]> git.neil.brown.name Git - gta04.git/blob - drivers/net/ethernet/freescale/gianfar.c
4605f7246687d0898ad82e9c769026c741d6d540
[gta04.git] / drivers / net / ethernet / freescale / gianfar.c
1 /* drivers/net/ethernet/freescale/gianfar.c
2  *
3  * Gianfar Ethernet Driver
4  * This driver is designed for the non-CPM ethernet controllers
5  * on the 85xx and 83xx family of integrated processors
6  * Based on 8260_io/fcc_enet.c
7  *
8  * Author: Andy Fleming
9  * Maintainer: Kumar Gala
10  * Modifier: Sandeep Gopalpet <sandeep.kumar@freescale.com>
11  *
12  * Copyright 2002-2009, 2011 Freescale Semiconductor, Inc.
13  * Copyright 2007 MontaVista Software, Inc.
14  *
15  * This program is free software; you can redistribute  it and/or modify it
16  * under  the terms of  the GNU General  Public License as published by the
17  * Free Software Foundation;  either version 2 of the  License, or (at your
18  * option) any later version.
19  *
20  *  Gianfar:  AKA Lambda Draconis, "Dragon"
21  *  RA 11 31 24.2
22  *  Dec +69 19 52
23  *  V 3.84
24  *  B-V +1.62
25  *
26  *  Theory of operation
27  *
28  *  The driver is initialized through of_device. Configuration information
29  *  is therefore conveyed through an OF-style device tree.
30  *
31  *  The Gianfar Ethernet Controller uses a ring of buffer
32  *  descriptors.  The beginning is indicated by a register
33  *  pointing to the physical address of the start of the ring.
34  *  The end is determined by a "wrap" bit being set in the
35  *  last descriptor of the ring.
36  *
37  *  When a packet is received, the RXF bit in the
38  *  IEVENT register is set, triggering an interrupt when the
39  *  corresponding bit in the IMASK register is also set (if
40  *  interrupt coalescing is active, then the interrupt may not
41  *  happen immediately, but will wait until either a set number
42  *  of frames or amount of time have passed).  In NAPI, the
43  *  interrupt handler will signal there is work to be done, and
44  *  exit. This method will start at the last known empty
45  *  descriptor, and process every subsequent descriptor until there
46  *  are none left with data (NAPI will stop after a set number of
47  *  packets to give time to other tasks, but will eventually
48  *  process all the packets).  The data arrives inside a
49  *  pre-allocated skb, and so after the skb is passed up to the
50  *  stack, a new skb must be allocated, and the address field in
51  *  the buffer descriptor must be updated to indicate this new
52  *  skb.
53  *
54  *  When the kernel requests that a packet be transmitted, the
55  *  driver starts where it left off last time, and points the
56  *  descriptor at the buffer which was passed in.  The driver
57  *  then informs the DMA engine that there are packets ready to
58  *  be transmitted.  Once the controller is finished transmitting
59  *  the packet, an interrupt may be triggered (under the same
60  *  conditions as for reception, but depending on the TXF bit).
61  *  The driver then cleans up the buffer.
62  */
63
64 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
65 #define DEBUG
66
67 #include <linux/kernel.h>
68 #include <linux/string.h>
69 #include <linux/errno.h>
70 #include <linux/unistd.h>
71 #include <linux/slab.h>
72 #include <linux/interrupt.h>
73 #include <linux/init.h>
74 #include <linux/delay.h>
75 #include <linux/netdevice.h>
76 #include <linux/etherdevice.h>
77 #include <linux/skbuff.h>
78 #include <linux/if_vlan.h>
79 #include <linux/spinlock.h>
80 #include <linux/mm.h>
81 #include <linux/of_mdio.h>
82 #include <linux/of_platform.h>
83 #include <linux/ip.h>
84 #include <linux/tcp.h>
85 #include <linux/udp.h>
86 #include <linux/in.h>
87 #include <linux/net_tstamp.h>
88
89 #include <asm/io.h>
90 #include <asm/reg.h>
91 #include <asm/irq.h>
92 #include <asm/uaccess.h>
93 #include <linux/module.h>
94 #include <linux/dma-mapping.h>
95 #include <linux/crc32.h>
96 #include <linux/mii.h>
97 #include <linux/phy.h>
98 #include <linux/phy_fixed.h>
99 #include <linux/of.h>
100 #include <linux/of_net.h>
101
102 #include "gianfar.h"
103 #include "fsl_pq_mdio.h"
104
105 #define TX_TIMEOUT      (1*HZ)
106
107 const char gfar_driver_version[] = "1.3";
108
109 static int gfar_enet_open(struct net_device *dev);
110 static int gfar_start_xmit(struct sk_buff *skb, struct net_device *dev);
111 static void gfar_reset_task(struct work_struct *work);
112 static void gfar_timeout(struct net_device *dev);
113 static int gfar_close(struct net_device *dev);
114 struct sk_buff *gfar_new_skb(struct net_device *dev);
115 static void gfar_new_rxbdp(struct gfar_priv_rx_q *rx_queue, struct rxbd8 *bdp,
116                            struct sk_buff *skb);
117 static int gfar_set_mac_address(struct net_device *dev);
118 static int gfar_change_mtu(struct net_device *dev, int new_mtu);
119 static irqreturn_t gfar_error(int irq, void *dev_id);
120 static irqreturn_t gfar_transmit(int irq, void *dev_id);
121 static irqreturn_t gfar_interrupt(int irq, void *dev_id);
122 static void adjust_link(struct net_device *dev);
123 static void init_registers(struct net_device *dev);
124 static int init_phy(struct net_device *dev);
125 static int gfar_probe(struct platform_device *ofdev);
126 static int gfar_remove(struct platform_device *ofdev);
127 static void free_skb_resources(struct gfar_private *priv);
128 static void gfar_set_multi(struct net_device *dev);
129 static void gfar_set_hash_for_addr(struct net_device *dev, u8 *addr);
130 static void gfar_configure_serdes(struct net_device *dev);
131 static int gfar_poll(struct napi_struct *napi, int budget);
132 #ifdef CONFIG_NET_POLL_CONTROLLER
133 static void gfar_netpoll(struct net_device *dev);
134 #endif
135 int gfar_clean_rx_ring(struct gfar_priv_rx_q *rx_queue, int rx_work_limit);
136 static int gfar_clean_tx_ring(struct gfar_priv_tx_q *tx_queue);
137 static int gfar_process_frame(struct net_device *dev, struct sk_buff *skb,
138                               int amount_pull, struct napi_struct *napi);
139 void gfar_halt(struct net_device *dev);
140 static void gfar_halt_nodisable(struct net_device *dev);
141 void gfar_start(struct net_device *dev);
142 static void gfar_clear_exact_match(struct net_device *dev);
143 static void gfar_set_mac_for_addr(struct net_device *dev, int num,
144                                   const u8 *addr);
145 static int gfar_ioctl(struct net_device *dev, struct ifreq *rq, int cmd);
146
147 MODULE_AUTHOR("Freescale Semiconductor, Inc");
148 MODULE_DESCRIPTION("Gianfar Ethernet Driver");
149 MODULE_LICENSE("GPL");
150
151 static void gfar_init_rxbdp(struct gfar_priv_rx_q *rx_queue, struct rxbd8 *bdp,
152                             dma_addr_t buf)
153 {
154         u32 lstatus;
155
156         bdp->bufPtr = buf;
157
158         lstatus = BD_LFLAG(RXBD_EMPTY | RXBD_INTERRUPT);
159         if (bdp == rx_queue->rx_bd_base + rx_queue->rx_ring_size - 1)
160                 lstatus |= BD_LFLAG(RXBD_WRAP);
161
162         eieio();
163
164         bdp->lstatus = lstatus;
165 }
166
167 static int gfar_init_bds(struct net_device *ndev)
168 {
169         struct gfar_private *priv = netdev_priv(ndev);
170         struct gfar_priv_tx_q *tx_queue = NULL;
171         struct gfar_priv_rx_q *rx_queue = NULL;
172         struct txbd8 *txbdp;
173         struct rxbd8 *rxbdp;
174         int i, j;
175
176         for (i = 0; i < priv->num_tx_queues; i++) {
177                 tx_queue = priv->tx_queue[i];
178                 /* Initialize some variables in our dev structure */
179                 tx_queue->num_txbdfree = tx_queue->tx_ring_size;
180                 tx_queue->dirty_tx = tx_queue->tx_bd_base;
181                 tx_queue->cur_tx = tx_queue->tx_bd_base;
182                 tx_queue->skb_curtx = 0;
183                 tx_queue->skb_dirtytx = 0;
184
185                 /* Initialize Transmit Descriptor Ring */
186                 txbdp = tx_queue->tx_bd_base;
187                 for (j = 0; j < tx_queue->tx_ring_size; j++) {
188                         txbdp->lstatus = 0;
189                         txbdp->bufPtr = 0;
190                         txbdp++;
191                 }
192
193                 /* Set the last descriptor in the ring to indicate wrap */
194                 txbdp--;
195                 txbdp->status |= TXBD_WRAP;
196         }
197
198         for (i = 0; i < priv->num_rx_queues; i++) {
199                 rx_queue = priv->rx_queue[i];
200                 rx_queue->cur_rx = rx_queue->rx_bd_base;
201                 rx_queue->skb_currx = 0;
202                 rxbdp = rx_queue->rx_bd_base;
203
204                 for (j = 0; j < rx_queue->rx_ring_size; j++) {
205                         struct sk_buff *skb = rx_queue->rx_skbuff[j];
206
207                         if (skb) {
208                                 gfar_init_rxbdp(rx_queue, rxbdp,
209                                                 rxbdp->bufPtr);
210                         } else {
211                                 skb = gfar_new_skb(ndev);
212                                 if (!skb) {
213                                         netdev_err(ndev, "Can't allocate RX buffers\n");
214                                         goto err_rxalloc_fail;
215                                 }
216                                 rx_queue->rx_skbuff[j] = skb;
217
218                                 gfar_new_rxbdp(rx_queue, rxbdp, skb);
219                         }
220
221                         rxbdp++;
222                 }
223
224         }
225
226         return 0;
227
228 err_rxalloc_fail:
229         free_skb_resources(priv);
230         return -ENOMEM;
231 }
232
233 static int gfar_alloc_skb_resources(struct net_device *ndev)
234 {
235         void *vaddr;
236         dma_addr_t addr;
237         int i, j, k;
238         struct gfar_private *priv = netdev_priv(ndev);
239         struct device *dev = &priv->ofdev->dev;
240         struct gfar_priv_tx_q *tx_queue = NULL;
241         struct gfar_priv_rx_q *rx_queue = NULL;
242
243         priv->total_tx_ring_size = 0;
244         for (i = 0; i < priv->num_tx_queues; i++)
245                 priv->total_tx_ring_size += priv->tx_queue[i]->tx_ring_size;
246
247         priv->total_rx_ring_size = 0;
248         for (i = 0; i < priv->num_rx_queues; i++)
249                 priv->total_rx_ring_size += priv->rx_queue[i]->rx_ring_size;
250
251         /* Allocate memory for the buffer descriptors */
252         vaddr = dma_alloc_coherent(dev,
253                         sizeof(struct txbd8) * priv->total_tx_ring_size +
254                         sizeof(struct rxbd8) * priv->total_rx_ring_size,
255                         &addr, GFP_KERNEL);
256         if (!vaddr) {
257                 netif_err(priv, ifup, ndev,
258                           "Could not allocate buffer descriptors!\n");
259                 return -ENOMEM;
260         }
261
262         for (i = 0; i < priv->num_tx_queues; i++) {
263                 tx_queue = priv->tx_queue[i];
264                 tx_queue->tx_bd_base = vaddr;
265                 tx_queue->tx_bd_dma_base = addr;
266                 tx_queue->dev = ndev;
267                 /* enet DMA only understands physical addresses */
268                 addr  += sizeof(struct txbd8) * tx_queue->tx_ring_size;
269                 vaddr += sizeof(struct txbd8) * tx_queue->tx_ring_size;
270         }
271
272         /* Start the rx descriptor ring where the tx ring leaves off */
273         for (i = 0; i < priv->num_rx_queues; i++) {
274                 rx_queue = priv->rx_queue[i];
275                 rx_queue->rx_bd_base = vaddr;
276                 rx_queue->rx_bd_dma_base = addr;
277                 rx_queue->dev = ndev;
278                 addr  += sizeof(struct rxbd8) * rx_queue->rx_ring_size;
279                 vaddr += sizeof(struct rxbd8) * rx_queue->rx_ring_size;
280         }
281
282         /* Setup the skbuff rings */
283         for (i = 0; i < priv->num_tx_queues; i++) {
284                 tx_queue = priv->tx_queue[i];
285                 tx_queue->tx_skbuff = kmalloc(sizeof(*tx_queue->tx_skbuff) *
286                                               tx_queue->tx_ring_size,
287                                               GFP_KERNEL);
288                 if (!tx_queue->tx_skbuff) {
289                         netif_err(priv, ifup, ndev,
290                                   "Could not allocate tx_skbuff\n");
291                         goto cleanup;
292                 }
293
294                 for (k = 0; k < tx_queue->tx_ring_size; k++)
295                         tx_queue->tx_skbuff[k] = NULL;
296         }
297
298         for (i = 0; i < priv->num_rx_queues; i++) {
299                 rx_queue = priv->rx_queue[i];
300                 rx_queue->rx_skbuff = kmalloc(sizeof(*rx_queue->rx_skbuff) *
301                                               rx_queue->rx_ring_size,
302                                               GFP_KERNEL);
303
304                 if (!rx_queue->rx_skbuff) {
305                         netif_err(priv, ifup, ndev,
306                                   "Could not allocate rx_skbuff\n");
307                         goto cleanup;
308                 }
309
310                 for (j = 0; j < rx_queue->rx_ring_size; j++)
311                         rx_queue->rx_skbuff[j] = NULL;
312         }
313
314         if (gfar_init_bds(ndev))
315                 goto cleanup;
316
317         return 0;
318
319 cleanup:
320         free_skb_resources(priv);
321         return -ENOMEM;
322 }
323
324 static void gfar_init_tx_rx_base(struct gfar_private *priv)
325 {
326         struct gfar __iomem *regs = priv->gfargrp[0].regs;
327         u32 __iomem *baddr;
328         int i;
329
330         baddr = &regs->tbase0;
331         for (i = 0; i < priv->num_tx_queues; i++) {
332                 gfar_write(baddr, priv->tx_queue[i]->tx_bd_dma_base);
333                 baddr += 2;
334         }
335
336         baddr = &regs->rbase0;
337         for (i = 0; i < priv->num_rx_queues; i++) {
338                 gfar_write(baddr, priv->rx_queue[i]->rx_bd_dma_base);
339                 baddr += 2;
340         }
341 }
342
343 static void gfar_init_mac(struct net_device *ndev)
344 {
345         struct gfar_private *priv = netdev_priv(ndev);
346         struct gfar __iomem *regs = priv->gfargrp[0].regs;
347         u32 rctrl = 0;
348         u32 tctrl = 0;
349         u32 attrs = 0;
350
351         /* write the tx/rx base registers */
352         gfar_init_tx_rx_base(priv);
353
354         /* Configure the coalescing support */
355         gfar_configure_coalescing(priv, 0xFF, 0xFF);
356
357         if (priv->rx_filer_enable) {
358                 rctrl |= RCTRL_FILREN;
359                 /* Program the RIR0 reg with the required distribution */
360                 gfar_write(&regs->rir0, DEFAULT_RIR0);
361         }
362
363         if (ndev->features & NETIF_F_RXCSUM)
364                 rctrl |= RCTRL_CHECKSUMMING;
365
366         if (priv->extended_hash) {
367                 rctrl |= RCTRL_EXTHASH;
368
369                 gfar_clear_exact_match(ndev);
370                 rctrl |= RCTRL_EMEN;
371         }
372
373         if (priv->padding) {
374                 rctrl &= ~RCTRL_PAL_MASK;
375                 rctrl |= RCTRL_PADDING(priv->padding);
376         }
377
378         /* Insert receive time stamps into padding alignment bytes */
379         if (priv->device_flags & FSL_GIANFAR_DEV_HAS_TIMER) {
380                 rctrl &= ~RCTRL_PAL_MASK;
381                 rctrl |= RCTRL_PADDING(8);
382                 priv->padding = 8;
383         }
384
385         /* Enable HW time stamping if requested from user space */
386         if (priv->hwts_rx_en)
387                 rctrl |= RCTRL_PRSDEP_INIT | RCTRL_TS_ENABLE;
388
389         if (ndev->features & NETIF_F_HW_VLAN_RX)
390                 rctrl |= RCTRL_VLEX | RCTRL_PRSDEP_INIT;
391
392         /* Init rctrl based on our settings */
393         gfar_write(&regs->rctrl, rctrl);
394
395         if (ndev->features & NETIF_F_IP_CSUM)
396                 tctrl |= TCTRL_INIT_CSUM;
397
398         tctrl |= TCTRL_TXSCHED_PRIO;
399
400         gfar_write(&regs->tctrl, tctrl);
401
402         /* Set the extraction length and index */
403         attrs = ATTRELI_EL(priv->rx_stash_size) |
404                 ATTRELI_EI(priv->rx_stash_index);
405
406         gfar_write(&regs->attreli, attrs);
407
408         /* Start with defaults, and add stashing or locking
409          * depending on the approprate variables
410          */
411         attrs = ATTR_INIT_SETTINGS;
412
413         if (priv->bd_stash_en)
414                 attrs |= ATTR_BDSTASH;
415
416         if (priv->rx_stash_size != 0)
417                 attrs |= ATTR_BUFSTASH;
418
419         gfar_write(&regs->attr, attrs);
420
421         gfar_write(&regs->fifo_tx_thr, priv->fifo_threshold);
422         gfar_write(&regs->fifo_tx_starve, priv->fifo_starve);
423         gfar_write(&regs->fifo_tx_starve_shutoff, priv->fifo_starve_off);
424 }
425
426 static struct net_device_stats *gfar_get_stats(struct net_device *dev)
427 {
428         struct gfar_private *priv = netdev_priv(dev);
429         unsigned long rx_packets = 0, rx_bytes = 0, rx_dropped = 0;
430         unsigned long tx_packets = 0, tx_bytes = 0;
431         int i;
432
433         for (i = 0; i < priv->num_rx_queues; i++) {
434                 rx_packets += priv->rx_queue[i]->stats.rx_packets;
435                 rx_bytes   += priv->rx_queue[i]->stats.rx_bytes;
436                 rx_dropped += priv->rx_queue[i]->stats.rx_dropped;
437         }
438
439         dev->stats.rx_packets = rx_packets;
440         dev->stats.rx_bytes   = rx_bytes;
441         dev->stats.rx_dropped = rx_dropped;
442
443         for (i = 0; i < priv->num_tx_queues; i++) {
444                 tx_bytes += priv->tx_queue[i]->stats.tx_bytes;
445                 tx_packets += priv->tx_queue[i]->stats.tx_packets;
446         }
447
448         dev->stats.tx_bytes   = tx_bytes;
449         dev->stats.tx_packets = tx_packets;
450
451         return &dev->stats;
452 }
453
454 static const struct net_device_ops gfar_netdev_ops = {
455         .ndo_open = gfar_enet_open,
456         .ndo_start_xmit = gfar_start_xmit,
457         .ndo_stop = gfar_close,
458         .ndo_change_mtu = gfar_change_mtu,
459         .ndo_set_features = gfar_set_features,
460         .ndo_set_rx_mode = gfar_set_multi,
461         .ndo_tx_timeout = gfar_timeout,
462         .ndo_do_ioctl = gfar_ioctl,
463         .ndo_get_stats = gfar_get_stats,
464         .ndo_set_mac_address = eth_mac_addr,
465         .ndo_validate_addr = eth_validate_addr,
466 #ifdef CONFIG_NET_POLL_CONTROLLER
467         .ndo_poll_controller = gfar_netpoll,
468 #endif
469 };
470
471 void lock_rx_qs(struct gfar_private *priv)
472 {
473         int i;
474
475         for (i = 0; i < priv->num_rx_queues; i++)
476                 spin_lock(&priv->rx_queue[i]->rxlock);
477 }
478
479 void lock_tx_qs(struct gfar_private *priv)
480 {
481         int i;
482
483         for (i = 0; i < priv->num_tx_queues; i++)
484                 spin_lock(&priv->tx_queue[i]->txlock);
485 }
486
487 void unlock_rx_qs(struct gfar_private *priv)
488 {
489         int i;
490
491         for (i = 0; i < priv->num_rx_queues; i++)
492                 spin_unlock(&priv->rx_queue[i]->rxlock);
493 }
494
495 void unlock_tx_qs(struct gfar_private *priv)
496 {
497         int i;
498
499         for (i = 0; i < priv->num_tx_queues; i++)
500                 spin_unlock(&priv->tx_queue[i]->txlock);
501 }
502
503 static bool gfar_is_vlan_on(struct gfar_private *priv)
504 {
505         return (priv->ndev->features & NETIF_F_HW_VLAN_RX) ||
506                (priv->ndev->features & NETIF_F_HW_VLAN_TX);
507 }
508
509 /* Returns 1 if incoming frames use an FCB */
510 static inline int gfar_uses_fcb(struct gfar_private *priv)
511 {
512         return gfar_is_vlan_on(priv) ||
513                (priv->ndev->features & NETIF_F_RXCSUM) ||
514                (priv->device_flags & FSL_GIANFAR_DEV_HAS_TIMER);
515 }
516
517 static void free_tx_pointers(struct gfar_private *priv)
518 {
519         int i;
520
521         for (i = 0; i < priv->num_tx_queues; i++)
522                 kfree(priv->tx_queue[i]);
523 }
524
525 static void free_rx_pointers(struct gfar_private *priv)
526 {
527         int i;
528
529         for (i = 0; i < priv->num_rx_queues; i++)
530                 kfree(priv->rx_queue[i]);
531 }
532
533 static void unmap_group_regs(struct gfar_private *priv)
534 {
535         int i;
536
537         for (i = 0; i < MAXGROUPS; i++)
538                 if (priv->gfargrp[i].regs)
539                         iounmap(priv->gfargrp[i].regs);
540 }
541
542 static void disable_napi(struct gfar_private *priv)
543 {
544         int i;
545
546         for (i = 0; i < priv->num_grps; i++)
547                 napi_disable(&priv->gfargrp[i].napi);
548 }
549
550 static void enable_napi(struct gfar_private *priv)
551 {
552         int i;
553
554         for (i = 0; i < priv->num_grps; i++)
555                 napi_enable(&priv->gfargrp[i].napi);
556 }
557
558 static int gfar_parse_group(struct device_node *np,
559                             struct gfar_private *priv, const char *model)
560 {
561         u32 *queue_mask;
562
563         priv->gfargrp[priv->num_grps].regs = of_iomap(np, 0);
564         if (!priv->gfargrp[priv->num_grps].regs)
565                 return -ENOMEM;
566
567         priv->gfargrp[priv->num_grps].interruptTransmit =
568                         irq_of_parse_and_map(np, 0);
569
570         /* If we aren't the FEC we have multiple interrupts */
571         if (model && strcasecmp(model, "FEC")) {
572                 priv->gfargrp[priv->num_grps].interruptReceive =
573                         irq_of_parse_and_map(np, 1);
574                 priv->gfargrp[priv->num_grps].interruptError =
575                         irq_of_parse_and_map(np,2);
576                 if (priv->gfargrp[priv->num_grps].interruptTransmit == NO_IRQ ||
577                     priv->gfargrp[priv->num_grps].interruptReceive  == NO_IRQ ||
578                     priv->gfargrp[priv->num_grps].interruptError    == NO_IRQ)
579                         return -EINVAL;
580         }
581
582         priv->gfargrp[priv->num_grps].grp_id = priv->num_grps;
583         priv->gfargrp[priv->num_grps].priv = priv;
584         spin_lock_init(&priv->gfargrp[priv->num_grps].grplock);
585         if (priv->mode == MQ_MG_MODE) {
586                 queue_mask = (u32 *)of_get_property(np, "fsl,rx-bit-map", NULL);
587                 priv->gfargrp[priv->num_grps].rx_bit_map = queue_mask ?
588                         *queue_mask : (DEFAULT_MAPPING >> priv->num_grps);
589                 queue_mask = (u32 *)of_get_property(np, "fsl,tx-bit-map", NULL);
590                 priv->gfargrp[priv->num_grps].tx_bit_map = queue_mask ?
591                         *queue_mask : (DEFAULT_MAPPING >> priv->num_grps);
592         } else {
593                 priv->gfargrp[priv->num_grps].rx_bit_map = 0xFF;
594                 priv->gfargrp[priv->num_grps].tx_bit_map = 0xFF;
595         }
596         priv->num_grps++;
597
598         return 0;
599 }
600
601 static int gfar_of_init(struct platform_device *ofdev, struct net_device **pdev)
602 {
603         const char *model;
604         const char *ctype;
605         const void *mac_addr;
606         int err = 0, i;
607         struct net_device *dev = NULL;
608         struct gfar_private *priv = NULL;
609         struct device_node *np = ofdev->dev.of_node;
610         struct device_node *child = NULL;
611         const u32 *stash;
612         const u32 *stash_len;
613         const u32 *stash_idx;
614         unsigned int num_tx_qs, num_rx_qs;
615         u32 *tx_queues, *rx_queues;
616
617         if (!np || !of_device_is_available(np))
618                 return -ENODEV;
619
620         /* parse the num of tx and rx queues */
621         tx_queues = (u32 *)of_get_property(np, "fsl,num_tx_queues", NULL);
622         num_tx_qs = tx_queues ? *tx_queues : 1;
623
624         if (num_tx_qs > MAX_TX_QS) {
625                 pr_err("num_tx_qs(=%d) greater than MAX_TX_QS(=%d)\n",
626                        num_tx_qs, MAX_TX_QS);
627                 pr_err("Cannot do alloc_etherdev, aborting\n");
628                 return -EINVAL;
629         }
630
631         rx_queues = (u32 *)of_get_property(np, "fsl,num_rx_queues", NULL);
632         num_rx_qs = rx_queues ? *rx_queues : 1;
633
634         if (num_rx_qs > MAX_RX_QS) {
635                 pr_err("num_rx_qs(=%d) greater than MAX_RX_QS(=%d)\n",
636                        num_rx_qs, MAX_RX_QS);
637                 pr_err("Cannot do alloc_etherdev, aborting\n");
638                 return -EINVAL;
639         }
640
641         *pdev = alloc_etherdev_mq(sizeof(*priv), num_tx_qs);
642         dev = *pdev;
643         if (NULL == dev)
644                 return -ENOMEM;
645
646         priv = netdev_priv(dev);
647         priv->node = ofdev->dev.of_node;
648         priv->ndev = dev;
649
650         priv->num_tx_queues = num_tx_qs;
651         netif_set_real_num_rx_queues(dev, num_rx_qs);
652         priv->num_rx_queues = num_rx_qs;
653         priv->num_grps = 0x0;
654
655         /* Init Rx queue filer rule set linked list */
656         INIT_LIST_HEAD(&priv->rx_list.list);
657         priv->rx_list.count = 0;
658         mutex_init(&priv->rx_queue_access);
659
660         model = of_get_property(np, "model", NULL);
661
662         for (i = 0; i < MAXGROUPS; i++)
663                 priv->gfargrp[i].regs = NULL;
664
665         /* Parse and initialize group specific information */
666         if (of_device_is_compatible(np, "fsl,etsec2")) {
667                 priv->mode = MQ_MG_MODE;
668                 for_each_child_of_node(np, child) {
669                         err = gfar_parse_group(child, priv, model);
670                         if (err)
671                                 goto err_grp_init;
672                 }
673         } else {
674                 priv->mode = SQ_SG_MODE;
675                 err = gfar_parse_group(np, priv, model);
676                 if (err)
677                         goto err_grp_init;
678         }
679
680         for (i = 0; i < priv->num_tx_queues; i++)
681                priv->tx_queue[i] = NULL;
682         for (i = 0; i < priv->num_rx_queues; i++)
683                 priv->rx_queue[i] = NULL;
684
685         for (i = 0; i < priv->num_tx_queues; i++) {
686                 priv->tx_queue[i] = kzalloc(sizeof(struct gfar_priv_tx_q),
687                                             GFP_KERNEL);
688                 if (!priv->tx_queue[i]) {
689                         err = -ENOMEM;
690                         goto tx_alloc_failed;
691                 }
692                 priv->tx_queue[i]->tx_skbuff = NULL;
693                 priv->tx_queue[i]->qindex = i;
694                 priv->tx_queue[i]->dev = dev;
695                 spin_lock_init(&(priv->tx_queue[i]->txlock));
696         }
697
698         for (i = 0; i < priv->num_rx_queues; i++) {
699                 priv->rx_queue[i] = kzalloc(sizeof(struct gfar_priv_rx_q),
700                                             GFP_KERNEL);
701                 if (!priv->rx_queue[i]) {
702                         err = -ENOMEM;
703                         goto rx_alloc_failed;
704                 }
705                 priv->rx_queue[i]->rx_skbuff = NULL;
706                 priv->rx_queue[i]->qindex = i;
707                 priv->rx_queue[i]->dev = dev;
708                 spin_lock_init(&(priv->rx_queue[i]->rxlock));
709         }
710
711
712         stash = of_get_property(np, "bd-stash", NULL);
713
714         if (stash) {
715                 priv->device_flags |= FSL_GIANFAR_DEV_HAS_BD_STASHING;
716                 priv->bd_stash_en = 1;
717         }
718
719         stash_len = of_get_property(np, "rx-stash-len", NULL);
720
721         if (stash_len)
722                 priv->rx_stash_size = *stash_len;
723
724         stash_idx = of_get_property(np, "rx-stash-idx", NULL);
725
726         if (stash_idx)
727                 priv->rx_stash_index = *stash_idx;
728
729         if (stash_len || stash_idx)
730                 priv->device_flags |= FSL_GIANFAR_DEV_HAS_BUF_STASHING;
731
732         mac_addr = of_get_mac_address(np);
733
734         if (mac_addr)
735                 memcpy(dev->dev_addr, mac_addr, ETH_ALEN);
736
737         if (model && !strcasecmp(model, "TSEC"))
738                 priv->device_flags = FSL_GIANFAR_DEV_HAS_GIGABIT |
739                                      FSL_GIANFAR_DEV_HAS_COALESCE |
740                                      FSL_GIANFAR_DEV_HAS_RMON |
741                                      FSL_GIANFAR_DEV_HAS_MULTI_INTR;
742
743         if (model && !strcasecmp(model, "eTSEC"))
744                 priv->device_flags = FSL_GIANFAR_DEV_HAS_GIGABIT |
745                                      FSL_GIANFAR_DEV_HAS_COALESCE |
746                                      FSL_GIANFAR_DEV_HAS_RMON |
747                                      FSL_GIANFAR_DEV_HAS_MULTI_INTR |
748                                      FSL_GIANFAR_DEV_HAS_PADDING |
749                                      FSL_GIANFAR_DEV_HAS_CSUM |
750                                      FSL_GIANFAR_DEV_HAS_VLAN |
751                                      FSL_GIANFAR_DEV_HAS_MAGIC_PACKET |
752                                      FSL_GIANFAR_DEV_HAS_EXTENDED_HASH |
753                                      FSL_GIANFAR_DEV_HAS_TIMER;
754
755         ctype = of_get_property(np, "phy-connection-type", NULL);
756
757         /* We only care about rgmii-id.  The rest are autodetected */
758         if (ctype && !strcmp(ctype, "rgmii-id"))
759                 priv->interface = PHY_INTERFACE_MODE_RGMII_ID;
760         else
761                 priv->interface = PHY_INTERFACE_MODE_MII;
762
763         if (of_get_property(np, "fsl,magic-packet", NULL))
764                 priv->device_flags |= FSL_GIANFAR_DEV_HAS_MAGIC_PACKET;
765
766         priv->phy_node = of_parse_phandle(np, "phy-handle", 0);
767
768         /* Find the TBI PHY.  If it's not there, we don't support SGMII */
769         priv->tbi_node = of_parse_phandle(np, "tbi-handle", 0);
770
771         return 0;
772
773 rx_alloc_failed:
774         free_rx_pointers(priv);
775 tx_alloc_failed:
776         free_tx_pointers(priv);
777 err_grp_init:
778         unmap_group_regs(priv);
779         free_netdev(dev);
780         return err;
781 }
782
783 static int gfar_hwtstamp_ioctl(struct net_device *netdev,
784                                struct ifreq *ifr, int cmd)
785 {
786         struct hwtstamp_config config;
787         struct gfar_private *priv = netdev_priv(netdev);
788
789         if (copy_from_user(&config, ifr->ifr_data, sizeof(config)))
790                 return -EFAULT;
791
792         /* reserved for future extensions */
793         if (config.flags)
794                 return -EINVAL;
795
796         switch (config.tx_type) {
797         case HWTSTAMP_TX_OFF:
798                 priv->hwts_tx_en = 0;
799                 break;
800         case HWTSTAMP_TX_ON:
801                 if (!(priv->device_flags & FSL_GIANFAR_DEV_HAS_TIMER))
802                         return -ERANGE;
803                 priv->hwts_tx_en = 1;
804                 break;
805         default:
806                 return -ERANGE;
807         }
808
809         switch (config.rx_filter) {
810         case HWTSTAMP_FILTER_NONE:
811                 if (priv->hwts_rx_en) {
812                         stop_gfar(netdev);
813                         priv->hwts_rx_en = 0;
814                         startup_gfar(netdev);
815                 }
816                 break;
817         default:
818                 if (!(priv->device_flags & FSL_GIANFAR_DEV_HAS_TIMER))
819                         return -ERANGE;
820                 if (!priv->hwts_rx_en) {
821                         stop_gfar(netdev);
822                         priv->hwts_rx_en = 1;
823                         startup_gfar(netdev);
824                 }
825                 config.rx_filter = HWTSTAMP_FILTER_ALL;
826                 break;
827         }
828
829         return copy_to_user(ifr->ifr_data, &config, sizeof(config)) ?
830                 -EFAULT : 0;
831 }
832
833 /* Ioctl MII Interface */
834 static int gfar_ioctl(struct net_device *dev, struct ifreq *rq, int cmd)
835 {
836         struct gfar_private *priv = netdev_priv(dev);
837
838         if (!netif_running(dev))
839                 return -EINVAL;
840
841         if (cmd == SIOCSHWTSTAMP)
842                 return gfar_hwtstamp_ioctl(dev, rq, cmd);
843
844         if (!priv->phydev)
845                 return -ENODEV;
846
847         return phy_mii_ioctl(priv->phydev, rq, cmd);
848 }
849
850 static unsigned int reverse_bitmap(unsigned int bit_map, unsigned int max_qs)
851 {
852         unsigned int new_bit_map = 0x0;
853         int mask = 0x1 << (max_qs - 1), i;
854
855         for (i = 0; i < max_qs; i++) {
856                 if (bit_map & mask)
857                         new_bit_map = new_bit_map + (1 << i);
858                 mask = mask >> 0x1;
859         }
860         return new_bit_map;
861 }
862
863 static u32 cluster_entry_per_class(struct gfar_private *priv, u32 rqfar,
864                                    u32 class)
865 {
866         u32 rqfpr = FPR_FILER_MASK;
867         u32 rqfcr = 0x0;
868
869         rqfar--;
870         rqfcr = RQFCR_CLE | RQFCR_PID_MASK | RQFCR_CMP_EXACT;
871         priv->ftp_rqfpr[rqfar] = rqfpr;
872         priv->ftp_rqfcr[rqfar] = rqfcr;
873         gfar_write_filer(priv, rqfar, rqfcr, rqfpr);
874
875         rqfar--;
876         rqfcr = RQFCR_CMP_NOMATCH;
877         priv->ftp_rqfpr[rqfar] = rqfpr;
878         priv->ftp_rqfcr[rqfar] = rqfcr;
879         gfar_write_filer(priv, rqfar, rqfcr, rqfpr);
880
881         rqfar--;
882         rqfcr = RQFCR_CMP_EXACT | RQFCR_PID_PARSE | RQFCR_CLE | RQFCR_AND;
883         rqfpr = class;
884         priv->ftp_rqfcr[rqfar] = rqfcr;
885         priv->ftp_rqfpr[rqfar] = rqfpr;
886         gfar_write_filer(priv, rqfar, rqfcr, rqfpr);
887
888         rqfar--;
889         rqfcr = RQFCR_CMP_EXACT | RQFCR_PID_MASK | RQFCR_AND;
890         rqfpr = class;
891         priv->ftp_rqfcr[rqfar] = rqfcr;
892         priv->ftp_rqfpr[rqfar] = rqfpr;
893         gfar_write_filer(priv, rqfar, rqfcr, rqfpr);
894
895         return rqfar;
896 }
897
898 static void gfar_init_filer_table(struct gfar_private *priv)
899 {
900         int i = 0x0;
901         u32 rqfar = MAX_FILER_IDX;
902         u32 rqfcr = 0x0;
903         u32 rqfpr = FPR_FILER_MASK;
904
905         /* Default rule */
906         rqfcr = RQFCR_CMP_MATCH;
907         priv->ftp_rqfcr[rqfar] = rqfcr;
908         priv->ftp_rqfpr[rqfar] = rqfpr;
909         gfar_write_filer(priv, rqfar, rqfcr, rqfpr);
910
911         rqfar = cluster_entry_per_class(priv, rqfar, RQFPR_IPV6);
912         rqfar = cluster_entry_per_class(priv, rqfar, RQFPR_IPV6 | RQFPR_UDP);
913         rqfar = cluster_entry_per_class(priv, rqfar, RQFPR_IPV6 | RQFPR_TCP);
914         rqfar = cluster_entry_per_class(priv, rqfar, RQFPR_IPV4);
915         rqfar = cluster_entry_per_class(priv, rqfar, RQFPR_IPV4 | RQFPR_UDP);
916         rqfar = cluster_entry_per_class(priv, rqfar, RQFPR_IPV4 | RQFPR_TCP);
917
918         /* cur_filer_idx indicated the first non-masked rule */
919         priv->cur_filer_idx = rqfar;
920
921         /* Rest are masked rules */
922         rqfcr = RQFCR_CMP_NOMATCH;
923         for (i = 0; i < rqfar; i++) {
924                 priv->ftp_rqfcr[i] = rqfcr;
925                 priv->ftp_rqfpr[i] = rqfpr;
926                 gfar_write_filer(priv, i, rqfcr, rqfpr);
927         }
928 }
929
930 static void gfar_detect_errata(struct gfar_private *priv)
931 {
932         struct device *dev = &priv->ofdev->dev;
933         unsigned int pvr = mfspr(SPRN_PVR);
934         unsigned int svr = mfspr(SPRN_SVR);
935         unsigned int mod = (svr >> 16) & 0xfff6; /* w/o E suffix */
936         unsigned int rev = svr & 0xffff;
937
938         /* MPC8313 Rev 2.0 and higher; All MPC837x */
939         if ((pvr == 0x80850010 && mod == 0x80b0 && rev >= 0x0020) ||
940             (pvr == 0x80861010 && (mod & 0xfff9) == 0x80c0))
941                 priv->errata |= GFAR_ERRATA_74;
942
943         /* MPC8313 and MPC837x all rev */
944         if ((pvr == 0x80850010 && mod == 0x80b0) ||
945             (pvr == 0x80861010 && (mod & 0xfff9) == 0x80c0))
946                 priv->errata |= GFAR_ERRATA_76;
947
948         /* MPC8313 and MPC837x all rev */
949         if ((pvr == 0x80850010 && mod == 0x80b0) ||
950             (pvr == 0x80861010 && (mod & 0xfff9) == 0x80c0))
951                 priv->errata |= GFAR_ERRATA_A002;
952
953         /* MPC8313 Rev < 2.0, MPC8548 rev 2.0 */
954         if ((pvr == 0x80850010 && mod == 0x80b0 && rev < 0x0020) ||
955             (pvr == 0x80210020 && mod == 0x8030 && rev == 0x0020))
956                 priv->errata |= GFAR_ERRATA_12;
957
958         if (priv->errata)
959                 dev_info(dev, "enabled errata workarounds, flags: 0x%x\n",
960                          priv->errata);
961 }
962
963 /* Set up the ethernet device structure, private data,
964  * and anything else we need before we start
965  */
966 static int gfar_probe(struct platform_device *ofdev)
967 {
968         u32 tempval;
969         struct net_device *dev = NULL;
970         struct gfar_private *priv = NULL;
971         struct gfar __iomem *regs = NULL;
972         int err = 0, i, grp_idx = 0;
973         u32 rstat = 0, tstat = 0, rqueue = 0, tqueue = 0;
974         u32 isrg = 0;
975         u32 __iomem *baddr;
976
977         err = gfar_of_init(ofdev, &dev);
978
979         if (err)
980                 return err;
981
982         priv = netdev_priv(dev);
983         priv->ndev = dev;
984         priv->ofdev = ofdev;
985         priv->node = ofdev->dev.of_node;
986         SET_NETDEV_DEV(dev, &ofdev->dev);
987
988         spin_lock_init(&priv->bflock);
989         INIT_WORK(&priv->reset_task, gfar_reset_task);
990
991         dev_set_drvdata(&ofdev->dev, priv);
992         regs = priv->gfargrp[0].regs;
993
994         gfar_detect_errata(priv);
995
996         /* Stop the DMA engine now, in case it was running before
997          * (The firmware could have used it, and left it running).
998          */
999         gfar_halt(dev);
1000
1001         /* Reset MAC layer */
1002         gfar_write(&regs->maccfg1, MACCFG1_SOFT_RESET);
1003
1004         /* We need to delay at least 3 TX clocks */
1005         udelay(2);
1006
1007         tempval = (MACCFG1_TX_FLOW | MACCFG1_RX_FLOW);
1008         gfar_write(&regs->maccfg1, tempval);
1009
1010         /* Initialize MACCFG2. */
1011         tempval = MACCFG2_INIT_SETTINGS;
1012         if (gfar_has_errata(priv, GFAR_ERRATA_74))
1013                 tempval |= MACCFG2_HUGEFRAME | MACCFG2_LENGTHCHECK;
1014         gfar_write(&regs->maccfg2, tempval);
1015
1016         /* Initialize ECNTRL */
1017         gfar_write(&regs->ecntrl, ECNTRL_INIT_SETTINGS);
1018
1019         /* Set the dev->base_addr to the gfar reg region */
1020         dev->base_addr = (unsigned long) regs;
1021
1022         SET_NETDEV_DEV(dev, &ofdev->dev);
1023
1024         /* Fill in the dev structure */
1025         dev->watchdog_timeo = TX_TIMEOUT;
1026         dev->mtu = 1500;
1027         dev->netdev_ops = &gfar_netdev_ops;
1028         dev->ethtool_ops = &gfar_ethtool_ops;
1029
1030         /* Register for napi ...We are registering NAPI for each grp */
1031         for (i = 0; i < priv->num_grps; i++)
1032                 netif_napi_add(dev, &priv->gfargrp[i].napi, gfar_poll,
1033                                GFAR_DEV_WEIGHT);
1034
1035         if (priv->device_flags & FSL_GIANFAR_DEV_HAS_CSUM) {
1036                 dev->hw_features = NETIF_F_IP_CSUM | NETIF_F_SG |
1037                                    NETIF_F_RXCSUM;
1038                 dev->features |= NETIF_F_IP_CSUM | NETIF_F_SG |
1039                                  NETIF_F_RXCSUM | NETIF_F_HIGHDMA;
1040         }
1041
1042         if (priv->device_flags & FSL_GIANFAR_DEV_HAS_VLAN) {
1043                 dev->hw_features |= NETIF_F_HW_VLAN_TX | NETIF_F_HW_VLAN_RX;
1044                 dev->features |= NETIF_F_HW_VLAN_TX | NETIF_F_HW_VLAN_RX;
1045         }
1046
1047         if (priv->device_flags & FSL_GIANFAR_DEV_HAS_EXTENDED_HASH) {
1048                 priv->extended_hash = 1;
1049                 priv->hash_width = 9;
1050
1051                 priv->hash_regs[0] = &regs->igaddr0;
1052                 priv->hash_regs[1] = &regs->igaddr1;
1053                 priv->hash_regs[2] = &regs->igaddr2;
1054                 priv->hash_regs[3] = &regs->igaddr3;
1055                 priv->hash_regs[4] = &regs->igaddr4;
1056                 priv->hash_regs[5] = &regs->igaddr5;
1057                 priv->hash_regs[6] = &regs->igaddr6;
1058                 priv->hash_regs[7] = &regs->igaddr7;
1059                 priv->hash_regs[8] = &regs->gaddr0;
1060                 priv->hash_regs[9] = &regs->gaddr1;
1061                 priv->hash_regs[10] = &regs->gaddr2;
1062                 priv->hash_regs[11] = &regs->gaddr3;
1063                 priv->hash_regs[12] = &regs->gaddr4;
1064                 priv->hash_regs[13] = &regs->gaddr5;
1065                 priv->hash_regs[14] = &regs->gaddr6;
1066                 priv->hash_regs[15] = &regs->gaddr7;
1067
1068         } else {
1069                 priv->extended_hash = 0;
1070                 priv->hash_width = 8;
1071
1072                 priv->hash_regs[0] = &regs->gaddr0;
1073                 priv->hash_regs[1] = &regs->gaddr1;
1074                 priv->hash_regs[2] = &regs->gaddr2;
1075                 priv->hash_regs[3] = &regs->gaddr3;
1076                 priv->hash_regs[4] = &regs->gaddr4;
1077                 priv->hash_regs[5] = &regs->gaddr5;
1078                 priv->hash_regs[6] = &regs->gaddr6;
1079                 priv->hash_regs[7] = &regs->gaddr7;
1080         }
1081
1082         if (priv->device_flags & FSL_GIANFAR_DEV_HAS_PADDING)
1083                 priv->padding = DEFAULT_PADDING;
1084         else
1085                 priv->padding = 0;
1086
1087         if (dev->features & NETIF_F_IP_CSUM ||
1088             priv->device_flags & FSL_GIANFAR_DEV_HAS_TIMER)
1089                 dev->needed_headroom = GMAC_FCB_LEN;
1090
1091         /* Program the isrg regs only if number of grps > 1 */
1092         if (priv->num_grps > 1) {
1093                 baddr = &regs->isrg0;
1094                 for (i = 0; i < priv->num_grps; i++) {
1095                         isrg |= (priv->gfargrp[i].rx_bit_map << ISRG_SHIFT_RX);
1096                         isrg |= (priv->gfargrp[i].tx_bit_map << ISRG_SHIFT_TX);
1097                         gfar_write(baddr, isrg);
1098                         baddr++;
1099                         isrg = 0x0;
1100                 }
1101         }
1102
1103         /* Need to reverse the bit maps as  bit_map's MSB is q0
1104          * but, for_each_set_bit parses from right to left, which
1105          * basically reverses the queue numbers
1106          */
1107         for (i = 0; i< priv->num_grps; i++) {
1108                 priv->gfargrp[i].tx_bit_map =
1109                         reverse_bitmap(priv->gfargrp[i].tx_bit_map, MAX_TX_QS);
1110                 priv->gfargrp[i].rx_bit_map =
1111                         reverse_bitmap(priv->gfargrp[i].rx_bit_map, MAX_RX_QS);
1112         }
1113
1114         /* Calculate RSTAT, TSTAT, RQUEUE and TQUEUE values,
1115          * also assign queues to groups
1116          */
1117         for (grp_idx = 0; grp_idx < priv->num_grps; grp_idx++) {
1118                 priv->gfargrp[grp_idx].num_rx_queues = 0x0;
1119
1120                 for_each_set_bit(i, &priv->gfargrp[grp_idx].rx_bit_map,
1121                                  priv->num_rx_queues) {
1122                         priv->gfargrp[grp_idx].num_rx_queues++;
1123                         priv->rx_queue[i]->grp = &priv->gfargrp[grp_idx];
1124                         rstat = rstat | (RSTAT_CLEAR_RHALT >> i);
1125                         rqueue = rqueue | ((RQUEUE_EN0 | RQUEUE_EX0) >> i);
1126                 }
1127                 priv->gfargrp[grp_idx].num_tx_queues = 0x0;
1128
1129                 for_each_set_bit(i, &priv->gfargrp[grp_idx].tx_bit_map,
1130                                  priv->num_tx_queues) {
1131                         priv->gfargrp[grp_idx].num_tx_queues++;
1132                         priv->tx_queue[i]->grp = &priv->gfargrp[grp_idx];
1133                         tstat = tstat | (TSTAT_CLEAR_THALT >> i);
1134                         tqueue = tqueue | (TQUEUE_EN0 >> i);
1135                 }
1136                 priv->gfargrp[grp_idx].rstat = rstat;
1137                 priv->gfargrp[grp_idx].tstat = tstat;
1138                 rstat = tstat =0;
1139         }
1140
1141         gfar_write(&regs->rqueue, rqueue);
1142         gfar_write(&regs->tqueue, tqueue);
1143
1144         priv->rx_buffer_size = DEFAULT_RX_BUFFER_SIZE;
1145
1146         /* Initializing some of the rx/tx queue level parameters */
1147         for (i = 0; i < priv->num_tx_queues; i++) {
1148                 priv->tx_queue[i]->tx_ring_size = DEFAULT_TX_RING_SIZE;
1149                 priv->tx_queue[i]->num_txbdfree = DEFAULT_TX_RING_SIZE;
1150                 priv->tx_queue[i]->txcoalescing = DEFAULT_TX_COALESCE;
1151                 priv->tx_queue[i]->txic = DEFAULT_TXIC;
1152         }
1153
1154         for (i = 0; i < priv->num_rx_queues; i++) {
1155                 priv->rx_queue[i]->rx_ring_size = DEFAULT_RX_RING_SIZE;
1156                 priv->rx_queue[i]->rxcoalescing = DEFAULT_RX_COALESCE;
1157                 priv->rx_queue[i]->rxic = DEFAULT_RXIC;
1158         }
1159
1160         /* always enable rx filer */
1161         priv->rx_filer_enable = 1;
1162         /* Enable most messages by default */
1163         priv->msg_enable = (NETIF_MSG_IFUP << 1 ) - 1;
1164
1165         /* Carrier starts down, phylib will bring it up */
1166         netif_carrier_off(dev);
1167
1168         err = register_netdev(dev);
1169
1170         if (err) {
1171                 pr_err("%s: Cannot register net device, aborting\n", dev->name);
1172                 goto register_fail;
1173         }
1174
1175         device_init_wakeup(&dev->dev,
1176                            priv->device_flags &
1177                            FSL_GIANFAR_DEV_HAS_MAGIC_PACKET);
1178
1179         /* fill out IRQ number and name fields */
1180         for (i = 0; i < priv->num_grps; i++) {
1181                 if (priv->device_flags & FSL_GIANFAR_DEV_HAS_MULTI_INTR) {
1182                         sprintf(priv->gfargrp[i].int_name_tx, "%s%s%c%s",
1183                                 dev->name, "_g", '0' + i, "_tx");
1184                         sprintf(priv->gfargrp[i].int_name_rx, "%s%s%c%s",
1185                                 dev->name, "_g", '0' + i, "_rx");
1186                         sprintf(priv->gfargrp[i].int_name_er, "%s%s%c%s",
1187                                 dev->name, "_g", '0' + i, "_er");
1188                 } else
1189                         strcpy(priv->gfargrp[i].int_name_tx, dev->name);
1190         }
1191
1192         /* Initialize the filer table */
1193         gfar_init_filer_table(priv);
1194
1195         /* Create all the sysfs files */
1196         gfar_init_sysfs(dev);
1197
1198         /* Print out the device info */
1199         netdev_info(dev, "mac: %pM\n", dev->dev_addr);
1200
1201         /* Even more device info helps when determining which kernel
1202          * provided which set of benchmarks.
1203          */
1204         netdev_info(dev, "Running with NAPI enabled\n");
1205         for (i = 0; i < priv->num_rx_queues; i++)
1206                 netdev_info(dev, "RX BD ring size for Q[%d]: %d\n",
1207                             i, priv->rx_queue[i]->rx_ring_size);
1208         for (i = 0; i < priv->num_tx_queues; i++)
1209                 netdev_info(dev, "TX BD ring size for Q[%d]: %d\n",
1210                             i, priv->tx_queue[i]->tx_ring_size);
1211
1212         return 0;
1213
1214 register_fail:
1215         unmap_group_regs(priv);
1216         free_tx_pointers(priv);
1217         free_rx_pointers(priv);
1218         if (priv->phy_node)
1219                 of_node_put(priv->phy_node);
1220         if (priv->tbi_node)
1221                 of_node_put(priv->tbi_node);
1222         free_netdev(dev);
1223         return err;
1224 }
1225
1226 static int gfar_remove(struct platform_device *ofdev)
1227 {
1228         struct gfar_private *priv = dev_get_drvdata(&ofdev->dev);
1229
1230         if (priv->phy_node)
1231                 of_node_put(priv->phy_node);
1232         if (priv->tbi_node)
1233                 of_node_put(priv->tbi_node);
1234
1235         dev_set_drvdata(&ofdev->dev, NULL);
1236
1237         unregister_netdev(priv->ndev);
1238         unmap_group_regs(priv);
1239         free_netdev(priv->ndev);
1240
1241         return 0;
1242 }
1243
1244 #ifdef CONFIG_PM
1245
1246 static int gfar_suspend(struct device *dev)
1247 {
1248         struct gfar_private *priv = dev_get_drvdata(dev);
1249         struct net_device *ndev = priv->ndev;
1250         struct gfar __iomem *regs = priv->gfargrp[0].regs;
1251         unsigned long flags;
1252         u32 tempval;
1253
1254         int magic_packet = priv->wol_en &&
1255                            (priv->device_flags &
1256                             FSL_GIANFAR_DEV_HAS_MAGIC_PACKET);
1257
1258         netif_device_detach(ndev);
1259
1260         if (netif_running(ndev)) {
1261
1262                 local_irq_save(flags);
1263                 lock_tx_qs(priv);
1264                 lock_rx_qs(priv);
1265
1266                 gfar_halt_nodisable(ndev);
1267
1268                 /* Disable Tx, and Rx if wake-on-LAN is disabled. */
1269                 tempval = gfar_read(&regs->maccfg1);
1270
1271                 tempval &= ~MACCFG1_TX_EN;
1272
1273                 if (!magic_packet)
1274                         tempval &= ~MACCFG1_RX_EN;
1275
1276                 gfar_write(&regs->maccfg1, tempval);
1277
1278                 unlock_rx_qs(priv);
1279                 unlock_tx_qs(priv);
1280                 local_irq_restore(flags);
1281
1282                 disable_napi(priv);
1283
1284                 if (magic_packet) {
1285                         /* Enable interrupt on Magic Packet */
1286                         gfar_write(&regs->imask, IMASK_MAG);
1287
1288                         /* Enable Magic Packet mode */
1289                         tempval = gfar_read(&regs->maccfg2);
1290                         tempval |= MACCFG2_MPEN;
1291                         gfar_write(&regs->maccfg2, tempval);
1292                 } else {
1293                         phy_stop(priv->phydev);
1294                 }
1295         }
1296
1297         return 0;
1298 }
1299
1300 static int gfar_resume(struct device *dev)
1301 {
1302         struct gfar_private *priv = dev_get_drvdata(dev);
1303         struct net_device *ndev = priv->ndev;
1304         struct gfar __iomem *regs = priv->gfargrp[0].regs;
1305         unsigned long flags;
1306         u32 tempval;
1307         int magic_packet = priv->wol_en &&
1308                            (priv->device_flags &
1309                             FSL_GIANFAR_DEV_HAS_MAGIC_PACKET);
1310
1311         if (!netif_running(ndev)) {
1312                 netif_device_attach(ndev);
1313                 return 0;
1314         }
1315
1316         if (!magic_packet && priv->phydev)
1317                 phy_start(priv->phydev);
1318
1319         /* Disable Magic Packet mode, in case something
1320          * else woke us up.
1321          */
1322         local_irq_save(flags);
1323         lock_tx_qs(priv);
1324         lock_rx_qs(priv);
1325
1326         tempval = gfar_read(&regs->maccfg2);
1327         tempval &= ~MACCFG2_MPEN;
1328         gfar_write(&regs->maccfg2, tempval);
1329
1330         gfar_start(ndev);
1331
1332         unlock_rx_qs(priv);
1333         unlock_tx_qs(priv);
1334         local_irq_restore(flags);
1335
1336         netif_device_attach(ndev);
1337
1338         enable_napi(priv);
1339
1340         return 0;
1341 }
1342
1343 static int gfar_restore(struct device *dev)
1344 {
1345         struct gfar_private *priv = dev_get_drvdata(dev);
1346         struct net_device *ndev = priv->ndev;
1347
1348         if (!netif_running(ndev))
1349                 return 0;
1350
1351         gfar_init_bds(ndev);
1352         init_registers(ndev);
1353         gfar_set_mac_address(ndev);
1354         gfar_init_mac(ndev);
1355         gfar_start(ndev);
1356
1357         priv->oldlink = 0;
1358         priv->oldspeed = 0;
1359         priv->oldduplex = -1;
1360
1361         if (priv->phydev)
1362                 phy_start(priv->phydev);
1363
1364         netif_device_attach(ndev);
1365         enable_napi(priv);
1366
1367         return 0;
1368 }
1369
1370 static struct dev_pm_ops gfar_pm_ops = {
1371         .suspend = gfar_suspend,
1372         .resume = gfar_resume,
1373         .freeze = gfar_suspend,
1374         .thaw = gfar_resume,
1375         .restore = gfar_restore,
1376 };
1377
1378 #define GFAR_PM_OPS (&gfar_pm_ops)
1379
1380 #else
1381
1382 #define GFAR_PM_OPS NULL
1383
1384 #endif
1385
1386 /* Reads the controller's registers to determine what interface
1387  * connects it to the PHY.
1388  */
1389 static phy_interface_t gfar_get_interface(struct net_device *dev)
1390 {
1391         struct gfar_private *priv = netdev_priv(dev);
1392         struct gfar __iomem *regs = priv->gfargrp[0].regs;
1393         u32 ecntrl;
1394
1395         ecntrl = gfar_read(&regs->ecntrl);
1396
1397         if (ecntrl & ECNTRL_SGMII_MODE)
1398                 return PHY_INTERFACE_MODE_SGMII;
1399
1400         if (ecntrl & ECNTRL_TBI_MODE) {
1401                 if (ecntrl & ECNTRL_REDUCED_MODE)
1402                         return PHY_INTERFACE_MODE_RTBI;
1403                 else
1404                         return PHY_INTERFACE_MODE_TBI;
1405         }
1406
1407         if (ecntrl & ECNTRL_REDUCED_MODE) {
1408                 if (ecntrl & ECNTRL_REDUCED_MII_MODE) {
1409                         return PHY_INTERFACE_MODE_RMII;
1410                 }
1411                 else {
1412                         phy_interface_t interface = priv->interface;
1413
1414                         /* This isn't autodetected right now, so it must
1415                          * be set by the device tree or platform code.
1416                          */
1417                         if (interface == PHY_INTERFACE_MODE_RGMII_ID)
1418                                 return PHY_INTERFACE_MODE_RGMII_ID;
1419
1420                         return PHY_INTERFACE_MODE_RGMII;
1421                 }
1422         }
1423
1424         if (priv->device_flags & FSL_GIANFAR_DEV_HAS_GIGABIT)
1425                 return PHY_INTERFACE_MODE_GMII;
1426
1427         return PHY_INTERFACE_MODE_MII;
1428 }
1429
1430
1431 /* Initializes driver's PHY state, and attaches to the PHY.
1432  * Returns 0 on success.
1433  */
1434 static int init_phy(struct net_device *dev)
1435 {
1436         struct gfar_private *priv = netdev_priv(dev);
1437         uint gigabit_support =
1438                 priv->device_flags & FSL_GIANFAR_DEV_HAS_GIGABIT ?
1439                 SUPPORTED_1000baseT_Full : 0;
1440         phy_interface_t interface;
1441
1442         priv->oldlink = 0;
1443         priv->oldspeed = 0;
1444         priv->oldduplex = -1;
1445
1446         interface = gfar_get_interface(dev);
1447
1448         priv->phydev = of_phy_connect(dev, priv->phy_node, &adjust_link, 0,
1449                                       interface);
1450         if (!priv->phydev)
1451                 priv->phydev = of_phy_connect_fixed_link(dev, &adjust_link,
1452                                                          interface);
1453         if (!priv->phydev) {
1454                 dev_err(&dev->dev, "could not attach to PHY\n");
1455                 return -ENODEV;
1456         }
1457
1458         if (interface == PHY_INTERFACE_MODE_SGMII)
1459                 gfar_configure_serdes(dev);
1460
1461         /* Remove any features not supported by the controller */
1462         priv->phydev->supported &= (GFAR_SUPPORTED | gigabit_support);
1463         priv->phydev->advertising = priv->phydev->supported;
1464
1465         return 0;
1466 }
1467
1468 /* Initialize TBI PHY interface for communicating with the
1469  * SERDES lynx PHY on the chip.  We communicate with this PHY
1470  * through the MDIO bus on each controller, treating it as a
1471  * "normal" PHY at the address found in the TBIPA register.  We assume
1472  * that the TBIPA register is valid.  Either the MDIO bus code will set
1473  * it to a value that doesn't conflict with other PHYs on the bus, or the
1474  * value doesn't matter, as there are no other PHYs on the bus.
1475  */
1476 static void gfar_configure_serdes(struct net_device *dev)
1477 {
1478         struct gfar_private *priv = netdev_priv(dev);
1479         struct phy_device *tbiphy;
1480
1481         if (!priv->tbi_node) {
1482                 dev_warn(&dev->dev, "error: SGMII mode requires that the "
1483                                     "device tree specify a tbi-handle\n");
1484                 return;
1485         }
1486
1487         tbiphy = of_phy_find_device(priv->tbi_node);
1488         if (!tbiphy) {
1489                 dev_err(&dev->dev, "error: Could not get TBI device\n");
1490                 return;
1491         }
1492
1493         /* If the link is already up, we must already be ok, and don't need to
1494          * configure and reset the TBI<->SerDes link.  Maybe U-Boot configured
1495          * everything for us?  Resetting it takes the link down and requires
1496          * several seconds for it to come back.
1497          */
1498         if (phy_read(tbiphy, MII_BMSR) & BMSR_LSTATUS)
1499                 return;
1500
1501         /* Single clk mode, mii mode off(for serdes communication) */
1502         phy_write(tbiphy, MII_TBICON, TBICON_CLK_SELECT);
1503
1504         phy_write(tbiphy, MII_ADVERTISE,
1505                   ADVERTISE_1000XFULL | ADVERTISE_1000XPAUSE |
1506                   ADVERTISE_1000XPSE_ASYM);
1507
1508         phy_write(tbiphy, MII_BMCR,
1509                   BMCR_ANENABLE | BMCR_ANRESTART | BMCR_FULLDPLX |
1510                   BMCR_SPEED1000);
1511 }
1512
1513 static void init_registers(struct net_device *dev)
1514 {
1515         struct gfar_private *priv = netdev_priv(dev);
1516         struct gfar __iomem *regs = NULL;
1517         int i;
1518
1519         for (i = 0; i < priv->num_grps; i++) {
1520                 regs = priv->gfargrp[i].regs;
1521                 /* Clear IEVENT */
1522                 gfar_write(&regs->ievent, IEVENT_INIT_CLEAR);
1523
1524                 /* Initialize IMASK */
1525                 gfar_write(&regs->imask, IMASK_INIT_CLEAR);
1526         }
1527
1528         regs = priv->gfargrp[0].regs;
1529         /* Init hash registers to zero */
1530         gfar_write(&regs->igaddr0, 0);
1531         gfar_write(&regs->igaddr1, 0);
1532         gfar_write(&regs->igaddr2, 0);
1533         gfar_write(&regs->igaddr3, 0);
1534         gfar_write(&regs->igaddr4, 0);
1535         gfar_write(&regs->igaddr5, 0);
1536         gfar_write(&regs->igaddr6, 0);
1537         gfar_write(&regs->igaddr7, 0);
1538
1539         gfar_write(&regs->gaddr0, 0);
1540         gfar_write(&regs->gaddr1, 0);
1541         gfar_write(&regs->gaddr2, 0);
1542         gfar_write(&regs->gaddr3, 0);
1543         gfar_write(&regs->gaddr4, 0);
1544         gfar_write(&regs->gaddr5, 0);
1545         gfar_write(&regs->gaddr6, 0);
1546         gfar_write(&regs->gaddr7, 0);
1547
1548         /* Zero out the rmon mib registers if it has them */
1549         if (priv->device_flags & FSL_GIANFAR_DEV_HAS_RMON) {
1550                 memset_io(&(regs->rmon), 0, sizeof (struct rmon_mib));
1551
1552                 /* Mask off the CAM interrupts */
1553                 gfar_write(&regs->rmon.cam1, 0xffffffff);
1554                 gfar_write(&regs->rmon.cam2, 0xffffffff);
1555         }
1556
1557         /* Initialize the max receive buffer length */
1558         gfar_write(&regs->mrblr, priv->rx_buffer_size);
1559
1560         /* Initialize the Minimum Frame Length Register */
1561         gfar_write(&regs->minflr, MINFLR_INIT_SETTINGS);
1562 }
1563
1564 static int __gfar_is_rx_idle(struct gfar_private *priv)
1565 {
1566         u32 res;
1567
1568         /* Normaly TSEC should not hang on GRS commands, so we should
1569          * actually wait for IEVENT_GRSC flag.
1570          */
1571         if (likely(!gfar_has_errata(priv, GFAR_ERRATA_A002)))
1572                 return 0;
1573
1574         /* Read the eTSEC register at offset 0xD1C. If bits 7-14 are
1575          * the same as bits 23-30, the eTSEC Rx is assumed to be idle
1576          * and the Rx can be safely reset.
1577          */
1578         res = gfar_read((void __iomem *)priv->gfargrp[0].regs + 0xd1c);
1579         res &= 0x7f807f80;
1580         if ((res & 0xffff) == (res >> 16))
1581                 return 1;
1582
1583         return 0;
1584 }
1585
1586 /* Halt the receive and transmit queues */
1587 static void gfar_halt_nodisable(struct net_device *dev)
1588 {
1589         struct gfar_private *priv = netdev_priv(dev);
1590         struct gfar __iomem *regs = NULL;
1591         u32 tempval;
1592         int i;
1593
1594         for (i = 0; i < priv->num_grps; i++) {
1595                 regs = priv->gfargrp[i].regs;
1596                 /* Mask all interrupts */
1597                 gfar_write(&regs->imask, IMASK_INIT_CLEAR);
1598
1599                 /* Clear all interrupts */
1600                 gfar_write(&regs->ievent, IEVENT_INIT_CLEAR);
1601         }
1602
1603         regs = priv->gfargrp[0].regs;
1604         /* Stop the DMA, and wait for it to stop */
1605         tempval = gfar_read(&regs->dmactrl);
1606         if ((tempval & (DMACTRL_GRS | DMACTRL_GTS)) !=
1607             (DMACTRL_GRS | DMACTRL_GTS)) {
1608                 int ret;
1609
1610                 tempval |= (DMACTRL_GRS | DMACTRL_GTS);
1611                 gfar_write(&regs->dmactrl, tempval);
1612
1613                 do {
1614                         ret = spin_event_timeout(((gfar_read(&regs->ievent) &
1615                                  (IEVENT_GRSC | IEVENT_GTSC)) ==
1616                                  (IEVENT_GRSC | IEVENT_GTSC)), 1000000, 0);
1617                         if (!ret && !(gfar_read(&regs->ievent) & IEVENT_GRSC))
1618                                 ret = __gfar_is_rx_idle(priv);
1619                 } while (!ret);
1620         }
1621 }
1622
1623 /* Halt the receive and transmit queues */
1624 void gfar_halt(struct net_device *dev)
1625 {
1626         struct gfar_private *priv = netdev_priv(dev);
1627         struct gfar __iomem *regs = priv->gfargrp[0].regs;
1628         u32 tempval;
1629
1630         gfar_halt_nodisable(dev);
1631
1632         /* Disable Rx and Tx */
1633         tempval = gfar_read(&regs->maccfg1);
1634         tempval &= ~(MACCFG1_RX_EN | MACCFG1_TX_EN);
1635         gfar_write(&regs->maccfg1, tempval);
1636 }
1637
1638 static void free_grp_irqs(struct gfar_priv_grp *grp)
1639 {
1640         free_irq(grp->interruptError, grp);
1641         free_irq(grp->interruptTransmit, grp);
1642         free_irq(grp->interruptReceive, grp);
1643 }
1644
1645 void stop_gfar(struct net_device *dev)
1646 {
1647         struct gfar_private *priv = netdev_priv(dev);
1648         unsigned long flags;
1649         int i;
1650
1651         phy_stop(priv->phydev);
1652
1653
1654         /* Lock it down */
1655         local_irq_save(flags);
1656         lock_tx_qs(priv);
1657         lock_rx_qs(priv);
1658
1659         gfar_halt(dev);
1660
1661         unlock_rx_qs(priv);
1662         unlock_tx_qs(priv);
1663         local_irq_restore(flags);
1664
1665         /* Free the IRQs */
1666         if (priv->device_flags & FSL_GIANFAR_DEV_HAS_MULTI_INTR) {
1667                 for (i = 0; i < priv->num_grps; i++)
1668                         free_grp_irqs(&priv->gfargrp[i]);
1669         } else {
1670                 for (i = 0; i < priv->num_grps; i++)
1671                         free_irq(priv->gfargrp[i].interruptTransmit,
1672                                  &priv->gfargrp[i]);
1673         }
1674
1675         free_skb_resources(priv);
1676 }
1677
1678 static void free_skb_tx_queue(struct gfar_priv_tx_q *tx_queue)
1679 {
1680         struct txbd8 *txbdp;
1681         struct gfar_private *priv = netdev_priv(tx_queue->dev);
1682         int i, j;
1683
1684         txbdp = tx_queue->tx_bd_base;
1685
1686         for (i = 0; i < tx_queue->tx_ring_size; i++) {
1687                 if (!tx_queue->tx_skbuff[i])
1688                         continue;
1689
1690                 dma_unmap_single(&priv->ofdev->dev, txbdp->bufPtr,
1691                                  txbdp->length, DMA_TO_DEVICE);
1692                 txbdp->lstatus = 0;
1693                 for (j = 0; j < skb_shinfo(tx_queue->tx_skbuff[i])->nr_frags;
1694                      j++) {
1695                         txbdp++;
1696                         dma_unmap_page(&priv->ofdev->dev, txbdp->bufPtr,
1697                                        txbdp->length, DMA_TO_DEVICE);
1698                 }
1699                 txbdp++;
1700                 dev_kfree_skb_any(tx_queue->tx_skbuff[i]);
1701                 tx_queue->tx_skbuff[i] = NULL;
1702         }
1703         kfree(tx_queue->tx_skbuff);
1704 }
1705
1706 static void free_skb_rx_queue(struct gfar_priv_rx_q *rx_queue)
1707 {
1708         struct rxbd8 *rxbdp;
1709         struct gfar_private *priv = netdev_priv(rx_queue->dev);
1710         int i;
1711
1712         rxbdp = rx_queue->rx_bd_base;
1713
1714         for (i = 0; i < rx_queue->rx_ring_size; i++) {
1715                 if (rx_queue->rx_skbuff[i]) {
1716                         dma_unmap_single(&priv->ofdev->dev,
1717                                          rxbdp->bufPtr, priv->rx_buffer_size,
1718                                          DMA_FROM_DEVICE);
1719                         dev_kfree_skb_any(rx_queue->rx_skbuff[i]);
1720                         rx_queue->rx_skbuff[i] = NULL;
1721                 }
1722                 rxbdp->lstatus = 0;
1723                 rxbdp->bufPtr = 0;
1724                 rxbdp++;
1725         }
1726         kfree(rx_queue->rx_skbuff);
1727 }
1728
1729 /* If there are any tx skbs or rx skbs still around, free them.
1730  * Then free tx_skbuff and rx_skbuff
1731  */
1732 static void free_skb_resources(struct gfar_private *priv)
1733 {
1734         struct gfar_priv_tx_q *tx_queue = NULL;
1735         struct gfar_priv_rx_q *rx_queue = NULL;
1736         int i;
1737
1738         /* Go through all the buffer descriptors and free their data buffers */
1739         for (i = 0; i < priv->num_tx_queues; i++) {
1740                 struct netdev_queue *txq;
1741
1742                 tx_queue = priv->tx_queue[i];
1743                 txq = netdev_get_tx_queue(tx_queue->dev, tx_queue->qindex);
1744                 if (tx_queue->tx_skbuff)
1745                         free_skb_tx_queue(tx_queue);
1746                 netdev_tx_reset_queue(txq);
1747         }
1748
1749         for (i = 0; i < priv->num_rx_queues; i++) {
1750                 rx_queue = priv->rx_queue[i];
1751                 if (rx_queue->rx_skbuff)
1752                         free_skb_rx_queue(rx_queue);
1753         }
1754
1755         dma_free_coherent(&priv->ofdev->dev,
1756                           sizeof(struct txbd8) * priv->total_tx_ring_size +
1757                           sizeof(struct rxbd8) * priv->total_rx_ring_size,
1758                           priv->tx_queue[0]->tx_bd_base,
1759                           priv->tx_queue[0]->tx_bd_dma_base);
1760         skb_queue_purge(&priv->rx_recycle);
1761 }
1762
1763 void gfar_start(struct net_device *dev)
1764 {
1765         struct gfar_private *priv = netdev_priv(dev);
1766         struct gfar __iomem *regs = priv->gfargrp[0].regs;
1767         u32 tempval;
1768         int i = 0;
1769
1770         /* Enable Rx and Tx in MACCFG1 */
1771         tempval = gfar_read(&regs->maccfg1);
1772         tempval |= (MACCFG1_RX_EN | MACCFG1_TX_EN);
1773         gfar_write(&regs->maccfg1, tempval);
1774
1775         /* Initialize DMACTRL to have WWR and WOP */
1776         tempval = gfar_read(&regs->dmactrl);
1777         tempval |= DMACTRL_INIT_SETTINGS;
1778         gfar_write(&regs->dmactrl, tempval);
1779
1780         /* Make sure we aren't stopped */
1781         tempval = gfar_read(&regs->dmactrl);
1782         tempval &= ~(DMACTRL_GRS | DMACTRL_GTS);
1783         gfar_write(&regs->dmactrl, tempval);
1784
1785         for (i = 0; i < priv->num_grps; i++) {
1786                 regs = priv->gfargrp[i].regs;
1787                 /* Clear THLT/RHLT, so that the DMA starts polling now */
1788                 gfar_write(&regs->tstat, priv->gfargrp[i].tstat);
1789                 gfar_write(&regs->rstat, priv->gfargrp[i].rstat);
1790                 /* Unmask the interrupts we look for */
1791                 gfar_write(&regs->imask, IMASK_DEFAULT);
1792         }
1793
1794         dev->trans_start = jiffies; /* prevent tx timeout */
1795 }
1796
1797 void gfar_configure_coalescing(struct gfar_private *priv,
1798                                unsigned long tx_mask, unsigned long rx_mask)
1799 {
1800         struct gfar __iomem *regs = priv->gfargrp[0].regs;
1801         u32 __iomem *baddr;
1802         int i = 0;
1803
1804         /* Backward compatible case ---- even if we enable
1805          * multiple queues, there's only single reg to program
1806          */
1807         gfar_write(&regs->txic, 0);
1808         if (likely(priv->tx_queue[0]->txcoalescing))
1809                 gfar_write(&regs->txic, priv->tx_queue[0]->txic);
1810
1811         gfar_write(&regs->rxic, 0);
1812         if (unlikely(priv->rx_queue[0]->rxcoalescing))
1813                 gfar_write(&regs->rxic, priv->rx_queue[0]->rxic);
1814
1815         if (priv->mode == MQ_MG_MODE) {
1816                 baddr = &regs->txic0;
1817                 for_each_set_bit(i, &tx_mask, priv->num_tx_queues) {
1818                         gfar_write(baddr + i, 0);
1819                         if (likely(priv->tx_queue[i]->txcoalescing))
1820                                 gfar_write(baddr + i, priv->tx_queue[i]->txic);
1821                 }
1822
1823                 baddr = &regs->rxic0;
1824                 for_each_set_bit(i, &rx_mask, priv->num_rx_queues) {
1825                         gfar_write(baddr + i, 0);
1826                         if (likely(priv->rx_queue[i]->rxcoalescing))
1827                                 gfar_write(baddr + i, priv->rx_queue[i]->rxic);
1828                 }
1829         }
1830 }
1831
1832 static int register_grp_irqs(struct gfar_priv_grp *grp)
1833 {
1834         struct gfar_private *priv = grp->priv;
1835         struct net_device *dev = priv->ndev;
1836         int err;
1837
1838         /* If the device has multiple interrupts, register for
1839          * them.  Otherwise, only register for the one
1840          */
1841         if (priv->device_flags & FSL_GIANFAR_DEV_HAS_MULTI_INTR) {
1842                 /* Install our interrupt handlers for Error,
1843                  * Transmit, and Receive
1844                  */
1845                 if ((err = request_irq(grp->interruptError, gfar_error,
1846                                        0, grp->int_name_er, grp)) < 0) {
1847                         netif_err(priv, intr, dev, "Can't get IRQ %d\n",
1848                                   grp->interruptError);
1849
1850                         goto err_irq_fail;
1851                 }
1852
1853                 if ((err = request_irq(grp->interruptTransmit, gfar_transmit,
1854                                        0, grp->int_name_tx, grp)) < 0) {
1855                         netif_err(priv, intr, dev, "Can't get IRQ %d\n",
1856                                   grp->interruptTransmit);
1857                         goto tx_irq_fail;
1858                 }
1859
1860                 if ((err = request_irq(grp->interruptReceive, gfar_receive,
1861                                        0, grp->int_name_rx, grp)) < 0) {
1862                         netif_err(priv, intr, dev, "Can't get IRQ %d\n",
1863                                   grp->interruptReceive);
1864                         goto rx_irq_fail;
1865                 }
1866         } else {
1867                 if ((err = request_irq(grp->interruptTransmit, gfar_interrupt,
1868                                        0, grp->int_name_tx, grp)) < 0) {
1869                         netif_err(priv, intr, dev, "Can't get IRQ %d\n",
1870                                   grp->interruptTransmit);
1871                         goto err_irq_fail;
1872                 }
1873         }
1874
1875         return 0;
1876
1877 rx_irq_fail:
1878         free_irq(grp->interruptTransmit, grp);
1879 tx_irq_fail:
1880         free_irq(grp->interruptError, grp);
1881 err_irq_fail:
1882         return err;
1883
1884 }
1885
1886 /* Bring the controller up and running */
1887 int startup_gfar(struct net_device *ndev)
1888 {
1889         struct gfar_private *priv = netdev_priv(ndev);
1890         struct gfar __iomem *regs = NULL;
1891         int err, i, j;
1892
1893         for (i = 0; i < priv->num_grps; i++) {
1894                 regs= priv->gfargrp[i].regs;
1895                 gfar_write(&regs->imask, IMASK_INIT_CLEAR);
1896         }
1897
1898         regs= priv->gfargrp[0].regs;
1899         err = gfar_alloc_skb_resources(ndev);
1900         if (err)
1901                 return err;
1902
1903         gfar_init_mac(ndev);
1904
1905         for (i = 0; i < priv->num_grps; i++) {
1906                 err = register_grp_irqs(&priv->gfargrp[i]);
1907                 if (err) {
1908                         for (j = 0; j < i; j++)
1909                                 free_grp_irqs(&priv->gfargrp[j]);
1910                         goto irq_fail;
1911                 }
1912         }
1913
1914         /* Start the controller */
1915         gfar_start(ndev);
1916
1917         phy_start(priv->phydev);
1918
1919         gfar_configure_coalescing(priv, 0xFF, 0xFF);
1920
1921         return 0;
1922
1923 irq_fail:
1924         free_skb_resources(priv);
1925         return err;
1926 }
1927
1928 /* Called when something needs to use the ethernet device
1929  * Returns 0 for success.
1930  */
1931 static int gfar_enet_open(struct net_device *dev)
1932 {
1933         struct gfar_private *priv = netdev_priv(dev);
1934         int err;
1935
1936         enable_napi(priv);
1937
1938         skb_queue_head_init(&priv->rx_recycle);
1939
1940         /* Initialize a bunch of registers */
1941         init_registers(dev);
1942
1943         gfar_set_mac_address(dev);
1944
1945         err = init_phy(dev);
1946
1947         if (err) {
1948                 disable_napi(priv);
1949                 return err;
1950         }
1951
1952         err = startup_gfar(dev);
1953         if (err) {
1954                 disable_napi(priv);
1955                 return err;
1956         }
1957
1958         netif_tx_start_all_queues(dev);
1959
1960         device_set_wakeup_enable(&dev->dev, priv->wol_en);
1961
1962         return err;
1963 }
1964
1965 static inline struct txfcb *gfar_add_fcb(struct sk_buff *skb)
1966 {
1967         struct txfcb *fcb = (struct txfcb *)skb_push(skb, GMAC_FCB_LEN);
1968
1969         memset(fcb, 0, GMAC_FCB_LEN);
1970
1971         return fcb;
1972 }
1973
1974 static inline void gfar_tx_checksum(struct sk_buff *skb, struct txfcb *fcb,
1975                                     int fcb_length)
1976 {
1977         /* If we're here, it's a IP packet with a TCP or UDP
1978          * payload.  We set it to checksum, using a pseudo-header
1979          * we provide
1980          */
1981         u8 flags = TXFCB_DEFAULT;
1982
1983         /* Tell the controller what the protocol is
1984          * And provide the already calculated phcs
1985          */
1986         if (ip_hdr(skb)->protocol == IPPROTO_UDP) {
1987                 flags |= TXFCB_UDP;
1988                 fcb->phcs = udp_hdr(skb)->check;
1989         } else
1990                 fcb->phcs = tcp_hdr(skb)->check;
1991
1992         /* l3os is the distance between the start of the
1993          * frame (skb->data) and the start of the IP hdr.
1994          * l4os is the distance between the start of the
1995          * l3 hdr and the l4 hdr
1996          */
1997         fcb->l3os = (u16)(skb_network_offset(skb) - fcb_length);
1998         fcb->l4os = skb_network_header_len(skb);
1999
2000         fcb->flags = flags;
2001 }
2002
2003 void inline gfar_tx_vlan(struct sk_buff *skb, struct txfcb *fcb)
2004 {
2005         fcb->flags |= TXFCB_VLN;
2006         fcb->vlctl = vlan_tx_tag_get(skb);
2007 }
2008
2009 static inline struct txbd8 *skip_txbd(struct txbd8 *bdp, int stride,
2010                                       struct txbd8 *base, int ring_size)
2011 {
2012         struct txbd8 *new_bd = bdp + stride;
2013
2014         return (new_bd >= (base + ring_size)) ? (new_bd - ring_size) : new_bd;
2015 }
2016
2017 static inline struct txbd8 *next_txbd(struct txbd8 *bdp, struct txbd8 *base,
2018                                       int ring_size)
2019 {
2020         return skip_txbd(bdp, 1, base, ring_size);
2021 }
2022
2023 /* This is called by the kernel when a frame is ready for transmission.
2024  * It is pointed to by the dev->hard_start_xmit function pointer
2025  */
2026 static int gfar_start_xmit(struct sk_buff *skb, struct net_device *dev)
2027 {
2028         struct gfar_private *priv = netdev_priv(dev);
2029         struct gfar_priv_tx_q *tx_queue = NULL;
2030         struct netdev_queue *txq;
2031         struct gfar __iomem *regs = NULL;
2032         struct txfcb *fcb = NULL;
2033         struct txbd8 *txbdp, *txbdp_start, *base, *txbdp_tstamp = NULL;
2034         u32 lstatus;
2035         int i, rq = 0, do_tstamp = 0;
2036         u32 bufaddr;
2037         unsigned long flags;
2038         unsigned int nr_frags, nr_txbds, length, fcb_length = GMAC_FCB_LEN;
2039
2040         /* TOE=1 frames larger than 2500 bytes may see excess delays
2041          * before start of transmission.
2042          */
2043         if (unlikely(gfar_has_errata(priv, GFAR_ERRATA_76) &&
2044                      skb->ip_summed == CHECKSUM_PARTIAL &&
2045                      skb->len > 2500)) {
2046                 int ret;
2047
2048                 ret = skb_checksum_help(skb);
2049                 if (ret)
2050                         return ret;
2051         }
2052
2053         rq = skb->queue_mapping;
2054         tx_queue = priv->tx_queue[rq];
2055         txq = netdev_get_tx_queue(dev, rq);
2056         base = tx_queue->tx_bd_base;
2057         regs = tx_queue->grp->regs;
2058
2059         /* check if time stamp should be generated */
2060         if (unlikely(skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP &&
2061                      priv->hwts_tx_en)) {
2062                 do_tstamp = 1;
2063                 fcb_length = GMAC_FCB_LEN + GMAC_TXPAL_LEN;
2064         }
2065
2066         /* make space for additional header when fcb is needed */
2067         if (((skb->ip_summed == CHECKSUM_PARTIAL) ||
2068              vlan_tx_tag_present(skb) ||
2069              unlikely(do_tstamp)) &&
2070             (skb_headroom(skb) < fcb_length)) {
2071                 struct sk_buff *skb_new;
2072
2073                 skb_new = skb_realloc_headroom(skb, fcb_length);
2074                 if (!skb_new) {
2075                         dev->stats.tx_errors++;
2076                         kfree_skb(skb);
2077                         return NETDEV_TX_OK;
2078                 }
2079
2080                 if (skb->sk)
2081                         skb_set_owner_w(skb_new, skb->sk);
2082                 consume_skb(skb);
2083                 skb = skb_new;
2084         }
2085
2086         /* total number of fragments in the SKB */
2087         nr_frags = skb_shinfo(skb)->nr_frags;
2088
2089         /* calculate the required number of TxBDs for this skb */
2090         if (unlikely(do_tstamp))
2091                 nr_txbds = nr_frags + 2;
2092         else
2093                 nr_txbds = nr_frags + 1;
2094
2095         /* check if there is space to queue this packet */
2096         if (nr_txbds > tx_queue->num_txbdfree) {
2097                 /* no space, stop the queue */
2098                 netif_tx_stop_queue(txq);
2099                 dev->stats.tx_fifo_errors++;
2100                 return NETDEV_TX_BUSY;
2101         }
2102
2103         /* Update transmit stats */
2104         tx_queue->stats.tx_bytes += skb->len;
2105         tx_queue->stats.tx_packets++;
2106
2107         txbdp = txbdp_start = tx_queue->cur_tx;
2108         lstatus = txbdp->lstatus;
2109
2110         /* Time stamp insertion requires one additional TxBD */
2111         if (unlikely(do_tstamp))
2112                 txbdp_tstamp = txbdp = next_txbd(txbdp, base,
2113                                                  tx_queue->tx_ring_size);
2114
2115         if (nr_frags == 0) {
2116                 if (unlikely(do_tstamp))
2117                         txbdp_tstamp->lstatus |= BD_LFLAG(TXBD_LAST |
2118                                                           TXBD_INTERRUPT);
2119                 else
2120                         lstatus |= BD_LFLAG(TXBD_LAST | TXBD_INTERRUPT);
2121         } else {
2122                 /* Place the fragment addresses and lengths into the TxBDs */
2123                 for (i = 0; i < nr_frags; i++) {
2124                         /* Point at the next BD, wrapping as needed */
2125                         txbdp = next_txbd(txbdp, base, tx_queue->tx_ring_size);
2126
2127                         length = skb_shinfo(skb)->frags[i].size;
2128
2129                         lstatus = txbdp->lstatus | length |
2130                                   BD_LFLAG(TXBD_READY);
2131
2132                         /* Handle the last BD specially */
2133                         if (i == nr_frags - 1)
2134                                 lstatus |= BD_LFLAG(TXBD_LAST | TXBD_INTERRUPT);
2135
2136                         bufaddr = skb_frag_dma_map(&priv->ofdev->dev,
2137                                                    &skb_shinfo(skb)->frags[i],
2138                                                    0,
2139                                                    length,
2140                                                    DMA_TO_DEVICE);
2141
2142                         /* set the TxBD length and buffer pointer */
2143                         txbdp->bufPtr = bufaddr;
2144                         txbdp->lstatus = lstatus;
2145                 }
2146
2147                 lstatus = txbdp_start->lstatus;
2148         }
2149
2150         /* Add TxPAL between FCB and frame if required */
2151         if (unlikely(do_tstamp)) {
2152                 skb_push(skb, GMAC_TXPAL_LEN);
2153                 memset(skb->data, 0, GMAC_TXPAL_LEN);
2154         }
2155
2156         /* Set up checksumming */
2157         if (CHECKSUM_PARTIAL == skb->ip_summed) {
2158                 fcb = gfar_add_fcb(skb);
2159                 /* as specified by errata */
2160                 if (unlikely(gfar_has_errata(priv, GFAR_ERRATA_12) &&
2161                              ((unsigned long)fcb % 0x20) > 0x18)) {
2162                         __skb_pull(skb, GMAC_FCB_LEN);
2163                         skb_checksum_help(skb);
2164                 } else {
2165                         lstatus |= BD_LFLAG(TXBD_TOE);
2166                         gfar_tx_checksum(skb, fcb, fcb_length);
2167                 }
2168         }
2169
2170         if (vlan_tx_tag_present(skb)) {
2171                 if (unlikely(NULL == fcb)) {
2172                         fcb = gfar_add_fcb(skb);
2173                         lstatus |= BD_LFLAG(TXBD_TOE);
2174                 }
2175
2176                 gfar_tx_vlan(skb, fcb);
2177         }
2178
2179         /* Setup tx hardware time stamping if requested */
2180         if (unlikely(do_tstamp)) {
2181                 skb_shinfo(skb)->tx_flags |= SKBTX_IN_PROGRESS;
2182                 if (fcb == NULL)
2183                         fcb = gfar_add_fcb(skb);
2184                 fcb->ptp = 1;
2185                 lstatus |= BD_LFLAG(TXBD_TOE);
2186         }
2187
2188         txbdp_start->bufPtr = dma_map_single(&priv->ofdev->dev, skb->data,
2189                                              skb_headlen(skb), DMA_TO_DEVICE);
2190
2191         /* If time stamping is requested one additional TxBD must be set up. The
2192          * first TxBD points to the FCB and must have a data length of
2193          * GMAC_FCB_LEN. The second TxBD points to the actual frame data with
2194          * the full frame length.
2195          */
2196         if (unlikely(do_tstamp)) {
2197                 txbdp_tstamp->bufPtr = txbdp_start->bufPtr + fcb_length;
2198                 txbdp_tstamp->lstatus |= BD_LFLAG(TXBD_READY) |
2199                                          (skb_headlen(skb) - fcb_length);
2200                 lstatus |= BD_LFLAG(TXBD_CRC | TXBD_READY) | GMAC_FCB_LEN;
2201         } else {
2202                 lstatus |= BD_LFLAG(TXBD_CRC | TXBD_READY) | skb_headlen(skb);
2203         }
2204
2205         netdev_tx_sent_queue(txq, skb->len);
2206
2207         /* We can work in parallel with gfar_clean_tx_ring(), except
2208          * when modifying num_txbdfree. Note that we didn't grab the lock
2209          * when we were reading the num_txbdfree and checking for available
2210          * space, that's because outside of this function it can only grow,
2211          * and once we've got needed space, it cannot suddenly disappear.
2212          *
2213          * The lock also protects us from gfar_error(), which can modify
2214          * regs->tstat and thus retrigger the transfers, which is why we
2215          * also must grab the lock before setting ready bit for the first
2216          * to be transmitted BD.
2217          */
2218         spin_lock_irqsave(&tx_queue->txlock, flags);
2219
2220         /* The powerpc-specific eieio() is used, as wmb() has too strong
2221          * semantics (it requires synchronization between cacheable and
2222          * uncacheable mappings, which eieio doesn't provide and which we
2223          * don't need), thus requiring a more expensive sync instruction.  At
2224          * some point, the set of architecture-independent barrier functions
2225          * should be expanded to include weaker barriers.
2226          */
2227         eieio();
2228
2229         txbdp_start->lstatus = lstatus;
2230
2231         eieio(); /* force lstatus write before tx_skbuff */
2232
2233         tx_queue->tx_skbuff[tx_queue->skb_curtx] = skb;
2234
2235         /* Update the current skb pointer to the next entry we will use
2236          * (wrapping if necessary)
2237          */
2238         tx_queue->skb_curtx = (tx_queue->skb_curtx + 1) &
2239                               TX_RING_MOD_MASK(tx_queue->tx_ring_size);
2240
2241         tx_queue->cur_tx = next_txbd(txbdp, base, tx_queue->tx_ring_size);
2242
2243         /* reduce TxBD free count */
2244         tx_queue->num_txbdfree -= (nr_txbds);
2245
2246         /* If the next BD still needs to be cleaned up, then the bds
2247          * are full.  We need to tell the kernel to stop sending us stuff.
2248          */
2249         if (!tx_queue->num_txbdfree) {
2250                 netif_tx_stop_queue(txq);
2251
2252                 dev->stats.tx_fifo_errors++;
2253         }
2254
2255         /* Tell the DMA to go go go */
2256         gfar_write(&regs->tstat, TSTAT_CLEAR_THALT >> tx_queue->qindex);
2257
2258         /* Unlock priv */
2259         spin_unlock_irqrestore(&tx_queue->txlock, flags);
2260
2261         return NETDEV_TX_OK;
2262 }
2263
2264 /* Stops the kernel queue, and halts the controller */
2265 static int gfar_close(struct net_device *dev)
2266 {
2267         struct gfar_private *priv = netdev_priv(dev);
2268
2269         disable_napi(priv);
2270
2271         cancel_work_sync(&priv->reset_task);
2272         stop_gfar(dev);
2273
2274         /* Disconnect from the PHY */
2275         phy_disconnect(priv->phydev);
2276         priv->phydev = NULL;
2277
2278         netif_tx_stop_all_queues(dev);
2279
2280         return 0;
2281 }
2282
2283 /* Changes the mac address if the controller is not running. */
2284 static int gfar_set_mac_address(struct net_device *dev)
2285 {
2286         gfar_set_mac_for_addr(dev, 0, dev->dev_addr);
2287
2288         return 0;
2289 }
2290
2291 /* Check if rx parser should be activated */
2292 void gfar_check_rx_parser_mode(struct gfar_private *priv)
2293 {
2294         struct gfar __iomem *regs;
2295         u32 tempval;
2296
2297         regs = priv->gfargrp[0].regs;
2298
2299         tempval = gfar_read(&regs->rctrl);
2300         /* If parse is no longer required, then disable parser */
2301         if (tempval & RCTRL_REQ_PARSER)
2302                 tempval |= RCTRL_PRSDEP_INIT;
2303         else
2304                 tempval &= ~RCTRL_PRSDEP_INIT;
2305         gfar_write(&regs->rctrl, tempval);
2306 }
2307
2308 /* Enables and disables VLAN insertion/extraction */
2309 void gfar_vlan_mode(struct net_device *dev, netdev_features_t features)
2310 {
2311         struct gfar_private *priv = netdev_priv(dev);
2312         struct gfar __iomem *regs = NULL;
2313         unsigned long flags;
2314         u32 tempval;
2315
2316         regs = priv->gfargrp[0].regs;
2317         local_irq_save(flags);
2318         lock_rx_qs(priv);
2319
2320         if (features & NETIF_F_HW_VLAN_TX) {
2321                 /* Enable VLAN tag insertion */
2322                 tempval = gfar_read(&regs->tctrl);
2323                 tempval |= TCTRL_VLINS;
2324                 gfar_write(&regs->tctrl, tempval);
2325         } else {
2326                 /* Disable VLAN tag insertion */
2327                 tempval = gfar_read(&regs->tctrl);
2328                 tempval &= ~TCTRL_VLINS;
2329                 gfar_write(&regs->tctrl, tempval);
2330         }
2331
2332         if (features & NETIF_F_HW_VLAN_RX) {
2333                 /* Enable VLAN tag extraction */
2334                 tempval = gfar_read(&regs->rctrl);
2335                 tempval |= (RCTRL_VLEX | RCTRL_PRSDEP_INIT);
2336                 gfar_write(&regs->rctrl, tempval);
2337         } else {
2338                 /* Disable VLAN tag extraction */
2339                 tempval = gfar_read(&regs->rctrl);
2340                 tempval &= ~RCTRL_VLEX;
2341                 gfar_write(&regs->rctrl, tempval);
2342
2343                 gfar_check_rx_parser_mode(priv);
2344         }
2345
2346         gfar_change_mtu(dev, dev->mtu);
2347
2348         unlock_rx_qs(priv);
2349         local_irq_restore(flags);
2350 }
2351
2352 static int gfar_change_mtu(struct net_device *dev, int new_mtu)
2353 {
2354         int tempsize, tempval;
2355         struct gfar_private *priv = netdev_priv(dev);
2356         struct gfar __iomem *regs = priv->gfargrp[0].regs;
2357         int oldsize = priv->rx_buffer_size;
2358         int frame_size = new_mtu + ETH_HLEN;
2359
2360         if (gfar_is_vlan_on(priv))
2361                 frame_size += VLAN_HLEN;
2362
2363         if ((frame_size < 64) || (frame_size > JUMBO_FRAME_SIZE)) {
2364                 netif_err(priv, drv, dev, "Invalid MTU setting\n");
2365                 return -EINVAL;
2366         }
2367
2368         if (gfar_uses_fcb(priv))
2369                 frame_size += GMAC_FCB_LEN;
2370
2371         frame_size += priv->padding;
2372
2373         tempsize = (frame_size & ~(INCREMENTAL_BUFFER_SIZE - 1)) +
2374                    INCREMENTAL_BUFFER_SIZE;
2375
2376         /* Only stop and start the controller if it isn't already
2377          * stopped, and we changed something
2378          */
2379         if ((oldsize != tempsize) && (dev->flags & IFF_UP))
2380                 stop_gfar(dev);
2381
2382         priv->rx_buffer_size = tempsize;
2383
2384         dev->mtu = new_mtu;
2385
2386         gfar_write(&regs->mrblr, priv->rx_buffer_size);
2387         gfar_write(&regs->maxfrm, priv->rx_buffer_size);
2388
2389         /* If the mtu is larger than the max size for standard
2390          * ethernet frames (ie, a jumbo frame), then set maccfg2
2391          * to allow huge frames, and to check the length
2392          */
2393         tempval = gfar_read(&regs->maccfg2);
2394
2395         if (priv->rx_buffer_size > DEFAULT_RX_BUFFER_SIZE ||
2396             gfar_has_errata(priv, GFAR_ERRATA_74))
2397                 tempval |= (MACCFG2_HUGEFRAME | MACCFG2_LENGTHCHECK);
2398         else
2399                 tempval &= ~(MACCFG2_HUGEFRAME | MACCFG2_LENGTHCHECK);
2400
2401         gfar_write(&regs->maccfg2, tempval);
2402
2403         if ((oldsize != tempsize) && (dev->flags & IFF_UP))
2404                 startup_gfar(dev);
2405
2406         return 0;
2407 }
2408
2409 /* gfar_reset_task gets scheduled when a packet has not been
2410  * transmitted after a set amount of time.
2411  * For now, assume that clearing out all the structures, and
2412  * starting over will fix the problem.
2413  */
2414 static void gfar_reset_task(struct work_struct *work)
2415 {
2416         struct gfar_private *priv = container_of(work, struct gfar_private,
2417                                                  reset_task);
2418         struct net_device *dev = priv->ndev;
2419
2420         if (dev->flags & IFF_UP) {
2421                 netif_tx_stop_all_queues(dev);
2422                 stop_gfar(dev);
2423                 startup_gfar(dev);
2424                 netif_tx_start_all_queues(dev);
2425         }
2426
2427         netif_tx_schedule_all(dev);
2428 }
2429
2430 static void gfar_timeout(struct net_device *dev)
2431 {
2432         struct gfar_private *priv = netdev_priv(dev);
2433
2434         dev->stats.tx_errors++;
2435         schedule_work(&priv->reset_task);
2436 }
2437
2438 static void gfar_align_skb(struct sk_buff *skb)
2439 {
2440         /* We need the data buffer to be aligned properly.  We will reserve
2441          * as many bytes as needed to align the data properly
2442          */
2443         skb_reserve(skb, RXBUF_ALIGNMENT -
2444                     (((unsigned long) skb->data) & (RXBUF_ALIGNMENT - 1)));
2445 }
2446
2447 /* Interrupt Handler for Transmit complete */
2448 static int gfar_clean_tx_ring(struct gfar_priv_tx_q *tx_queue)
2449 {
2450         struct net_device *dev = tx_queue->dev;
2451         struct netdev_queue *txq;
2452         struct gfar_private *priv = netdev_priv(dev);
2453         struct gfar_priv_rx_q *rx_queue = NULL;
2454         struct txbd8 *bdp, *next = NULL;
2455         struct txbd8 *lbdp = NULL;
2456         struct txbd8 *base = tx_queue->tx_bd_base;
2457         struct sk_buff *skb;
2458         int skb_dirtytx;
2459         int tx_ring_size = tx_queue->tx_ring_size;
2460         int frags = 0, nr_txbds = 0;
2461         int i;
2462         int howmany = 0;
2463         int tqi = tx_queue->qindex;
2464         unsigned int bytes_sent = 0;
2465         u32 lstatus;
2466         size_t buflen;
2467
2468         rx_queue = priv->rx_queue[tqi];
2469         txq = netdev_get_tx_queue(dev, tqi);
2470         bdp = tx_queue->dirty_tx;
2471         skb_dirtytx = tx_queue->skb_dirtytx;
2472
2473         while ((skb = tx_queue->tx_skbuff[skb_dirtytx])) {
2474                 unsigned long flags;
2475
2476                 frags = skb_shinfo(skb)->nr_frags;
2477
2478                 /* When time stamping, one additional TxBD must be freed.
2479                  * Also, we need to dma_unmap_single() the TxPAL.
2480                  */
2481                 if (unlikely(skb_shinfo(skb)->tx_flags & SKBTX_IN_PROGRESS))
2482                         nr_txbds = frags + 2;
2483                 else
2484                         nr_txbds = frags + 1;
2485
2486                 lbdp = skip_txbd(bdp, nr_txbds - 1, base, tx_ring_size);
2487
2488                 lstatus = lbdp->lstatus;
2489
2490                 /* Only clean completed frames */
2491                 if ((lstatus & BD_LFLAG(TXBD_READY)) &&
2492                     (lstatus & BD_LENGTH_MASK))
2493                         break;
2494
2495                 if (unlikely(skb_shinfo(skb)->tx_flags & SKBTX_IN_PROGRESS)) {
2496                         next = next_txbd(bdp, base, tx_ring_size);
2497                         buflen = next->length + GMAC_FCB_LEN + GMAC_TXPAL_LEN;
2498                 } else
2499                         buflen = bdp->length;
2500
2501                 dma_unmap_single(&priv->ofdev->dev, bdp->bufPtr,
2502                                  buflen, DMA_TO_DEVICE);
2503
2504                 if (unlikely(skb_shinfo(skb)->tx_flags & SKBTX_IN_PROGRESS)) {
2505                         struct skb_shared_hwtstamps shhwtstamps;
2506                         u64 *ns = (u64*) (((u32)skb->data + 0x10) & ~0x7);
2507
2508                         memset(&shhwtstamps, 0, sizeof(shhwtstamps));
2509                         shhwtstamps.hwtstamp = ns_to_ktime(*ns);
2510                         skb_pull(skb, GMAC_FCB_LEN + GMAC_TXPAL_LEN);
2511                         skb_tstamp_tx(skb, &shhwtstamps);
2512                         bdp->lstatus &= BD_LFLAG(TXBD_WRAP);
2513                         bdp = next;
2514                 }
2515
2516                 bdp->lstatus &= BD_LFLAG(TXBD_WRAP);
2517                 bdp = next_txbd(bdp, base, tx_ring_size);
2518
2519                 for (i = 0; i < frags; i++) {
2520                         dma_unmap_page(&priv->ofdev->dev, bdp->bufPtr,
2521                                        bdp->length, DMA_TO_DEVICE);
2522                         bdp->lstatus &= BD_LFLAG(TXBD_WRAP);
2523                         bdp = next_txbd(bdp, base, tx_ring_size);
2524                 }
2525
2526                 bytes_sent += skb->len;
2527
2528                 /* If there's room in the queue (limit it to rx_buffer_size)
2529                  * we add this skb back into the pool, if it's the right size
2530                  */
2531                 if (skb_queue_len(&priv->rx_recycle) < rx_queue->rx_ring_size &&
2532                     skb_recycle_check(skb, priv->rx_buffer_size +
2533                                       RXBUF_ALIGNMENT)) {
2534                         gfar_align_skb(skb);
2535                         skb_queue_head(&priv->rx_recycle, skb);
2536                 } else
2537                         dev_kfree_skb_any(skb);
2538
2539                 tx_queue->tx_skbuff[skb_dirtytx] = NULL;
2540
2541                 skb_dirtytx = (skb_dirtytx + 1) &
2542                               TX_RING_MOD_MASK(tx_ring_size);
2543
2544                 howmany++;
2545                 spin_lock_irqsave(&tx_queue->txlock, flags);
2546                 tx_queue->num_txbdfree += nr_txbds;
2547                 spin_unlock_irqrestore(&tx_queue->txlock, flags);
2548         }
2549
2550         /* If we freed a buffer, we can restart transmission, if necessary */
2551         if (netif_tx_queue_stopped(txq) && tx_queue->num_txbdfree)
2552                 netif_wake_subqueue(dev, tqi);
2553
2554         /* Update dirty indicators */
2555         tx_queue->skb_dirtytx = skb_dirtytx;
2556         tx_queue->dirty_tx = bdp;
2557
2558         netdev_tx_completed_queue(txq, howmany, bytes_sent);
2559
2560         return howmany;
2561 }
2562
2563 static void gfar_schedule_cleanup(struct gfar_priv_grp *gfargrp)
2564 {
2565         unsigned long flags;
2566
2567         spin_lock_irqsave(&gfargrp->grplock, flags);
2568         if (napi_schedule_prep(&gfargrp->napi)) {
2569                 gfar_write(&gfargrp->regs->imask, IMASK_RTX_DISABLED);
2570                 __napi_schedule(&gfargrp->napi);
2571         } else {
2572                 /* Clear IEVENT, so interrupts aren't called again
2573                  * because of the packets that have already arrived.
2574                  */
2575                 gfar_write(&gfargrp->regs->ievent, IEVENT_RTX_MASK);
2576         }
2577         spin_unlock_irqrestore(&gfargrp->grplock, flags);
2578
2579 }
2580
2581 /* Interrupt Handler for Transmit complete */
2582 static irqreturn_t gfar_transmit(int irq, void *grp_id)
2583 {
2584         gfar_schedule_cleanup((struct gfar_priv_grp *)grp_id);
2585         return IRQ_HANDLED;
2586 }
2587
2588 static void gfar_new_rxbdp(struct gfar_priv_rx_q *rx_queue, struct rxbd8 *bdp,
2589                            struct sk_buff *skb)
2590 {
2591         struct net_device *dev = rx_queue->dev;
2592         struct gfar_private *priv = netdev_priv(dev);
2593         dma_addr_t buf;
2594
2595         buf = dma_map_single(&priv->ofdev->dev, skb->data,
2596                              priv->rx_buffer_size, DMA_FROM_DEVICE);
2597         gfar_init_rxbdp(rx_queue, bdp, buf);
2598 }
2599
2600 static struct sk_buff *gfar_alloc_skb(struct net_device *dev)
2601 {
2602         struct gfar_private *priv = netdev_priv(dev);
2603         struct sk_buff *skb = NULL;
2604
2605         skb = netdev_alloc_skb(dev, priv->rx_buffer_size + RXBUF_ALIGNMENT);
2606         if (!skb)
2607                 return NULL;
2608
2609         gfar_align_skb(skb);
2610
2611         return skb;
2612 }
2613
2614 struct sk_buff *gfar_new_skb(struct net_device *dev)
2615 {
2616         struct gfar_private *priv = netdev_priv(dev);
2617         struct sk_buff *skb = NULL;
2618
2619         skb = skb_dequeue(&priv->rx_recycle);
2620         if (!skb)
2621                 skb = gfar_alloc_skb(dev);
2622
2623         return skb;
2624 }
2625
2626 static inline void count_errors(unsigned short status, struct net_device *dev)
2627 {
2628         struct gfar_private *priv = netdev_priv(dev);
2629         struct net_device_stats *stats = &dev->stats;
2630         struct gfar_extra_stats *estats = &priv->extra_stats;
2631
2632         /* If the packet was truncated, none of the other errors matter */
2633         if (status & RXBD_TRUNCATED) {
2634                 stats->rx_length_errors++;
2635
2636                 estats->rx_trunc++;
2637
2638                 return;
2639         }
2640         /* Count the errors, if there were any */
2641         if (status & (RXBD_LARGE | RXBD_SHORT)) {
2642                 stats->rx_length_errors++;
2643
2644                 if (status & RXBD_LARGE)
2645                         estats->rx_large++;
2646                 else
2647                         estats->rx_short++;
2648         }
2649         if (status & RXBD_NONOCTET) {
2650                 stats->rx_frame_errors++;
2651                 estats->rx_nonoctet++;
2652         }
2653         if (status & RXBD_CRCERR) {
2654                 estats->rx_crcerr++;
2655                 stats->rx_crc_errors++;
2656         }
2657         if (status & RXBD_OVERRUN) {
2658                 estats->rx_overrun++;
2659                 stats->rx_crc_errors++;
2660         }
2661 }
2662
2663 irqreturn_t gfar_receive(int irq, void *grp_id)
2664 {
2665         gfar_schedule_cleanup((struct gfar_priv_grp *)grp_id);
2666         return IRQ_HANDLED;
2667 }
2668
2669 static inline void gfar_rx_checksum(struct sk_buff *skb, struct rxfcb *fcb)
2670 {
2671         /* If valid headers were found, and valid sums
2672          * were verified, then we tell the kernel that no
2673          * checksumming is necessary.  Otherwise, it is [FIXME]
2674          */
2675         if ((fcb->flags & RXFCB_CSUM_MASK) == (RXFCB_CIP | RXFCB_CTU))
2676                 skb->ip_summed = CHECKSUM_UNNECESSARY;
2677         else
2678                 skb_checksum_none_assert(skb);
2679 }
2680
2681
2682 /* gfar_process_frame() -- handle one incoming packet if skb isn't NULL. */
2683 static int gfar_process_frame(struct net_device *dev, struct sk_buff *skb,
2684                               int amount_pull, struct napi_struct *napi)
2685 {
2686         struct gfar_private *priv = netdev_priv(dev);
2687         struct rxfcb *fcb = NULL;
2688
2689         gro_result_t ret;
2690
2691         /* fcb is at the beginning if exists */
2692         fcb = (struct rxfcb *)skb->data;
2693
2694         /* Remove the FCB from the skb
2695          * Remove the padded bytes, if there are any
2696          */
2697         if (amount_pull) {
2698                 skb_record_rx_queue(skb, fcb->rq);
2699                 skb_pull(skb, amount_pull);
2700         }
2701
2702         /* Get receive timestamp from the skb */
2703         if (priv->hwts_rx_en) {
2704                 struct skb_shared_hwtstamps *shhwtstamps = skb_hwtstamps(skb);
2705                 u64 *ns = (u64 *) skb->data;
2706
2707                 memset(shhwtstamps, 0, sizeof(*shhwtstamps));
2708                 shhwtstamps->hwtstamp = ns_to_ktime(*ns);
2709         }
2710
2711         if (priv->padding)
2712                 skb_pull(skb, priv->padding);
2713
2714         if (dev->features & NETIF_F_RXCSUM)
2715                 gfar_rx_checksum(skb, fcb);
2716
2717         /* Tell the skb what kind of packet this is */
2718         skb->protocol = eth_type_trans(skb, dev);
2719
2720         /* There's need to check for NETIF_F_HW_VLAN_RX here.
2721          * Even if vlan rx accel is disabled, on some chips
2722          * RXFCB_VLN is pseudo randomly set.
2723          */
2724         if (dev->features & NETIF_F_HW_VLAN_RX &&
2725             fcb->flags & RXFCB_VLN)
2726                 __vlan_hwaccel_put_tag(skb, fcb->vlctl);
2727
2728         /* Send the packet up the stack */
2729         ret = napi_gro_receive(napi, skb);
2730
2731         if (GRO_DROP == ret)
2732                 priv->extra_stats.kernel_dropped++;
2733
2734         return 0;
2735 }
2736
2737 /* gfar_clean_rx_ring() -- Processes each frame in the rx ring
2738  * until the budget/quota has been reached. Returns the number
2739  * of frames handled
2740  */
2741 int gfar_clean_rx_ring(struct gfar_priv_rx_q *rx_queue, int rx_work_limit)
2742 {
2743         struct net_device *dev = rx_queue->dev;
2744         struct rxbd8 *bdp, *base;
2745         struct sk_buff *skb;
2746         int pkt_len;
2747         int amount_pull;
2748         int howmany = 0;
2749         struct gfar_private *priv = netdev_priv(dev);
2750
2751         /* Get the first full descriptor */
2752         bdp = rx_queue->cur_rx;
2753         base = rx_queue->rx_bd_base;
2754
2755         amount_pull = (gfar_uses_fcb(priv) ? GMAC_FCB_LEN : 0);
2756
2757         while (!((bdp->status & RXBD_EMPTY) || (--rx_work_limit < 0))) {
2758                 struct sk_buff *newskb;
2759
2760                 rmb();
2761
2762                 /* Add another skb for the future */
2763                 newskb = gfar_new_skb(dev);
2764
2765                 skb = rx_queue->rx_skbuff[rx_queue->skb_currx];
2766
2767                 dma_unmap_single(&priv->ofdev->dev, bdp->bufPtr,
2768                                  priv->rx_buffer_size, DMA_FROM_DEVICE);
2769
2770                 if (unlikely(!(bdp->status & RXBD_ERR) &&
2771                              bdp->length > priv->rx_buffer_size))
2772                         bdp->status = RXBD_LARGE;
2773
2774                 /* We drop the frame if we failed to allocate a new buffer */
2775                 if (unlikely(!newskb || !(bdp->status & RXBD_LAST) ||
2776                              bdp->status & RXBD_ERR)) {
2777                         count_errors(bdp->status, dev);
2778
2779                         if (unlikely(!newskb))
2780                                 newskb = skb;
2781                         else if (skb)
2782                                 skb_queue_head(&priv->rx_recycle, skb);
2783                 } else {
2784                         /* Increment the number of packets */
2785                         rx_queue->stats.rx_packets++;
2786                         howmany++;
2787
2788                         if (likely(skb)) {
2789                                 pkt_len = bdp->length - ETH_FCS_LEN;
2790                                 /* Remove the FCS from the packet length */
2791                                 skb_put(skb, pkt_len);
2792                                 rx_queue->stats.rx_bytes += pkt_len;
2793                                 skb_record_rx_queue(skb, rx_queue->qindex);
2794                                 gfar_process_frame(dev, skb, amount_pull,
2795                                                    &rx_queue->grp->napi);
2796
2797                         } else {
2798                                 netif_warn(priv, rx_err, dev, "Missing skb!\n");
2799                                 rx_queue->stats.rx_dropped++;
2800                                 priv->extra_stats.rx_skbmissing++;
2801                         }
2802
2803                 }
2804
2805                 rx_queue->rx_skbuff[rx_queue->skb_currx] = newskb;
2806
2807                 /* Setup the new bdp */
2808                 gfar_new_rxbdp(rx_queue, bdp, newskb);
2809
2810                 /* Update to the next pointer */
2811                 bdp = next_bd(bdp, base, rx_queue->rx_ring_size);
2812
2813                 /* update to point at the next skb */
2814                 rx_queue->skb_currx = (rx_queue->skb_currx + 1) &
2815                                       RX_RING_MOD_MASK(rx_queue->rx_ring_size);
2816         }
2817
2818         /* Update the current rxbd pointer to be the next one */
2819         rx_queue->cur_rx = bdp;
2820
2821         return howmany;
2822 }
2823
2824 static int gfar_poll(struct napi_struct *napi, int budget)
2825 {
2826         struct gfar_priv_grp *gfargrp =
2827                 container_of(napi, struct gfar_priv_grp, napi);
2828         struct gfar_private *priv = gfargrp->priv;
2829         struct gfar __iomem *regs = gfargrp->regs;
2830         struct gfar_priv_tx_q *tx_queue = NULL;
2831         struct gfar_priv_rx_q *rx_queue = NULL;
2832         int rx_cleaned = 0, budget_per_queue = 0, rx_cleaned_per_queue = 0;
2833         int tx_cleaned = 0, i, left_over_budget = budget;
2834         unsigned long serviced_queues = 0;
2835         int num_queues = 0;
2836
2837         num_queues = gfargrp->num_rx_queues;
2838         budget_per_queue = budget/num_queues;
2839
2840         /* Clear IEVENT, so interrupts aren't called again
2841          * because of the packets that have already arrived
2842          */
2843         gfar_write(&regs->ievent, IEVENT_RTX_MASK);
2844
2845         while (num_queues && left_over_budget) {
2846                 budget_per_queue = left_over_budget/num_queues;
2847                 left_over_budget = 0;
2848
2849                 for_each_set_bit(i, &gfargrp->rx_bit_map, priv->num_rx_queues) {
2850                         if (test_bit(i, &serviced_queues))
2851                                 continue;
2852                         rx_queue = priv->rx_queue[i];
2853                         tx_queue = priv->tx_queue[rx_queue->qindex];
2854
2855                         tx_cleaned += gfar_clean_tx_ring(tx_queue);
2856                         rx_cleaned_per_queue =
2857                                 gfar_clean_rx_ring(rx_queue, budget_per_queue);
2858                         rx_cleaned += rx_cleaned_per_queue;
2859                         if (rx_cleaned_per_queue < budget_per_queue) {
2860                                 left_over_budget = left_over_budget +
2861                                         (budget_per_queue -
2862                                          rx_cleaned_per_queue);
2863                                 set_bit(i, &serviced_queues);
2864                                 num_queues--;
2865                         }
2866                 }
2867         }
2868
2869         if (tx_cleaned)
2870                 return budget;
2871
2872         if (rx_cleaned < budget) {
2873                 napi_complete(napi);
2874
2875                 /* Clear the halt bit in RSTAT */
2876                 gfar_write(&regs->rstat, gfargrp->rstat);
2877
2878                 gfar_write(&regs->imask, IMASK_DEFAULT);
2879
2880                 /* If we are coalescing interrupts, update the timer
2881                  * Otherwise, clear it
2882                  */
2883                 gfar_configure_coalescing(priv, gfargrp->rx_bit_map,
2884                                           gfargrp->tx_bit_map);
2885         }
2886
2887         return rx_cleaned;
2888 }
2889
2890 #ifdef CONFIG_NET_POLL_CONTROLLER
2891 /* Polling 'interrupt' - used by things like netconsole to send skbs
2892  * without having to re-enable interrupts. It's not called while
2893  * the interrupt routine is executing.
2894  */
2895 static void gfar_netpoll(struct net_device *dev)
2896 {
2897         struct gfar_private *priv = netdev_priv(dev);
2898         int i;
2899
2900         /* If the device has multiple interrupts, run tx/rx */
2901         if (priv->device_flags & FSL_GIANFAR_DEV_HAS_MULTI_INTR) {
2902                 for (i = 0; i < priv->num_grps; i++) {
2903                         disable_irq(priv->gfargrp[i].interruptTransmit);
2904                         disable_irq(priv->gfargrp[i].interruptReceive);
2905                         disable_irq(priv->gfargrp[i].interruptError);
2906                         gfar_interrupt(priv->gfargrp[i].interruptTransmit,
2907                                        &priv->gfargrp[i]);
2908                         enable_irq(priv->gfargrp[i].interruptError);
2909                         enable_irq(priv->gfargrp[i].interruptReceive);
2910                         enable_irq(priv->gfargrp[i].interruptTransmit);
2911                 }
2912         } else {
2913                 for (i = 0; i < priv->num_grps; i++) {
2914                         disable_irq(priv->gfargrp[i].interruptTransmit);
2915                         gfar_interrupt(priv->gfargrp[i].interruptTransmit,
2916                                        &priv->gfargrp[i]);
2917                         enable_irq(priv->gfargrp[i].interruptTransmit);
2918                 }
2919         }
2920 }
2921 #endif
2922
2923 /* The interrupt handler for devices with one interrupt */
2924 static irqreturn_t gfar_interrupt(int irq, void *grp_id)
2925 {
2926         struct gfar_priv_grp *gfargrp = grp_id;
2927
2928         /* Save ievent for future reference */
2929         u32 events = gfar_read(&gfargrp->regs->ievent);
2930
2931         /* Check for reception */
2932         if (events & IEVENT_RX_MASK)
2933                 gfar_receive(irq, grp_id);
2934
2935         /* Check for transmit completion */
2936         if (events & IEVENT_TX_MASK)
2937                 gfar_transmit(irq, grp_id);
2938
2939         /* Check for errors */
2940         if (events & IEVENT_ERR_MASK)
2941                 gfar_error(irq, grp_id);
2942
2943         return IRQ_HANDLED;
2944 }
2945
2946 /* Called every time the controller might need to be made
2947  * aware of new link state.  The PHY code conveys this
2948  * information through variables in the phydev structure, and this
2949  * function converts those variables into the appropriate
2950  * register values, and can bring down the device if needed.
2951  */
2952 static void adjust_link(struct net_device *dev)
2953 {
2954         struct gfar_private *priv = netdev_priv(dev);
2955         struct gfar __iomem *regs = priv->gfargrp[0].regs;
2956         unsigned long flags;
2957         struct phy_device *phydev = priv->phydev;
2958         int new_state = 0;
2959
2960         local_irq_save(flags);
2961         lock_tx_qs(priv);
2962
2963         if (phydev->link) {
2964                 u32 tempval = gfar_read(&regs->maccfg2);
2965                 u32 ecntrl = gfar_read(&regs->ecntrl);
2966
2967                 /* Now we make sure that we can be in full duplex mode.
2968                  * If not, we operate in half-duplex mode.
2969                  */
2970                 if (phydev->duplex != priv->oldduplex) {
2971                         new_state = 1;
2972                         if (!(phydev->duplex))
2973                                 tempval &= ~(MACCFG2_FULL_DUPLEX);
2974                         else
2975                                 tempval |= MACCFG2_FULL_DUPLEX;
2976
2977                         priv->oldduplex = phydev->duplex;
2978                 }
2979
2980                 if (phydev->speed != priv->oldspeed) {
2981                         new_state = 1;
2982                         switch (phydev->speed) {
2983                         case 1000:
2984                                 tempval =
2985                                     ((tempval & ~(MACCFG2_IF)) | MACCFG2_GMII);
2986
2987                                 ecntrl &= ~(ECNTRL_R100);
2988                                 break;
2989                         case 100:
2990                         case 10:
2991                                 tempval =
2992                                     ((tempval & ~(MACCFG2_IF)) | MACCFG2_MII);
2993
2994                                 /* Reduced mode distinguishes
2995                                  * between 10 and 100
2996                                  */
2997                                 if (phydev->speed == SPEED_100)
2998                                         ecntrl |= ECNTRL_R100;
2999                                 else
3000                                         ecntrl &= ~(ECNTRL_R100);
3001                                 break;
3002                         default:
3003                                 netif_warn(priv, link, dev,
3004                                            "Ack!  Speed (%d) is not 10/100/1000!\n",
3005                                            phydev->speed);
3006                                 break;
3007                         }
3008
3009                         priv->oldspeed = phydev->speed;
3010                 }
3011
3012                 gfar_write(&regs->maccfg2, tempval);
3013                 gfar_write(&regs->ecntrl, ecntrl);
3014
3015                 if (!priv->oldlink) {
3016                         new_state = 1;
3017                         priv->oldlink = 1;
3018                 }
3019         } else if (priv->oldlink) {
3020                 new_state = 1;
3021                 priv->oldlink = 0;
3022                 priv->oldspeed = 0;
3023                 priv->oldduplex = -1;
3024         }
3025
3026         if (new_state && netif_msg_link(priv))
3027                 phy_print_status(phydev);
3028         unlock_tx_qs(priv);
3029         local_irq_restore(flags);
3030 }
3031
3032 /* Update the hash table based on the current list of multicast
3033  * addresses we subscribe to.  Also, change the promiscuity of
3034  * the device based on the flags (this function is called
3035  * whenever dev->flags is changed
3036  */
3037 static void gfar_set_multi(struct net_device *dev)
3038 {
3039         struct netdev_hw_addr *ha;
3040         struct gfar_private *priv = netdev_priv(dev);
3041         struct gfar __iomem *regs = priv->gfargrp[0].regs;
3042         u32 tempval;
3043
3044         if (dev->flags & IFF_PROMISC) {
3045                 /* Set RCTRL to PROM */
3046                 tempval = gfar_read(&regs->rctrl);
3047                 tempval |= RCTRL_PROM;
3048                 gfar_write(&regs->rctrl, tempval);
3049         } else {
3050                 /* Set RCTRL to not PROM */
3051                 tempval = gfar_read(&regs->rctrl);
3052                 tempval &= ~(RCTRL_PROM);
3053                 gfar_write(&regs->rctrl, tempval);
3054         }
3055
3056         if (dev->flags & IFF_ALLMULTI) {
3057                 /* Set the hash to rx all multicast frames */
3058                 gfar_write(&regs->igaddr0, 0xffffffff);
3059                 gfar_write(&regs->igaddr1, 0xffffffff);
3060                 gfar_write(&regs->igaddr2, 0xffffffff);
3061                 gfar_write(&regs->igaddr3, 0xffffffff);
3062                 gfar_write(&regs->igaddr4, 0xffffffff);
3063                 gfar_write(&regs->igaddr5, 0xffffffff);
3064                 gfar_write(&regs->igaddr6, 0xffffffff);
3065                 gfar_write(&regs->igaddr7, 0xffffffff);
3066                 gfar_write(&regs->gaddr0, 0xffffffff);
3067                 gfar_write(&regs->gaddr1, 0xffffffff);
3068                 gfar_write(&regs->gaddr2, 0xffffffff);
3069                 gfar_write(&regs->gaddr3, 0xffffffff);
3070                 gfar_write(&regs->gaddr4, 0xffffffff);
3071                 gfar_write(&regs->gaddr5, 0xffffffff);
3072                 gfar_write(&regs->gaddr6, 0xffffffff);
3073                 gfar_write(&regs->gaddr7, 0xffffffff);
3074         } else {
3075                 int em_num;
3076                 int idx;
3077
3078                 /* zero out the hash */
3079                 gfar_write(&regs->igaddr0, 0x0);
3080                 gfar_write(&regs->igaddr1, 0x0);
3081                 gfar_write(&regs->igaddr2, 0x0);
3082                 gfar_write(&regs->igaddr3, 0x0);
3083                 gfar_write(&regs->igaddr4, 0x0);
3084                 gfar_write(&regs->igaddr5, 0x0);
3085                 gfar_write(&regs->igaddr6, 0x0);
3086                 gfar_write(&regs->igaddr7, 0x0);
3087                 gfar_write(&regs->gaddr0, 0x0);
3088                 gfar_write(&regs->gaddr1, 0x0);
3089                 gfar_write(&regs->gaddr2, 0x0);
3090                 gfar_write(&regs->gaddr3, 0x0);
3091                 gfar_write(&regs->gaddr4, 0x0);
3092                 gfar_write(&regs->gaddr5, 0x0);
3093                 gfar_write(&regs->gaddr6, 0x0);
3094                 gfar_write(&regs->gaddr7, 0x0);
3095
3096                 /* If we have extended hash tables, we need to
3097                  * clear the exact match registers to prepare for
3098                  * setting them
3099                  */
3100                 if (priv->extended_hash) {
3101                         em_num = GFAR_EM_NUM + 1;
3102                         gfar_clear_exact_match(dev);
3103                         idx = 1;
3104                 } else {
3105                         idx = 0;
3106                         em_num = 0;
3107                 }
3108
3109                 if (netdev_mc_empty(dev))
3110                         return;
3111
3112                 /* Parse the list, and set the appropriate bits */
3113                 netdev_for_each_mc_addr(ha, dev) {
3114                         if (idx < em_num) {
3115                                 gfar_set_mac_for_addr(dev, idx, ha->addr);
3116                                 idx++;
3117                         } else
3118                                 gfar_set_hash_for_addr(dev, ha->addr);
3119                 }
3120         }
3121 }
3122
3123
3124 /* Clears each of the exact match registers to zero, so they
3125  * don't interfere with normal reception
3126  */
3127 static void gfar_clear_exact_match(struct net_device *dev)
3128 {
3129         int idx;
3130         static const u8 zero_arr[ETH_ALEN] = {0, 0, 0, 0, 0, 0};
3131
3132         for (idx = 1; idx < GFAR_EM_NUM + 1; idx++)
3133                 gfar_set_mac_for_addr(dev, idx, zero_arr);
3134 }
3135
3136 /* Set the appropriate hash bit for the given addr */
3137 /* The algorithm works like so:
3138  * 1) Take the Destination Address (ie the multicast address), and
3139  * do a CRC on it (little endian), and reverse the bits of the
3140  * result.
3141  * 2) Use the 8 most significant bits as a hash into a 256-entry
3142  * table.  The table is controlled through 8 32-bit registers:
3143  * gaddr0-7.  gaddr0's MSB is entry 0, and gaddr7's LSB is
3144  * gaddr7.  This means that the 3 most significant bits in the
3145  * hash index which gaddr register to use, and the 5 other bits
3146  * indicate which bit (assuming an IBM numbering scheme, which
3147  * for PowerPC (tm) is usually the case) in the register holds
3148  * the entry.
3149  */
3150 static void gfar_set_hash_for_addr(struct net_device *dev, u8 *addr)
3151 {
3152         u32 tempval;
3153         struct gfar_private *priv = netdev_priv(dev);
3154         u32 result = ether_crc(ETH_ALEN, addr);
3155         int width = priv->hash_width;
3156         u8 whichbit = (result >> (32 - width)) & 0x1f;
3157         u8 whichreg = result >> (32 - width + 5);
3158         u32 value = (1 << (31-whichbit));
3159
3160         tempval = gfar_read(priv->hash_regs[whichreg]);
3161         tempval |= value;
3162         gfar_write(priv->hash_regs[whichreg], tempval);
3163 }
3164
3165
3166 /* There are multiple MAC Address register pairs on some controllers
3167  * This function sets the numth pair to a given address
3168  */
3169 static void gfar_set_mac_for_addr(struct net_device *dev, int num,
3170                                   const u8 *addr)
3171 {
3172         struct gfar_private *priv = netdev_priv(dev);
3173         struct gfar __iomem *regs = priv->gfargrp[0].regs;
3174         int idx;
3175         char tmpbuf[ETH_ALEN];
3176         u32 tempval;
3177         u32 __iomem *macptr = &regs->macstnaddr1;
3178
3179         macptr += num*2;
3180
3181         /* Now copy it into the mac registers backwards, cuz
3182          * little endian is silly
3183          */
3184         for (idx = 0; idx < ETH_ALEN; idx++)
3185                 tmpbuf[ETH_ALEN - 1 - idx] = addr[idx];
3186
3187         gfar_write(macptr, *((u32 *) (tmpbuf)));
3188
3189         tempval = *((u32 *) (tmpbuf + 4));
3190
3191         gfar_write(macptr+1, tempval);
3192 }
3193
3194 /* GFAR error interrupt handler */
3195 static irqreturn_t gfar_error(int irq, void *grp_id)
3196 {
3197         struct gfar_priv_grp *gfargrp = grp_id;
3198         struct gfar __iomem *regs = gfargrp->regs;
3199         struct gfar_private *priv= gfargrp->priv;
3200         struct net_device *dev = priv->ndev;
3201
3202         /* Save ievent for future reference */
3203         u32 events = gfar_read(&regs->ievent);
3204
3205         /* Clear IEVENT */
3206         gfar_write(&regs->ievent, events & IEVENT_ERR_MASK);
3207
3208         /* Magic Packet is not an error. */
3209         if ((priv->device_flags & FSL_GIANFAR_DEV_HAS_MAGIC_PACKET) &&
3210             (events & IEVENT_MAG))
3211                 events &= ~IEVENT_MAG;
3212
3213         /* Hmm... */
3214         if (netif_msg_rx_err(priv) || netif_msg_tx_err(priv))
3215                 netdev_dbg(dev,
3216                            "error interrupt (ievent=0x%08x imask=0x%08x)\n",
3217                            events, gfar_read(&regs->imask));
3218
3219         /* Update the error counters */
3220         if (events & IEVENT_TXE) {
3221                 dev->stats.tx_errors++;
3222
3223                 if (events & IEVENT_LC)
3224                         dev->stats.tx_window_errors++;
3225                 if (events & IEVENT_CRL)
3226                         dev->stats.tx_aborted_errors++;
3227                 if (events & IEVENT_XFUN) {
3228                         unsigned long flags;
3229
3230                         netif_dbg(priv, tx_err, dev,
3231                                   "TX FIFO underrun, packet dropped\n");
3232                         dev->stats.tx_dropped++;
3233                         priv->extra_stats.tx_underrun++;
3234
3235                         local_irq_save(flags);
3236                         lock_tx_qs(priv);
3237
3238                         /* Reactivate the Tx Queues */
3239                         gfar_write(&regs->tstat, gfargrp->tstat);
3240
3241                         unlock_tx_qs(priv);
3242                         local_irq_restore(flags);
3243                 }
3244                 netif_dbg(priv, tx_err, dev, "Transmit Error\n");
3245         }
3246         if (events & IEVENT_BSY) {
3247                 dev->stats.rx_errors++;
3248                 priv->extra_stats.rx_bsy++;
3249
3250                 gfar_receive(irq, grp_id);
3251
3252                 netif_dbg(priv, rx_err, dev, "busy error (rstat: %x)\n",
3253                           gfar_read(&regs->rstat));
3254         }
3255         if (events & IEVENT_BABR) {
3256                 dev->stats.rx_errors++;
3257                 priv->extra_stats.rx_babr++;
3258
3259                 netif_dbg(priv, rx_err, dev, "babbling RX error\n");
3260         }
3261         if (events & IEVENT_EBERR) {
3262                 priv->extra_stats.eberr++;
3263                 netif_dbg(priv, rx_err, dev, "bus error\n");
3264         }
3265         if (events & IEVENT_RXC)
3266                 netif_dbg(priv, rx_status, dev, "control frame\n");
3267
3268         if (events & IEVENT_BABT) {
3269                 priv->extra_stats.tx_babt++;
3270                 netif_dbg(priv, tx_err, dev, "babbling TX error\n");
3271         }
3272         return IRQ_HANDLED;
3273 }
3274
3275 static struct of_device_id gfar_match[] =
3276 {
3277         {
3278                 .type = "network",
3279                 .compatible = "gianfar",
3280         },
3281         {
3282                 .compatible = "fsl,etsec2",
3283         },
3284         {},
3285 };
3286 MODULE_DEVICE_TABLE(of, gfar_match);
3287
3288 /* Structure for a device driver */
3289 static struct platform_driver gfar_driver = {
3290         .driver = {
3291                 .name = "fsl-gianfar",
3292                 .owner = THIS_MODULE,
3293                 .pm = GFAR_PM_OPS,
3294                 .of_match_table = gfar_match,
3295         },
3296         .probe = gfar_probe,
3297         .remove = gfar_remove,
3298 };
3299
3300 module_platform_driver(gfar_driver);