk, &free_size);
10165                 if (rv == 0)
10166                         /* Cannot find maximum available space
10167                          */
10168                         max_size = 0;
10169                 else {
10170                         max_size = free_size + current_size;
10171                         /* align component size
10172                          */
10173                         max_size = imsm_component_size_aligment_check(
10174                                         get_imsm_raid_level(dev->vol.map),
10175                                         chunk * 1024,
10176                                         max_size);
10177                 }
10178                 if (geo->size == MAX_SIZE) {
10179                         /* requested size change to the maximum available size
10180                          */
10181                         if (max_size == 0) {
10182                                 pr_err("Error. Cannot find maximum available space.\n");
10183                                 change = -1;
10184                                 goto analyse_change_exit;
10185                         } else
10186                                 geo->size = max_size;
10187                 }
10188
10189                 if (direction == ROLLBACK_METADATA_CHANGES) {
10190                         /* accept size for rollback only
10191                         */
10192                 } else {
10193                         /* round size due to metadata compatibility
10194                         */
10195                         geo->size = (geo->size >> SECT_PER_MB_SHIFT)
10196                                     << SECT_PER_MB_SHIFT;
10197                         dprintf("Prepare update for size change to %llu\n",
10198                                 geo->size );
10199                         if (current_size >= geo->size) {
10200                                 pr_err("Error. Size expansion is supported only (current size is %llu, requested size /rounded/ is %llu).\n",
10201                                        current_size, geo->size);
10202                                 goto analyse_change_exit;
10203                         }
10204                         if (max_size && geo->size > max_size) {
10205                                 pr_err("Error. Requested size is larger than maximum available size (maximum available size is %llu, requested size /rounded/ is %llu).\n",
10206                                        max_size, geo->size);
10207                                 goto analyse_change_exit;
10208                         }
10209                 }
10210                 geo->size *= data_disks;
10211                 geo->raid_disks = dev->vol.map->num_members;
10212                 change = CH_ARRAY_SIZE;
10213         }
10214         if (!validate_geometry_imsm(st,
10215                                     geo->level,
10216                                     imsm_layout,
10217                                     geo->raid_disks + devNumChange,
10218                                     &chunk,
10219                                     geo->size, INVALID_SECTORS,
10220                                     0, 0, 1))
10221                 change = -1;
10222
10223         if (check_devs) {
10224                 struct intel_super *super = st->sb;
10225                 struct imsm_super *mpb = super->anchor;
10226
10227                 if (mpb->num_raid_devs > 1) {
10228                         pr_err("Error. Cannot perform operation on %s- for this operation it MUST be single array in container\n",
10229                                geo->dev_name);
10230                         change = -1;
10231                 }
10232         }
10233
10234 analyse_change_exit:
10235         if (direction == ROLLBACK_METADATA_CHANGES &&
10236             (change == CH_MIGRATION || change == CH_TAKEOVER)) {
10237                 dprintf("imsm: Metadata changes rollback is not supported for migration and takeover operations.\n");
10238                 change = -1;
10239         }
10240         return change;
10241 }
10242
10243 int imsm_takeover(struct supertype *st, struct geo_params *geo)
10244 {
10245         struct intel_super *super = st->sb;
10246         struct imsm_update_takeover *u;
10247
10248         u = xmalloc(sizeof(struct imsm_update_takeover));
10249
10250         u->type = update_takeover;
10251         u->subarray = super->current_vol;
10252
10253         /* 10->0 transition */
10254         if (geo->level == 0)
10255                 u->direction = R10_TO_R0;
10256
10257         /* 0->10 transition */
10258         if (geo->level == 10)
10259                 u->direction = R0_TO_R10;
10260
10261         /* update metadata locally */
10262         imsm_update_metadata_locally(st, u,
10263                                         sizeof(struct imsm_update_takeover));
10264         /* and possibly remotely */
10265         if (st->update_tail)
10266                 append_metadata_update(st, u,
10267                                         sizeof(struct imsm_update_takeover));
10268         else
10269                 free(u);
10270
10271         return 0;
10272 }
10273
10274 static int imsm_reshape_super(struct supertype *st, unsigned long long size,
10275                               int level,
10276                               int layout, int chunksize, int raid_disks,
10277                               int delta_disks, char *backup, char *dev,
10278                               int direction, int verbose)
10279 {
10280         int ret_val = 1;
10281         struct geo_params geo;
10282
10283         dprintf("(enter)\n");
10284
10285         memset(&geo, 0, sizeof(struct geo_params));
10286
10287         geo.dev_name = dev;
10288         strcpy(geo.devnm, st->devnm);
10289         geo.size = size;
10290         geo.level = level;
10291         geo.layout = layout;
10292         geo.chunksize = chunksize;
10293         geo.raid_disks = raid_disks;
10294         if (delta_disks != UnSet)
10295                 geo.raid_disks += delta_disks;
10296
10297         dprintf("for level      : %i\n", geo.level);
10298         dprintf("for raid_disks : %i\n", geo.raid_disks);
10299
10300         if (experimental() == 0)
10301                 return ret_val;
10302
10303         if (strcmp(st->container_devnm, st->devnm) == 0) {
10304                 /* On container level we can only increase number of devices. */
10305                 dprintf("imsm: info: Container operation\n");
10306                 int old_raid_disks = 0;
10307
10308                 if (imsm_reshape_is_allowed_on_container(
10309                             st, &geo, &old_raid_disks, direction)) {
10310                         struct imsm_update_reshape *u = NULL;
10311                         int len;
10312
10313                         len = imsm_create_metadata_update_for_reshape(
10314                                 st, &geo, old_raid_disks, &u);
10315
10316                         if (len <= 0) {
10317                                 dprintf("imsm: Cannot prepare update\n");
10318                                 goto exit_imsm_reshape_super;
10319                         }
10320
10321                         ret_val = 0;
10322                         /* update metadata locally */
10323                         imsm_update_metadata_locally(st, u, len);
10324                         /* and possibly remotely */
10325                         if (st->update_tail)
10326                                 append_metadata_update(st, u, len);
10327                         else
10328                                 free(u);
10329
10330                 } else {
10331                         pr_err("(imsm) Operation is not allowed on this container\n");
10332                 }
10333         } else {
10334                 /* On volume level we support following operations
10335                  * - takeover: raid10 -> raid0; raid0 -> raid10
10336                  * - chunk size migration
10337                  * - migration: raid5 -> raid0; raid0 -> raid5
10338                  */
10339                 struct intel_super *super = st->sb;
10340                 struct intel_dev *dev = super->devlist;
10341                 int change;
10342                 dprintf("imsm: info: Volume operation\n");
10343                 /* find requested device */
10344                 while (dev) {
10345                         char *devnm =
10346                                 imsm_find_array_devnm_by_subdev(
10347                                         dev->index, st->container_devnm);
10348                         if (devnm && strcmp(devnm, geo.devnm) == 0)
10349                                 break;
10350                         dev = dev->next;
10351                 }
10352                 if (dev == NULL) {
10353                         pr_err("Cannot find %s (%s) subarray\n",
10354                                 geo.dev_name, geo.devnm);
10355                         goto exit_imsm_reshape_super;
10356                 }
10357                 super->current_vol = dev->index;
10358                 change = imsm_analyze_change(st, &geo, direction);
10359                 switch (change) {
10360                 case CH_TAKEOVER:
10361                         ret_val = imsm_takeover(st, &geo);
10362                         break;
10363                 case CH_MIGRATION: {
10364                         struct imsm_update_reshape_migration *u = NULL;
10365                         int len =
10366                                 imsm_create_metadata_update_for_migration(
10367                                         st, &geo, &u);
10368                         if (len < 1) {
10369                                 dprintf("imsm: Cannot prepare update\n");
10370                                 break;
10371                         }
10372                         ret_val = 0;
10373                         /* update metadata locally */
10374                         imsm_update_metadata_locally(st, u, len);
10375                         /* and possibly remotely */
10376                         if (st->update_tail)
10377                                 append_metadata_update(st, u, len);
10378                         else
10379                                 free(u);
10380                 }
10381                 break;
10382                 case CH_ARRAY_SIZE: {
10383                         struct imsm_update_size_change *u = NULL;
10384                         int len =
10385                                 imsm_create_metadata_update_for_size_change(
10386                                         st, &geo, &u);
10387                         if (len < 1) {
10388                                 dprintf("imsm: Cannot prepare update\n");
10389                                 break;
10390                         }
10391                         ret_val = 0;
10392                         /* update metadata locally */
10393                         imsm_update_metadata_locally(st, u, len);
10394                         /* and possibly remotely */
10395                         if (st->update_tail)
10396                                 append_metadata_update(st, u, len);
10397                         else
10398                                 free(u);
10399                 }
10400                 break;
10401                 default:
10402                         ret_val = 1;
10403                 }
10404         }
10405
10406 exit_imsm_reshape_super:
10407         dprintf("imsm: reshape_super Exit code = %i\n", ret_val);
10408         return ret_val;
10409 }
10410
10411 #define COMPLETED_OK            0
10412 #define COMPLETED_NONE          1
10413 #define COMPLETED_DELAYED       2
10414
10415 static int read_completed(int fd, unsigned long long *val)
10416 {
10417         int ret;
10418         char buf[50];
10419
10420         ret = sysfs_fd_get_str(fd, buf, 50);
10421         if (ret < 0)
10422                 return ret;
10423
10424         ret = COMPLETED_OK;
10425         if (strncmp(buf, "none", 4) == 0) {
10426                 ret = COMPLETED_NONE;
10427         } else if (strncmp(buf, "delayed", 7) == 0) {
10428                 ret = COMPLETED_DELAYED;
10429         } else {
10430                 char *ep;
10431                 *val = strtoull(buf, &ep, 0);
10432                 if (ep == buf || (*ep != 0 && *ep != '\n' && *ep != ' '))
10433                         ret = -1;
10434         }
10435         return ret;
10436 }
10437
10438 /*******************************************************************************
10439  * Function:    wait_for_reshape_imsm
10440  * Description: Function writes new sync_max value and waits until
10441  *              reshape process reach new position
10442  * Parameters:
10443  *      sra             : general array info
10444  *      ndata           : number of disks in new array's layout
10445  * Returns:
10446  *       0 : success,
10447  *       1 : there is no reshape in progress,
10448  *      -1 : fail
10449  ******************************************************************************/
10450 int wait_for_reshape_imsm(struct mdinfo *sra, int ndata)
10451 {
10452         int fd = sysfs_get_fd(sra, NULL, "sync_completed");
10453         int retry = 3;
10454         unsigned long long completed;
10455         /* to_complete : new sync_max position */
10456         unsigned long long to_complete = sra->reshape_progress;
10457         unsigned long long position_to_set = to_complete / ndata;
10458
10459         if (fd < 0) {
10460                 dprintf("cannot open reshape_position\n");
10461                 return 1;
10462         }
10463
10464         do {
10465                 if (sysfs_fd_get_ll(fd, &completed) < 0) {
10466                         if (!retry) {
10467                                 dprintf("cannot read reshape_position (no reshape in progres)\n");
10468                                 close(fd);
10469                                 return 1;
10470                         }
10471                         usleep(30000);
10472                 } else
10473                         break;
10474         } while (retry--);
10475
10476         if (completed > position_to_set) {
10477                 dprintf("wrong next position to set %llu (%llu)\n",
10478                         to_complete, position_to_set);
10479                 close(fd);
10480                 return -1;
10481         }
10482         dprintf("Position set: %llu\n", position_to_set);
10483         if (sysfs_set_num(sra, NULL, "sync_max",
10484                           position_to_set) != 0) {
10485                 dprintf("cannot set reshape position to %llu\n",
10486                         position_to_set);
10487                 close(fd);
10488                 return -1;
10489         }
10490
10491         do {
10492                 int rc;
10493                 char action[20];
10494                 int timeout = 3000;
10495
10496                 sysfs_wait(fd, &timeout);
10497                 if (sysfs_get_str(sra, NULL, "sync_action",
10498                                   action, 20) > 0 &&
10499                                 strncmp(action, "reshape", 7) != 0) {
10500                         if (strncmp(action, "idle", 4) == 0)
10501                                 break;
10502                         close(fd);
10503                         return -1;
10504                 }
10505
10506                 rc = read_completed(fd, &completed);
10507                 if (rc < 0) {
10508                         dprintf("cannot read reshape_position (in loop)\n");
10509                         close(fd);
10510                         return 1;
10511                 } else if (rc == COMPLETED_NONE)
10512                         break;
10513         } while (completed < position_to_set);
10514
10515         close(fd);
10516         return 0;
10517 }
10518
10519 /*******************************************************************************
10520  * Function:    check_degradation_change
10521  * Description: Check that array hasn't become failed.
10522  * Parameters:
10523  *      info    : for sysfs access
10524  *      sources : source disks descriptors
10525  *      degraded: previous degradation level
10526  * Returns:
10527  *      degradation level
10528  ******************************************************************************/
10529 int check_degradation_change(struct mdinfo *info,
10530                              int *sources,
10531                              int degraded)
10532 {
10533         unsigned long long new_degraded;
10534         int rv;
10535
10536         rv = sysfs_get_ll(info, NULL, "degraded", &new_degraded);
10537         if (rv == -1 || (new_degraded != (unsigned long long)degraded)) {
10538                 /* check each device to ensure it is still working */
10539                 struct mdinfo *sd;
10540                 new_degraded = 0;
10541                 for (sd = info->devs ; sd ; sd = sd->next) {
10542                         if (sd->disk.state & (1<<MD_DISK_FAULTY))
10543                                 continue;
10544                         if (sd->disk.state & (1<<MD_DISK_SYNC)) {
10545                                 char sbuf[20];
10546                                 if (sysfs_get_str(info,
10547                                         sd, "state", sbuf, 20) < 0 ||
10548                                         strstr(sbuf, "faulty") ||
10549                                         strstr(sbuf, "in_sync") == NULL) {
10550                                         /* this device is dead */
10551                                         sd->disk.state = (1<<MD_DISK_FAULTY);
10552                                         if (sd->disk.raid_disk >= 0 &&
10553                                             sources[sd->disk.raid_disk] >= 0) {
10554                                                 close(sources[
10555                                                         sd->disk.raid_disk]);
10556                                                 sources[sd->disk.raid_disk] =
10557                                                         -1;
10558                                         }
10559                                         new_degraded++;
10560                                 }
10561                         }
10562                 }
10563         }
10564
10565         return new_degraded;
10566 }
10567
10568 /*******************************************************************************
10569  * Function:    imsm_manage_reshape
10570  * Description: Function finds array under reshape and it manages reshape
10571  *              process. It creates stripes backups (if required) and sets
10572  *              checkpoints.
10573  * Parameters:
10574  *      afd             : Backup handle (nattive) - not used
10575  *      sra             : general array info
10576  *      reshape         : reshape parameters - not used
10577  *      st              : supertype structure
10578  *      blocks          : size of critical section [blocks]
10579  *      fds             : table of source device descriptor
10580  *      offsets         : start of array (offest per devices)
10581  *      dests           : not used
10582  *      destfd          : table of destination device descriptor
10583  *      destoffsets     : table of destination offsets (per device)
10584  * Returns:
10585  *      1 : success, reshape is done
10586  *      0 : fail
10587  ******************************************************************************/
10588 static int imsm_manage_reshape(
10589         int afd, struct mdinfo *sra, struct reshape *reshape,
10590         struct supertype *st, unsigned long backup_blocks,
10591         int *fds, unsigned long long *offsets,
10592         int dests, int *destfd, unsigned long long *destoffsets)
10593 {
10594         int ret_val = 0;
10595         struct intel_super *super = st->sb;
10596         struct intel_dev *dv;
10597         struct imsm_dev *dev = NULL;
10598         struct imsm_map *map_src;
10599         int migr_vol_qan = 0;
10600         int ndata, odata; /* [bytes] */
10601         int chunk; /* [bytes] */
10602         struct migr_record *migr_rec;
10603         char *buf = NULL;
10604         unsigned int buf_size; /* [bytes] */
10605         unsigned long long max_position; /* array size [bytes] */
10606         unsigned long long next_step; /* [blocks]/[bytes] */
10607         unsigned long long old_data_stripe_length;
10608         unsigned long long start_src; /* [bytes] */
10609         unsigned long long start; /* [bytes] */
10610         unsigned long long start_buf_shift; /* [bytes] */
10611         int degraded = 0;
10612         int source_layout = 0;
10613
10614         if (!sra)
10615                 return ret_val;
10616
10617         if (!fds || !offsets)
10618                 goto abort;
10619
10620         /* Find volume during the reshape */
10621         for (dv = super->devlist; dv; dv = dv->next) {
10622                 if (dv->dev->vol.migr_type == MIGR_GEN_MIGR
10623                     && dv->dev->vol.migr_state == 1) {
10624                         dev = dv->dev;
10625                         migr_vol_qan++;
10626                 }
10627         }
10628         /* Only one volume can migrate at the same time */
10629         if (migr_vol_qan != 1) {
10630                 pr_err("%s", migr_vol_qan ?
10631                         "Number of migrating volumes greater than 1\n" :
10632                         "There is no volume during migrationg\n");
10633                 goto abort;
10634         }
10635
10636         map_src = get_imsm_map(dev, MAP_1);
10637         if (map_src == NULL)
10638                 goto abort;
10639
10640         ndata = imsm_num_data_members(dev, MAP_0);
10641         odata = imsm_num_data_members(dev, MAP_1);
10642
10643         chunk = __le16_to_cpu(map_src->blocks_per_strip) * 512;
10644         old_data_stripe_length = odata * chunk;
10645
10646         migr_rec = super->migr_rec;
10647
10648         /* initialize migration record for start condition */
10649         if (sra->reshape_progress == 0)
10650                 init_migr_record_imsm(st, dev, sra);
10651         else {
10652                 if (__le32_to_cpu(migr_rec->rec_status) != UNIT_SRC_NORMAL) {
10653                         dprintf("imsm: cannot restart migration when data are present in copy area.\n");
10654                         goto abort;
10655                 }
10656                 /* Save checkpoint to update migration record for current
10657                  * reshape position (in md). It can be farther than current
10658                  * reshape position in metadata.
10659                  */
10660                 if (save_checkpoint_imsm(st, sra, UNIT_SRC_NORMAL) == 1) {
10661                         /* ignore error == 2, this can mean end of reshape here
10662                          */
10663                         dprintf("imsm: Cannot write checkpoint to migration record (UNIT_SRC_NORMAL, initial save)\n");
10664                         goto abort;
10665                 }
10666         }
10667
10668         /* size for data */
10669         buf_size = __le32_to_cpu(migr_rec->blocks_per_unit) * 512;
10670         /* extend  buffer size for parity disk */
10671         buf_size += __le32_to_cpu(migr_rec->dest_depth_per_unit) * 512;
10672         /* add space for stripe aligment */
10673         buf_size += old_data_stripe_length;
10674         if (posix_memalign((void **)&buf, 4096, buf_size)) {
10675                 dprintf("imsm: Cannot allocate checpoint buffer\n");
10676                 goto abort;
10677         }
10678
10679         max_position = sra->component_size * ndata;
10680         source_layout = imsm_level_to_layout(map_src->raid_level);
10681
10682         while (__le32_to_cpu(migr_rec->curr_migr_unit) <
10683                __le32_to_cpu(migr_rec->num_migr_units)) {
10684                 /* current reshape position [blocks] */
10685                 unsigned long long current_position =
10686                         __le32_to_cpu(migr_rec->blocks_per_unit)
10687                         * __le32_to_cpu(migr_rec->curr_migr_unit);
10688                 unsigned long long border;
10689
10690                 /* Check that array hasn't become failed.
10691                  */
10692                 degraded = check_degradation_change(sra, fds, degraded);
10693                 if (degraded > 1) {
10694                         dprintf("imsm: Abort reshape due to degradation level (%i)\n", degraded);
10695                         goto abort;
10696                 }
10697
10698                 next_step = __le32_to_cpu(migr_rec->blocks_per_unit);
10699
10700                 if ((current_position + next_step) > max_position)
10701                         next_step = max_position - current_position;
10702
10703                 start = current_position * 512;
10704
10705                 /* align reading start to old geometry */
10706                 start_buf_shift = start % old_data_stripe_length;
10707                 start_src = start - start_buf_shift;
10708
10709                 border = (start_src / odata) - (start / ndata);
10710                 border /= 512;
10711                 if (border <= __le32_to_cpu(migr_rec->dest_depth_per_unit)) {
10712                         /* save critical stripes to buf
10713                          * start     - start address of current unit
10714                          *             to backup [bytes]
10715                          * start_src - start address of current unit
10716                          *             to backup alligned to source array
10717                          *             [bytes]
10718                          */
10719                         unsigned long long next_step_filler;
10720                         unsigned long long copy_length = next_step * 512;
10721
10722                         /* allign copy area length to stripe in old geometry */
10723                         next_step_filler = ((copy_length + start_buf_shift)
10724                                             % old_data_stripe_length);
10725                         if (next_step_filler)
10726                                 next_step_filler = (old_data_stripe_length
10727                                                     - next_step_filler);
10728                         dprintf("save_stripes() parameters: start = %llu,\tstart_src = %llu,\tnext_step*512 = %llu,\tstart_in_buf_shift = %llu,\tnext_step_filler = %llu\n",
10729                                 start, start_src, copy_length,
10730                                 start_buf_shift, next_step_filler);
10731
10732                         if (save_stripes(fds, offsets, map_src->num_members,
10733                                          chunk, map_src->raid_level,
10734                                          source_layout, 0, NULL, start_src,
10735                                          copy_length +
10736                                          next_step_filler + start_buf_shift,
10737                                          buf)) {
10738                                 dprintf("imsm: Cannot save stripes to buffer\n");
10739                                 goto abort;
10740                         }
10741                         /* Convert data to destination format and store it
10742                          * in backup general migration area
10743                          */
10744                         if (save_backup_imsm(st, dev, sra,
10745                                 buf + start_buf_shift, copy_length)) {
10746                                 dprintf("imsm: Cannot save stripes to target devices\n");
10747                                 goto abort;
10748                         }
10749                         if (save_checkpoint_imsm(st, sra,
10750                                                  UNIT_SRC_IN_CP_AREA)) {
10751                                 dprintf("imsm: Cannot write checkpoint to migration record (UNIT_SRC_IN_CP_AREA)\n");
10752                                 goto abort;
10753                         }
10754                 } else {
10755                         /* set next step to use whole border area */
10756                         border /= next_step;
10757                         if (border > 1)
10758                                 next_step *= border;
10759                 }
10760                 /* When data backed up, checkpoint stored,
10761                  * kick the kernel to reshape unit of data
10762                  */
10763                 next_step = next_step + sra->reshape_progress;
10764                 /* limit next step to array max position */
10765                 if (next_step > max_position)
10766                         next_step = max_position;
10767                 sysfs_set_num(sra, NULL, "suspend_lo", sra->reshape_progress);
10768                 sysfs_set_num(sra, NULL, "suspend_hi", next_step);
10769                 sra->reshape_progress = next_step;
10770
10771                 /* wait until reshape finish */
10772                 if (wait_for_reshape_imsm(sra, ndata)) {
10773                         dprintf("wait_for_reshape_imsm returned error!\n");
10774                         goto abort;
10775                 }
10776                 if (sigterm)
10777                         goto abort;
10778
10779                 if (save_checkpoint_imsm(st, sra, UNIT_SRC_NORMAL) == 1) {
10780                         /* ignore error == 2, this can mean end of reshape here
10781                          */
10782                         dprintf("imsm: Cannot write checkpoint to migration record (UNIT_SRC_NORMAL)\n");
10783                         goto abort;
10784                 }
10785
10786         }
10787
10788         /* clear migr_rec on disks after successful migration */
10789         struct dl *d;
10790
10791         memset(super->migr_rec_buf, 0, MIGR_REC_BUF_SIZE);
10792         for (d = super->disks; d; d = d->next) {
10793                 if (d->index < 0 || is_failed(&d->disk))
10794                         continue;
10795                 unsigned long long dsize;
10796
10797                 get_dev_size(d->fd, NULL, &dsize);
10798                 if (lseek64(d->fd, dsize - MIGR_REC_POSITION,
10799                             SEEK_SET) >= 0) {
10800                         if (write(d->fd, super->migr_rec_buf,
10801                                 MIGR_REC_BUF_SIZE) != MIGR_REC_BUF_SIZE)
10802                                 perror("Write migr_rec failed");
10803                 }
10804         }
10805
10806         /* return '1' if done */
10807         ret_val = 1;
10808 abort:
10809         free(buf);
10810         /* See Grow.c: abort_reshape() for further explanation */
10811         sysfs_set_num(sra, NULL, "suspend_lo", 0x7FFFFFFFFFFFFFFFULL);
10812         sysfs_set_num(sra, NULL, "suspend_hi", 0);
10813         sysfs_set_num(sra, NULL, "suspend_lo", 0);
10814
10815         return ret_val;
10816 }
10817
10818 #endif /* MDASSEMBLE */
10819
10820 struct superswitch super_imsm = {
10821 #ifndef MDASSEMBLE
10822         .examine_super  = examine_super_imsm,
10823         .brief_examine_super = brief_examine_super_imsm,
10824         .brief_examine_subarrays = brief_examine_subarrays_imsm,
10825         .export_examine_super = export_examine_super_imsm,
10826         .detail_super   = detail_super_imsm,
10827         .brief_detail_super = brief_detail_super_imsm,
10828         .write_init_super = write_init_super_imsm,
10829         .validate_geometry = validate_geometry_imsm,
10830         .add_to_super   = add_to_super_imsm,
10831         .remove_from_super = remove_from_super_imsm,
10832         .detail_platform = detail_platform_imsm,
10833         .export_detail_platform = export_detail_platform_imsm,
10834         .kill_subarray = kill_subarray_imsm,
10835         .update_subarray = update_subarray_imsm,
10836         .load_container = load_container_imsm,
10837         .default_geometry = default_geometry_imsm,
10838         .get_disk_controller_domain = imsm_get_disk_controller_domain,
10839         .reshape_super  = imsm_reshape_super,
10840         .manage_reshape = imsm_manage_reshape,
10841         .recover_backup = recover_backup_imsm,
10842         .copy_metadata = copy_metadata_imsm,
10843 #endif
10844         .match_home     = match_home_imsm,
10845         .uuid_from_super= uuid_from_super_imsm,
10846         .getinfo_super  = getinfo_super_imsm,
10847         .getinfo_super_disks = getinfo_super_disks_imsm,
10848         .update_super   = update_super_imsm,
10849
10850         .avail_size     = avail_size_imsm,
10851         .min_acceptable_spare_size = min_acceptable_spare_size_imsm,
10852
10853         .compare_super  = compare_super_imsm,
10854
10855         .load_super     = load_super_imsm,
10856         .init_super     = init_super_imsm,
10857         .store_super    = store_super_imsm,
10858         .free_super     = free_super_imsm,
10859         .match_metadata_desc = match_metadata_desc_imsm,
10860         .container_content = container_content_imsm,
10861         .validate_container = validate_container_imsm,
10862
10863         .external       = 1,
10864         .name = "imsm",
10865
10866 #ifndef MDASSEMBLE
10867 /* for mdmon */
10868         .open_new       = imsm_open_new,
10869         .set_array_state= imsm_set_array_state,
10870         .set_disk       = imsm_set_disk,
10871         .sync_metadata  = imsm_sync_metadata,
10872         .activate_spare = imsm_activate_spare,
10873         .process_update = imsm_process_update,
10874         .prepare_update = imsm_prepare_update,
10875 #endif /* MDASSEMBLE */
10876 };