]> git.neil.brown.name Git - mdadm.git/blob - super-intel.c
cee6951fa8ed9aaf25d0534ca59b034dd89e3de8
[mdadm.git] / super-intel.c
1 /*
2  * mdadm - Intel(R) Matrix Storage Manager Support
3  *
4  * Copyright (C) 2002-2008 Intel Corporation
5  *
6  * This program is free software; you can redistribute it and/or modify it
7  * under the terms and conditions of the GNU General Public License,
8  * version 2, as published by the Free Software Foundation.
9  *
10  * This program is distributed in the hope it will be useful, but WITHOUT
11  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
13  * more details.
14  *
15  * You should have received a copy of the GNU General Public License along with
16  * this program; if not, write to the Free Software Foundation, Inc.,
17  * 51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
18  */
19
20 #define HAVE_STDINT_H 1
21 #include "mdadm.h"
22 #include "mdmon.h"
23 #include "sha1.h"
24 #include "platform-intel.h"
25 #include <values.h>
26 #include <scsi/sg.h>
27 #include <ctype.h>
28 #include <dirent.h>
29
30 /* MPB == Metadata Parameter Block */
31 #define MPB_SIGNATURE "Intel Raid ISM Cfg Sig. "
32 #define MPB_SIG_LEN (strlen(MPB_SIGNATURE))
33 #define MPB_VERSION_RAID0 "1.0.00"
34 #define MPB_VERSION_RAID1 "1.1.00"
35 #define MPB_VERSION_MANY_VOLUMES_PER_ARRAY "1.2.00"
36 #define MPB_VERSION_3OR4_DISK_ARRAY "1.2.01"
37 #define MPB_VERSION_RAID5 "1.2.02"
38 #define MPB_VERSION_5OR6_DISK_ARRAY "1.2.04"
39 #define MPB_VERSION_CNG "1.2.06"
40 #define MPB_VERSION_ATTRIBS "1.3.00"
41 #define MAX_SIGNATURE_LENGTH  32
42 #define MAX_RAID_SERIAL_LEN   16
43
44 /* supports RAID0 */
45 #define MPB_ATTRIB_RAID0                __cpu_to_le32(0x00000001)
46 /* supports RAID1 */
47 #define MPB_ATTRIB_RAID1                __cpu_to_le32(0x00000002)
48 /* supports RAID10 */
49 #define MPB_ATTRIB_RAID10               __cpu_to_le32(0x00000004)
50 /* supports RAID1E */
51 #define MPB_ATTRIB_RAID1E               __cpu_to_le32(0x00000008)
52 /* supports RAID5 */
53 #define MPB_ATTRIB_RAID5                __cpu_to_le32(0x00000010)
54 /* supports RAID CNG */
55 #define MPB_ATTRIB_RAIDCNG              __cpu_to_le32(0x00000020)
56 /* supports expanded stripe sizes of  256K, 512K and 1MB */
57 #define MPB_ATTRIB_EXP_STRIPE_SIZE      __cpu_to_le32(0x00000040)
58
59 /* The OROM Support RST Caching of Volumes */
60 #define MPB_ATTRIB_NVM                  __cpu_to_le32(0x02000000)
61 /* The OROM supports creating disks greater than 2TB */
62 #define MPB_ATTRIB_2TB_DISK             __cpu_to_le32(0x04000000)
63 /* The OROM supports Bad Block Management */
64 #define MPB_ATTRIB_BBM                  __cpu_to_le32(0x08000000)
65
66 /* THe OROM Supports NVM Caching of Volumes */
67 #define MPB_ATTRIB_NEVER_USE2           __cpu_to_le32(0x10000000)
68 /* The OROM supports creating volumes greater than 2TB */
69 #define MPB_ATTRIB_2TB                  __cpu_to_le32(0x20000000)
70 /* originally for PMP, now it's wasted b/c. Never use this bit! */
71 #define MPB_ATTRIB_NEVER_USE            __cpu_to_le32(0x40000000)
72 /* Verify MPB contents against checksum after reading MPB */
73 #define MPB_ATTRIB_CHECKSUM_VERIFY      __cpu_to_le32(0x80000000)
74
75 /* Define all supported attributes that have to be accepted by mdadm
76  */
77 #define MPB_ATTRIB_SUPPORTED           (MPB_ATTRIB_CHECKSUM_VERIFY | \
78                                         MPB_ATTRIB_2TB             | \
79                                         MPB_ATTRIB_2TB_DISK        | \
80                                         MPB_ATTRIB_RAID0           | \
81                                         MPB_ATTRIB_RAID1           | \
82                                         MPB_ATTRIB_RAID10          | \
83                                         MPB_ATTRIB_RAID5           | \
84                                         MPB_ATTRIB_EXP_STRIPE_SIZE | \
85                                         MPB_ATTRIB_BBM)
86
87 /* Define attributes that are unused but not harmful */
88 #define MPB_ATTRIB_IGNORED              (MPB_ATTRIB_NEVER_USE)
89
90 #define MPB_SECTOR_CNT 2210
91 #define IMSM_RESERVED_SECTORS 4096
92 #define NUM_BLOCKS_DIRTY_STRIPE_REGION 2056
93 #define SECT_PER_MB_SHIFT 11
94 #define MAX_SECTOR_SIZE 4096
95
96 /* Disk configuration info. */
97 #define IMSM_MAX_DEVICES 255
98 struct imsm_disk {
99         __u8 serial[MAX_RAID_SERIAL_LEN];/* 0xD8 - 0xE7 ascii serial number */
100         __u32 total_blocks_lo;           /* 0xE8 - 0xEB total blocks lo */
101         __u32 scsi_id;                   /* 0xEC - 0xEF scsi ID */
102 #define SPARE_DISK      __cpu_to_le32(0x01)  /* Spare */
103 #define CONFIGURED_DISK __cpu_to_le32(0x02)  /* Member of some RaidDev */
104 #define FAILED_DISK     __cpu_to_le32(0x04)  /* Permanent failure */
105         __u32 status;                    /* 0xF0 - 0xF3 */
106         __u32 owner_cfg_num; /* which config 0,1,2... owns this disk */
107         __u32 total_blocks_hi;           /* 0xF4 - 0xF5 total blocks hi */
108 #define IMSM_DISK_FILLERS       3
109         __u32 filler[IMSM_DISK_FILLERS]; /* 0xF5 - 0x107 MPB_DISK_FILLERS for future expansion */
110 };
111
112 /* map selector for map managment
113  */
114 #define MAP_0           0
115 #define MAP_1           1
116 #define MAP_X           -1
117
118 /* RAID map configuration infos. */
119 struct imsm_map {
120         __u32 pba_of_lba0_lo;   /* start address of partition */
121         __u32 blocks_per_member_lo;/* blocks per member */
122         __u32 num_data_stripes_lo;      /* number of data stripes */
123         __u16 blocks_per_strip;
124         __u8  map_state;        /* Normal, Uninitialized, Degraded, Failed */
125 #define IMSM_T_STATE_NORMAL 0
126 #define IMSM_T_STATE_UNINITIALIZED 1
127 #define IMSM_T_STATE_DEGRADED 2
128 #define IMSM_T_STATE_FAILED 3
129         __u8  raid_level;
130 #define IMSM_T_RAID0 0
131 #define IMSM_T_RAID1 1
132 #define IMSM_T_RAID5 5          /* since metadata version 1.2.02 ? */
133         __u8  num_members;      /* number of member disks */
134         __u8  num_domains;      /* number of parity domains */
135         __u8  failed_disk_num;  /* valid only when state is degraded */
136         __u8  ddf;
137         __u32 pba_of_lba0_hi;
138         __u32 blocks_per_member_hi;
139         __u32 num_data_stripes_hi;
140         __u32 filler[4];        /* expansion area */
141 #define IMSM_ORD_REBUILD (1 << 24)
142         __u32 disk_ord_tbl[1];  /* disk_ord_tbl[num_members],
143                                  * top byte contains some flags
144                                  */
145 } __attribute__ ((packed));
146
147 struct imsm_vol {
148         __u32 curr_migr_unit;
149         __u32 checkpoint_id;    /* id to access curr_migr_unit */
150         __u8  migr_state;       /* Normal or Migrating */
151 #define MIGR_INIT 0
152 #define MIGR_REBUILD 1
153 #define MIGR_VERIFY 2 /* analagous to echo check > sync_action */
154 #define MIGR_GEN_MIGR 3
155 #define MIGR_STATE_CHANGE 4
156 #define MIGR_REPAIR 5
157         __u8  migr_type;        /* Initializing, Rebuilding, ... */
158         __u8  dirty;
159         __u8  fs_state;         /* fast-sync state for CnG (0xff == disabled) */
160         __u16 verify_errors;    /* number of mismatches */
161         __u16 bad_blocks;       /* number of bad blocks during verify */
162         __u32 filler[4];
163         struct imsm_map map[1];
164         /* here comes another one if migr_state */
165 } __attribute__ ((packed));
166
167 struct imsm_dev {
168         __u8  volume[MAX_RAID_SERIAL_LEN];
169         __u32 size_low;
170         __u32 size_high;
171 #define DEV_BOOTABLE            __cpu_to_le32(0x01)
172 #define DEV_BOOT_DEVICE         __cpu_to_le32(0x02)
173 #define DEV_READ_COALESCING     __cpu_to_le32(0x04)
174 #define DEV_WRITE_COALESCING    __cpu_to_le32(0x08)
175 #define DEV_LAST_SHUTDOWN_DIRTY __cpu_to_le32(0x10)
176 #define DEV_HIDDEN_AT_BOOT      __cpu_to_le32(0x20)
177 #define DEV_CURRENTLY_HIDDEN    __cpu_to_le32(0x40)
178 #define DEV_VERIFY_AND_FIX      __cpu_to_le32(0x80)
179 #define DEV_MAP_STATE_UNINIT    __cpu_to_le32(0x100)
180 #define DEV_NO_AUTO_RECOVERY    __cpu_to_le32(0x200)
181 #define DEV_CLONE_N_GO          __cpu_to_le32(0x400)
182 #define DEV_CLONE_MAN_SYNC      __cpu_to_le32(0x800)
183 #define DEV_CNG_MASTER_DISK_NUM __cpu_to_le32(0x1000)
184         __u32 status;   /* Persistent RaidDev status */
185         __u32 reserved_blocks; /* Reserved blocks at beginning of volume */
186         __u8  migr_priority;
187         __u8  num_sub_vols;
188         __u8  tid;
189         __u8  cng_master_disk;
190         __u16 cache_policy;
191         __u8  cng_state;
192         __u8  cng_sub_state;
193 #define IMSM_DEV_FILLERS 10
194         __u32 filler[IMSM_DEV_FILLERS];
195         struct imsm_vol vol;
196 } __attribute__ ((packed));
197
198 struct imsm_super {
199         __u8 sig[MAX_SIGNATURE_LENGTH]; /* 0x00 - 0x1F */
200         __u32 check_sum;                /* 0x20 - 0x23 MPB Checksum */
201         __u32 mpb_size;                 /* 0x24 - 0x27 Size of MPB */
202         __u32 family_num;               /* 0x28 - 0x2B Checksum from first time this config was written */
203         __u32 generation_num;           /* 0x2C - 0x2F Incremented each time this array's MPB is written */
204         __u32 error_log_size;           /* 0x30 - 0x33 in bytes */
205         __u32 attributes;               /* 0x34 - 0x37 */
206         __u8 num_disks;                 /* 0x38 Number of configured disks */
207         __u8 num_raid_devs;             /* 0x39 Number of configured volumes */
208         __u8 error_log_pos;             /* 0x3A  */
209         __u8 fill[1];                   /* 0x3B */
210         __u32 cache_size;               /* 0x3c - 0x40 in mb */
211         __u32 orig_family_num;          /* 0x40 - 0x43 original family num */
212         __u32 pwr_cycle_count;          /* 0x44 - 0x47 simulated power cycle count for array */
213         __u32 bbm_log_size;             /* 0x48 - 0x4B - size of bad Block Mgmt Log in bytes */
214 #define IMSM_FILLERS 35
215         __u32 filler[IMSM_FILLERS];     /* 0x4C - 0xD7 RAID_MPB_FILLERS */
216         struct imsm_disk disk[1];       /* 0xD8 diskTbl[numDisks] */
217         /* here comes imsm_dev[num_raid_devs] */
218         /* here comes BBM logs */
219 } __attribute__ ((packed));
220
221 #define BBM_LOG_MAX_ENTRIES 254
222 #define BBM_LOG_MAX_LBA_ENTRY_VAL 256           /* Represents 256 LBAs */
223 #define BBM_LOG_SIGNATURE 0xabadb10c
224
225 struct bbm_log_block_addr {
226         __u16 w1;
227         __u32 dw1;
228 } __attribute__ ((__packed__));
229
230 struct bbm_log_entry {
231         __u8 marked_count;              /* Number of blocks marked - 1 */
232         __u8 disk_ordinal;              /* Disk entry within the imsm_super */
233         struct bbm_log_block_addr defective_block_start;
234 } __attribute__ ((__packed__));
235
236 struct bbm_log {
237         __u32 signature; /* 0xABADB10C */
238         __u32 entry_count;
239         struct bbm_log_entry marked_block_entries[BBM_LOG_MAX_ENTRIES];
240 } __attribute__ ((__packed__));
241
242 #ifndef MDASSEMBLE
243 static char *map_state_str[] = { "normal", "uninitialized", "degraded", "failed" };
244 #endif
245
246 #define RAID_DISK_RESERVED_BLOCKS_IMSM_HI 2209
247
248 #define GEN_MIGR_AREA_SIZE 2048 /* General Migration Copy Area size in blocks */
249
250 #define MIGR_REC_BUF_SECTORS 1 /* size of migr_record i/o buffer in sectors */
251 #define MIGR_REC_SECTOR_POSITION 1 /* migr_record position offset on disk,
252                                * MIGR_REC_BUF_SECTORS <= MIGR_REC_SECTOR_POS
253                                */
254
255 #define UNIT_SRC_NORMAL     0   /* Source data for curr_migr_unit must
256                                  *  be recovered using srcMap */
257 #define UNIT_SRC_IN_CP_AREA 1   /* Source data for curr_migr_unit has
258                                  *  already been migrated and must
259                                  *  be recovered from checkpoint area */
260 struct migr_record {
261         __u32 rec_status;           /* Status used to determine how to restart
262                                      * migration in case it aborts
263                                      * in some fashion */
264         __u32 curr_migr_unit;       /* 0..numMigrUnits-1 */
265         __u32 family_num;           /* Family number of MPB
266                                      * containing the RaidDev
267                                      * that is migrating */
268         __u32 ascending_migr;       /* True if migrating in increasing
269                                      * order of lbas */
270         __u32 blocks_per_unit;      /* Num disk blocks per unit of operation */
271         __u32 dest_depth_per_unit;  /* Num member blocks each destMap
272                                      * member disk
273                                      * advances per unit-of-operation */
274         __u32 ckpt_area_pba;        /* Pba of first block of ckpt copy area */
275         __u32 dest_1st_member_lba;  /* First member lba on first
276                                      * stripe of destination */
277         __u32 num_migr_units;       /* Total num migration units-of-op */
278         __u32 post_migr_vol_cap;    /* Size of volume after
279                                      * migration completes */
280         __u32 post_migr_vol_cap_hi; /* Expansion space for LBA64 */
281         __u32 ckpt_read_disk_num;   /* Which member disk in destSubMap[0] the
282                                      * migration ckpt record was read from
283                                      * (for recovered migrations) */
284 } __attribute__ ((__packed__));
285
286 struct md_list {
287         /* usage marker:
288          *  1: load metadata
289          *  2: metadata does not match
290          *  4: already checked
291          */
292         int   used;
293         char  *devname;
294         int   found;
295         int   container;
296         dev_t st_rdev;
297         struct md_list *next;
298 };
299
300 #define pr_vrb(fmt, arg...) (void) (verbose && pr_err(fmt, ##arg))
301
302 static __u8 migr_type(struct imsm_dev *dev)
303 {
304         if (dev->vol.migr_type == MIGR_VERIFY &&
305             dev->status & DEV_VERIFY_AND_FIX)
306                 return MIGR_REPAIR;
307         else
308                 return dev->vol.migr_type;
309 }
310
311 static void set_migr_type(struct imsm_dev *dev, __u8 migr_type)
312 {
313         /* for compatibility with older oroms convert MIGR_REPAIR, into
314          * MIGR_VERIFY w/ DEV_VERIFY_AND_FIX status
315          */
316         if (migr_type == MIGR_REPAIR) {
317                 dev->vol.migr_type = MIGR_VERIFY;
318                 dev->status |= DEV_VERIFY_AND_FIX;
319         } else {
320                 dev->vol.migr_type = migr_type;
321                 dev->status &= ~DEV_VERIFY_AND_FIX;
322         }
323 }
324
325 static unsigned int sector_count(__u32 bytes, unsigned int sector_size)
326 {
327         return ROUND_UP(bytes, sector_size) / sector_size;
328 }
329
330 static unsigned int mpb_sectors(struct imsm_super *mpb,
331                                         unsigned int sector_size)
332 {
333         return sector_count(__le32_to_cpu(mpb->mpb_size), sector_size);
334 }
335
336 struct intel_dev {
337         struct imsm_dev *dev;
338         struct intel_dev *next;
339         unsigned index;
340 };
341
342 struct intel_hba {
343         enum sys_dev_type type;
344         char *path;
345         char *pci_id;
346         struct intel_hba *next;
347 };
348
349 enum action {
350         DISK_REMOVE = 1,
351         DISK_ADD
352 };
353 /* internal representation of IMSM metadata */
354 struct intel_super {
355         union {
356                 void *buf; /* O_DIRECT buffer for reading/writing metadata */
357                 struct imsm_super *anchor; /* immovable parameters */
358         };
359         union {
360                 void *migr_rec_buf; /* buffer for I/O operations */
361                 struct migr_record *migr_rec; /* migration record */
362         };
363         int clean_migration_record_by_mdmon; /* when reshape is switched to next
364                 array, it indicates that mdmon is allowed to clean migration
365                 record */
366         size_t len; /* size of the 'buf' allocation */
367         size_t extra_space; /* extra space in 'buf' that is not used yet */
368         void *next_buf; /* for realloc'ing buf from the manager */
369         size_t next_len;
370         int updates_pending; /* count of pending updates for mdmon */
371         int current_vol; /* index of raid device undergoing creation */
372         unsigned long long create_offset; /* common start for 'current_vol' */
373         __u32 random; /* random data for seeding new family numbers */
374         struct intel_dev *devlist;
375         unsigned int sector_size; /* sector size of used member drives */
376         struct dl {
377                 struct dl *next;
378                 int index;
379                 __u8 serial[MAX_RAID_SERIAL_LEN];
380                 int major, minor;
381                 char *devname;
382                 struct imsm_disk disk;
383                 int fd;
384                 int extent_cnt;
385                 struct extent *e; /* for determining freespace @ create */
386                 int raiddisk; /* slot to fill in autolayout */
387                 enum action action;
388         } *disks, *current_disk;
389         struct dl *disk_mgmt_list; /* list of disks to add/remove while mdmon
390                                       active */
391         struct dl *missing; /* disks removed while we weren't looking */
392         struct bbm_log *bbm_log;
393         struct intel_hba *hba; /* device path of the raid controller for this metadata */
394         const struct imsm_orom *orom; /* platform firmware support */
395         struct intel_super *next; /* (temp) list for disambiguating family_num */
396         struct md_bb bb;        /* memory for get_bad_blocks call */
397 };
398
399 struct intel_disk {
400         struct imsm_disk disk;
401         #define IMSM_UNKNOWN_OWNER (-1)
402         int owner;
403         struct intel_disk *next;
404 };
405
406 struct extent {
407         unsigned long long start, size;
408 };
409
410 /* definitions of reshape process types */
411 enum imsm_reshape_type {
412         CH_TAKEOVER,
413         CH_MIGRATION,
414         CH_ARRAY_SIZE,
415 };
416
417 /* definition of messages passed to imsm_process_update */
418 enum imsm_update_type {
419         update_activate_spare,
420         update_create_array,
421         update_kill_array,
422         update_rename_array,
423         update_add_remove_disk,
424         update_reshape_container_disks,
425         update_reshape_migration,
426         update_takeover,
427         update_general_migration_checkpoint,
428         update_size_change,
429         update_prealloc_badblocks_mem,
430 };
431
432 struct imsm_update_activate_spare {
433         enum imsm_update_type type;
434         struct dl *dl;
435         int slot;
436         int array;
437         struct imsm_update_activate_spare *next;
438 };
439
440 struct geo_params {
441         char devnm[32];
442         char *dev_name;
443         unsigned long long size;
444         int level;
445         int layout;
446         int chunksize;
447         int raid_disks;
448 };
449
450 enum takeover_direction {
451         R10_TO_R0,
452         R0_TO_R10
453 };
454 struct imsm_update_takeover {
455         enum imsm_update_type type;
456         int subarray;
457         enum takeover_direction direction;
458 };
459
460 struct imsm_update_reshape {
461         enum imsm_update_type type;
462         int old_raid_disks;
463         int new_raid_disks;
464
465         int new_disks[1]; /* new_raid_disks - old_raid_disks makedev number */
466 };
467
468 struct imsm_update_reshape_migration {
469         enum imsm_update_type type;
470         int old_raid_disks;
471         int new_raid_disks;
472         /* fields for array migration changes
473          */
474         int subdev;
475         int new_level;
476         int new_layout;
477         int new_chunksize;
478
479         int new_disks[1]; /* new_raid_disks - old_raid_disks makedev number */
480 };
481
482 struct imsm_update_size_change {
483         enum imsm_update_type type;
484         int subdev;
485         long long new_size;
486 };
487
488 struct imsm_update_general_migration_checkpoint {
489         enum imsm_update_type type;
490         __u32 curr_migr_unit;
491 };
492
493 struct disk_info {
494         __u8 serial[MAX_RAID_SERIAL_LEN];
495 };
496
497 struct imsm_update_create_array {
498         enum imsm_update_type type;
499         int dev_idx;
500         struct imsm_dev dev;
501 };
502
503 struct imsm_update_kill_array {
504         enum imsm_update_type type;
505         int dev_idx;
506 };
507
508 struct imsm_update_rename_array {
509         enum imsm_update_type type;
510         __u8 name[MAX_RAID_SERIAL_LEN];
511         int dev_idx;
512 };
513
514 struct imsm_update_add_remove_disk {
515         enum imsm_update_type type;
516 };
517
518 struct imsm_update_prealloc_bb_mem {
519         enum imsm_update_type type;
520 };
521
522 static const char *_sys_dev_type[] = {
523         [SYS_DEV_UNKNOWN] = "Unknown",
524         [SYS_DEV_SAS] = "SAS",
525         [SYS_DEV_SATA] = "SATA",
526         [SYS_DEV_NVME] = "NVMe",
527         [SYS_DEV_VMD] = "VMD"
528 };
529
530 const char *get_sys_dev_type(enum sys_dev_type type)
531 {
532         if (type >= SYS_DEV_MAX)
533                 type = SYS_DEV_UNKNOWN;
534
535         return _sys_dev_type[type];
536 }
537
538 static struct intel_hba * alloc_intel_hba(struct sys_dev *device)
539 {
540         struct intel_hba *result = xmalloc(sizeof(*result));
541
542         result->type = device->type;
543         result->path = xstrdup(device->path);
544         result->next = NULL;
545         if (result->path && (result->pci_id = strrchr(result->path, '/')) != NULL)
546                 result->pci_id++;
547
548         return result;
549 }
550
551 static struct intel_hba * find_intel_hba(struct intel_hba *hba, struct sys_dev *device)
552 {
553         struct intel_hba *result;
554
555         for (result = hba; result; result = result->next) {
556                 if (result->type == device->type && strcmp(result->path, device->path) == 0)
557                         break;
558         }
559         return result;
560 }
561
562 static int attach_hba_to_super(struct intel_super *super, struct sys_dev *device)
563 {
564         struct intel_hba *hba;
565
566         /* check if disk attached to Intel HBA */
567         hba = find_intel_hba(super->hba, device);
568         if (hba != NULL)
569                 return 1;
570         /* Check if HBA is already attached to super */
571         if (super->hba == NULL) {
572                 super->hba = alloc_intel_hba(device);
573                 return 1;
574         }
575
576         hba = super->hba;
577         /* Intel metadata allows for all disks attached to the same type HBA.
578          * Do not support HBA types mixing
579          */
580         if (device->type != hba->type)
581                 return 2;
582
583         /* Multiple same type HBAs can be used if they share the same OROM */
584         const struct imsm_orom *device_orom = get_orom_by_device_id(device->dev_id);
585
586         if (device_orom != super->orom)
587                 return 2;
588
589         while (hba->next)
590                 hba = hba->next;
591
592         hba->next = alloc_intel_hba(device);
593         return 1;
594 }
595
596 static struct sys_dev* find_disk_attached_hba(int fd, const char *devname)
597 {
598         struct sys_dev *list, *elem;
599         char *disk_path;
600
601         if ((list = find_intel_devices()) == NULL)
602                 return 0;
603
604         if (fd < 0)
605                 disk_path  = (char *) devname;
606         else
607                 disk_path = diskfd_to_devpath(fd);
608
609         if (!disk_path)
610                 return 0;
611
612         for (elem = list; elem; elem = elem->next)
613                 if (path_attached_to_hba(disk_path, elem->path))
614                         return elem;
615
616         if (disk_path != devname)
617                 free(disk_path);
618
619         return NULL;
620 }
621
622 static int find_intel_hba_capability(int fd, struct intel_super *super,
623                                      char *devname);
624
625 static struct supertype *match_metadata_desc_imsm(char *arg)
626 {
627         struct supertype *st;
628
629         if (strcmp(arg, "imsm") != 0 &&
630             strcmp(arg, "default") != 0
631                 )
632                 return NULL;
633
634         st = xcalloc(1, sizeof(*st));
635         st->ss = &super_imsm;
636         st->max_devs = IMSM_MAX_DEVICES;
637         st->minor_version = 0;
638         st->sb = NULL;
639         return st;
640 }
641
642 #ifndef MDASSEMBLE
643 static __u8 *get_imsm_version(struct imsm_super *mpb)
644 {
645         return &mpb->sig[MPB_SIG_LEN];
646 }
647 #endif
648
649 /* retrieve a disk directly from the anchor when the anchor is known to be
650  * up-to-date, currently only at load time
651  */
652 static struct imsm_disk *__get_imsm_disk(struct imsm_super *mpb, __u8 index)
653 {
654         if (index >= mpb->num_disks)
655                 return NULL;
656         return &mpb->disk[index];
657 }
658
659 /* retrieve the disk description based on a index of the disk
660  * in the sub-array
661  */
662 static struct dl *get_imsm_dl_disk(struct intel_super *super, __u8 index)
663 {
664         struct dl *d;
665
666         for (d = super->disks; d; d = d->next)
667                 if (d->index == index)
668                         return d;
669
670         return NULL;
671 }
672 /* retrieve a disk from the parsed metadata */
673 static struct imsm_disk *get_imsm_disk(struct intel_super *super, __u8 index)
674 {
675         struct dl *dl;
676
677         dl = get_imsm_dl_disk(super, index);
678         if (dl)
679                 return &dl->disk;
680
681         return NULL;
682 }
683
684 /* generate a checksum directly from the anchor when the anchor is known to be
685  * up-to-date, currently only at load or write_super after coalescing
686  */
687 static __u32 __gen_imsm_checksum(struct imsm_super *mpb)
688 {
689         __u32 end = mpb->mpb_size / sizeof(end);
690         __u32 *p = (__u32 *) mpb;
691         __u32 sum = 0;
692
693         while (end--) {
694                 sum += __le32_to_cpu(*p);
695                 p++;
696         }
697
698         return sum - __le32_to_cpu(mpb->check_sum);
699 }
700
701 static size_t sizeof_imsm_map(struct imsm_map *map)
702 {
703         return sizeof(struct imsm_map) + sizeof(__u32) * (map->num_members - 1);
704 }
705
706 struct imsm_map *get_imsm_map(struct imsm_dev *dev, int second_map)
707 {
708         /* A device can have 2 maps if it is in the middle of a migration.
709          * If second_map is:
710          *    MAP_0 - we return the first map
711          *    MAP_1 - we return the second map if it exists, else NULL
712          *    MAP_X - we return the second map if it exists, else the first
713          */
714         struct imsm_map *map = &dev->vol.map[0];
715         struct imsm_map *map2 = NULL;
716
717         if (dev->vol.migr_state)
718                 map2 = (void *)map + sizeof_imsm_map(map);
719
720         switch (second_map) {
721         case MAP_0:
722                 break;
723         case MAP_1:
724                 map = map2;
725                 break;
726         case MAP_X:
727                 if (map2)
728                         map = map2;
729                 break;
730         default:
731                 map = NULL;
732         }
733         return map;
734
735 }
736
737 /* return the size of the device.
738  * migr_state increases the returned size if map[0] were to be duplicated
739  */
740 static size_t sizeof_imsm_dev(struct imsm_dev *dev, int migr_state)
741 {
742         size_t size = sizeof(*dev) - sizeof(struct imsm_map) +
743                       sizeof_imsm_map(get_imsm_map(dev, MAP_0));
744
745         /* migrating means an additional map */
746         if (dev->vol.migr_state)
747                 size += sizeof_imsm_map(get_imsm_map(dev, MAP_1));
748         else if (migr_state)
749                 size += sizeof_imsm_map(get_imsm_map(dev, MAP_0));
750
751         return size;
752 }
753
754 #ifndef MDASSEMBLE
755 /* retrieve disk serial number list from a metadata update */
756 static struct disk_info *get_disk_info(struct imsm_update_create_array *update)
757 {
758         void *u = update;
759         struct disk_info *inf;
760
761         inf = u + sizeof(*update) - sizeof(struct imsm_dev) +
762               sizeof_imsm_dev(&update->dev, 0);
763
764         return inf;
765 }
766 #endif
767
768 static struct imsm_dev *__get_imsm_dev(struct imsm_super *mpb, __u8 index)
769 {
770         int offset;
771         int i;
772         void *_mpb = mpb;
773
774         if (index >= mpb->num_raid_devs)
775                 return NULL;
776
777         /* devices start after all disks */
778         offset = ((void *) &mpb->disk[mpb->num_disks]) - _mpb;
779
780         for (i = 0; i <= index; i++)
781                 if (i == index)
782                         return _mpb + offset;
783                 else
784                         offset += sizeof_imsm_dev(_mpb + offset, 0);
785
786         return NULL;
787 }
788
789 static struct imsm_dev *get_imsm_dev(struct intel_super *super, __u8 index)
790 {
791         struct intel_dev *dv;
792
793         if (index >= super->anchor->num_raid_devs)
794                 return NULL;
795         for (dv = super->devlist; dv; dv = dv->next)
796                 if (dv->index == index)
797                         return dv->dev;
798         return NULL;
799 }
800
801 static inline unsigned long long __le48_to_cpu(const struct bbm_log_block_addr
802                                                *addr)
803 {
804         return ((((__u64)__le32_to_cpu(addr->dw1)) << 16) |
805                 __le16_to_cpu(addr->w1));
806 }
807
808 static inline struct bbm_log_block_addr __cpu_to_le48(unsigned long long sec)
809 {
810         struct bbm_log_block_addr addr;
811
812         addr.w1 =  __cpu_to_le16((__u16)(sec & 0xffff));
813         addr.dw1 = __cpu_to_le32((__u32)(sec >> 16) & 0xffffffff);
814         return addr;
815 }
816
817 #ifndef MDASSEMBLE
818 /* get size of the bbm log */
819 static __u32 get_imsm_bbm_log_size(struct bbm_log *log)
820 {
821         if (!log || log->entry_count == 0)
822                 return 0;
823
824         return sizeof(log->signature) +
825                 sizeof(log->entry_count) +
826                 log->entry_count * sizeof(struct bbm_log_entry);
827 }
828
829 /* check if bad block is not partially stored in bbm log */
830 static int is_stored_in_bbm(struct bbm_log *log, const __u8 idx, const unsigned
831                             long long sector, const int length, __u32 *pos)
832 {
833         __u32 i;
834
835         for (i = *pos; i < log->entry_count; i++) {
836                 struct bbm_log_entry *entry = &log->marked_block_entries[i];
837                 unsigned long long bb_start;
838                 unsigned long long bb_end;
839
840                 bb_start = __le48_to_cpu(&entry->defective_block_start);
841                 bb_end = bb_start + (entry->marked_count + 1);
842
843                 if ((entry->disk_ordinal == idx) && (bb_start >= sector) &&
844                     (bb_end <= sector + length)) {
845                         *pos = i;
846                         return 1;
847                 }
848         }
849         return 0;
850 }
851
852 /* record new bad block in bbm log */
853 static int record_new_badblock(struct bbm_log *log, const __u8 idx, unsigned
854                                long long sector, int length)
855 {
856         int new_bb = 0;
857         __u32 pos = 0;
858         struct bbm_log_entry *entry = NULL;
859
860         while (is_stored_in_bbm(log, idx, sector, length, &pos)) {
861                 struct bbm_log_entry *e = &log->marked_block_entries[pos];
862
863                 if ((e->marked_count + 1 == BBM_LOG_MAX_LBA_ENTRY_VAL) &&
864                     (__le48_to_cpu(&e->defective_block_start) == sector)) {
865                         sector += BBM_LOG_MAX_LBA_ENTRY_VAL;
866                         length -= BBM_LOG_MAX_LBA_ENTRY_VAL;
867                         pos = pos + 1;
868                         continue;
869                 }
870                 entry = e;
871                 break;
872         }
873
874         if (entry) {
875                 int cnt = (length <= BBM_LOG_MAX_LBA_ENTRY_VAL) ? length :
876                         BBM_LOG_MAX_LBA_ENTRY_VAL;
877                 entry->defective_block_start = __cpu_to_le48(sector);
878                 entry->marked_count = cnt - 1;
879                 if (cnt == length)
880                         return 1;
881                 sector += cnt;
882                 length -= cnt;
883         }
884
885         new_bb = ROUND_UP(length, BBM_LOG_MAX_LBA_ENTRY_VAL) /
886                 BBM_LOG_MAX_LBA_ENTRY_VAL;
887         if (log->entry_count + new_bb > BBM_LOG_MAX_ENTRIES)
888                 return 0;
889
890         while (length > 0) {
891                 int cnt = (length <= BBM_LOG_MAX_LBA_ENTRY_VAL) ? length :
892                         BBM_LOG_MAX_LBA_ENTRY_VAL;
893                 struct bbm_log_entry *entry =
894                         &log->marked_block_entries[log->entry_count];
895
896                 entry->defective_block_start = __cpu_to_le48(sector);
897                 entry->marked_count = cnt - 1;
898                 entry->disk_ordinal = idx;
899
900                 sector += cnt;
901                 length -= cnt;
902
903                 log->entry_count++;
904         }
905
906         return new_bb;
907 }
908
909 /* clear all bad blocks for given disk */
910 static void clear_disk_badblocks(struct bbm_log *log, const __u8 idx)
911 {
912         __u32 i = 0;
913
914         while (i < log->entry_count) {
915                 struct bbm_log_entry *entries = log->marked_block_entries;
916
917                 if (entries[i].disk_ordinal == idx) {
918                         if (i < log->entry_count - 1)
919                                 entries[i] = entries[log->entry_count - 1];
920                         log->entry_count--;
921                 } else {
922                         i++;
923                 }
924         }
925 }
926
927 /* clear given bad block */
928 static int clear_badblock(struct bbm_log *log, const __u8 idx, const unsigned
929                           long long sector, const int length) {
930         __u32 i = 0;
931
932         while (i < log->entry_count) {
933                 struct bbm_log_entry *entries = log->marked_block_entries;
934
935                 if ((entries[i].disk_ordinal == idx) &&
936                     (__le48_to_cpu(&entries[i].defective_block_start) ==
937                      sector) && (entries[i].marked_count + 1 == length)) {
938                         if (i < log->entry_count - 1)
939                                 entries[i] = entries[log->entry_count - 1];
940                         log->entry_count--;
941                         break;
942                 }
943                 i++;
944         }
945
946         return 1;
947 }
948 #endif /* MDASSEMBLE */
949
950 /* allocate and load BBM log from metadata */
951 static int load_bbm_log(struct intel_super *super)
952 {
953         struct imsm_super *mpb = super->anchor;
954         __u32 bbm_log_size =  __le32_to_cpu(mpb->bbm_log_size);
955
956         super->bbm_log = xcalloc(1, sizeof(struct bbm_log));
957         if (!super->bbm_log)
958                 return 1;
959
960         if (bbm_log_size) {
961                 struct bbm_log *log = (void *)mpb +
962                         __le32_to_cpu(mpb->mpb_size) - bbm_log_size;
963
964                 __u32 entry_count;
965
966                 if (bbm_log_size < sizeof(log->signature) +
967                     sizeof(log->entry_count))
968                         return 2;
969
970                 entry_count = __le32_to_cpu(log->entry_count);
971                 if ((__le32_to_cpu(log->signature) != BBM_LOG_SIGNATURE) ||
972                     (entry_count > BBM_LOG_MAX_ENTRIES))
973                         return 3;
974
975                 if (bbm_log_size !=
976                     sizeof(log->signature) + sizeof(log->entry_count) +
977                     entry_count * sizeof(struct bbm_log_entry))
978                         return 4;
979
980                 memcpy(super->bbm_log, log, bbm_log_size);
981         } else {
982                 super->bbm_log->signature = __cpu_to_le32(BBM_LOG_SIGNATURE);
983                 super->bbm_log->entry_count = 0;
984         }
985
986         return 0;
987 }
988
989 /* checks if bad block is within volume boundaries */
990 static int is_bad_block_in_volume(const struct bbm_log_entry *entry,
991                         const unsigned long long start_sector,
992                         const unsigned long long size)
993 {
994         unsigned long long bb_start;
995         unsigned long long bb_end;
996
997         bb_start = __le48_to_cpu(&entry->defective_block_start);
998         bb_end = bb_start + (entry->marked_count + 1);
999
1000         if (((bb_start >= start_sector) && (bb_start < start_sector + size)) ||
1001             ((bb_end >= start_sector) && (bb_end <= start_sector + size)))
1002                 return 1;
1003
1004         return 0;
1005 }
1006
1007 /* get list of bad blocks on a drive for a volume */
1008 static void get_volume_badblocks(const struct bbm_log *log, const __u8 idx,
1009                         const unsigned long long start_sector,
1010                         const unsigned long long size,
1011                         struct md_bb *bbs)
1012 {
1013         __u32 count = 0;
1014         __u32 i;
1015
1016         for (i = 0; i < log->entry_count; i++) {
1017                 const struct bbm_log_entry *ent =
1018                         &log->marked_block_entries[i];
1019                 struct md_bb_entry *bb;
1020
1021                 if ((ent->disk_ordinal == idx) &&
1022                     is_bad_block_in_volume(ent, start_sector, size)) {
1023
1024                         if (!bbs->entries) {
1025                                 bbs->entries = xmalloc(BBM_LOG_MAX_ENTRIES *
1026                                                      sizeof(*bb));
1027                                 if (!bbs->entries)
1028                                         break;
1029                         }
1030
1031                         bb = &bbs->entries[count++];
1032                         bb->sector = __le48_to_cpu(&ent->defective_block_start);
1033                         bb->length = ent->marked_count + 1;
1034                 }
1035         }
1036         bbs->count = count;
1037 }
1038
1039 /*
1040  * for second_map:
1041  *  == MAP_0 get first map
1042  *  == MAP_1 get second map
1043  *  == MAP_X than get map according to the current migr_state
1044  */
1045 static __u32 get_imsm_ord_tbl_ent(struct imsm_dev *dev,
1046                                   int slot,
1047                                   int second_map)
1048 {
1049         struct imsm_map *map;
1050
1051         map = get_imsm_map(dev, second_map);
1052
1053         /* top byte identifies disk under rebuild */
1054         return __le32_to_cpu(map->disk_ord_tbl[slot]);
1055 }
1056
1057 #define ord_to_idx(ord) (((ord) << 8) >> 8)
1058 static __u32 get_imsm_disk_idx(struct imsm_dev *dev, int slot, int second_map)
1059 {
1060         __u32 ord = get_imsm_ord_tbl_ent(dev, slot, second_map);
1061
1062         return ord_to_idx(ord);
1063 }
1064
1065 static void set_imsm_ord_tbl_ent(struct imsm_map *map, int slot, __u32 ord)
1066 {
1067         map->disk_ord_tbl[slot] = __cpu_to_le32(ord);
1068 }
1069
1070 static int get_imsm_disk_slot(struct imsm_map *map, unsigned idx)
1071 {
1072         int slot;
1073         __u32 ord;
1074
1075         for (slot = 0; slot < map->num_members; slot++) {
1076                 ord = __le32_to_cpu(map->disk_ord_tbl[slot]);
1077                 if (ord_to_idx(ord) == idx)
1078                         return slot;
1079         }
1080
1081         return -1;
1082 }
1083
1084 static int get_imsm_raid_level(struct imsm_map *map)
1085 {
1086         if (map->raid_level == 1) {
1087                 if (map->num_members == 2)
1088                         return 1;
1089                 else
1090                         return 10;
1091         }
1092
1093         return map->raid_level;
1094 }
1095
1096 static int cmp_extent(const void *av, const void *bv)
1097 {
1098         const struct extent *a = av;
1099         const struct extent *b = bv;
1100         if (a->start < b->start)
1101                 return -1;
1102         if (a->start > b->start)
1103                 return 1;
1104         return 0;
1105 }
1106
1107 static int count_memberships(struct dl *dl, struct intel_super *super)
1108 {
1109         int memberships = 0;
1110         int i;
1111
1112         for (i = 0; i < super->anchor->num_raid_devs; i++) {
1113                 struct imsm_dev *dev = get_imsm_dev(super, i);
1114                 struct imsm_map *map = get_imsm_map(dev, MAP_0);
1115
1116                 if (get_imsm_disk_slot(map, dl->index) >= 0)
1117                         memberships++;
1118         }
1119
1120         return memberships;
1121 }
1122
1123 static __u32 imsm_min_reserved_sectors(struct intel_super *super);
1124
1125 static int split_ull(unsigned long long n, __u32 *lo, __u32 *hi)
1126 {
1127         if (lo == 0 || hi == 0)
1128                 return 1;
1129         *lo = __le32_to_cpu((unsigned)n);
1130         *hi = __le32_to_cpu((unsigned)(n >> 32));
1131         return 0;
1132 }
1133
1134 static unsigned long long join_u32(__u32 lo, __u32 hi)
1135 {
1136         return (unsigned long long)__le32_to_cpu(lo) |
1137                (((unsigned long long)__le32_to_cpu(hi)) << 32);
1138 }
1139
1140 static unsigned long long total_blocks(struct imsm_disk *disk)
1141 {
1142         if (disk == NULL)
1143                 return 0;
1144         return join_u32(disk->total_blocks_lo, disk->total_blocks_hi);
1145 }
1146
1147 static unsigned long long pba_of_lba0(struct imsm_map *map)
1148 {
1149         if (map == NULL)
1150                 return 0;
1151         return join_u32(map->pba_of_lba0_lo, map->pba_of_lba0_hi);
1152 }
1153
1154 static unsigned long long blocks_per_member(struct imsm_map *map)
1155 {
1156         if (map == NULL)
1157                 return 0;
1158         return join_u32(map->blocks_per_member_lo, map->blocks_per_member_hi);
1159 }
1160
1161 static unsigned long long num_data_stripes(struct imsm_map *map)
1162 {
1163         if (map == NULL)
1164                 return 0;
1165         return join_u32(map->num_data_stripes_lo, map->num_data_stripes_hi);
1166 }
1167
1168 static void set_total_blocks(struct imsm_disk *disk, unsigned long long n)
1169 {
1170         split_ull(n, &disk->total_blocks_lo, &disk->total_blocks_hi);
1171 }
1172
1173 static void set_pba_of_lba0(struct imsm_map *map, unsigned long long n)
1174 {
1175         split_ull(n, &map->pba_of_lba0_lo, &map->pba_of_lba0_hi);
1176 }
1177
1178 static void set_blocks_per_member(struct imsm_map *map, unsigned long long n)
1179 {
1180         split_ull(n, &map->blocks_per_member_lo, &map->blocks_per_member_hi);
1181 }
1182
1183 static void set_num_data_stripes(struct imsm_map *map, unsigned long long n)
1184 {
1185         split_ull(n, &map->num_data_stripes_lo, &map->num_data_stripes_hi);
1186 }
1187
1188 static struct extent *get_extents(struct intel_super *super, struct dl *dl)
1189 {
1190         /* find a list of used extents on the given physical device */
1191         struct extent *rv, *e;
1192         int i;
1193         int memberships = count_memberships(dl, super);
1194         __u32 reservation;
1195
1196         /* trim the reserved area for spares, so they can join any array
1197          * regardless of whether the OROM has assigned sectors from the
1198          * IMSM_RESERVED_SECTORS region
1199          */
1200         if (dl->index == -1)
1201                 reservation = imsm_min_reserved_sectors(super);
1202         else
1203                 reservation = MPB_SECTOR_CNT + IMSM_RESERVED_SECTORS;
1204
1205         rv = xcalloc(sizeof(struct extent), (memberships + 1));
1206         e = rv;
1207
1208         for (i = 0; i < super->anchor->num_raid_devs; i++) {
1209                 struct imsm_dev *dev = get_imsm_dev(super, i);
1210                 struct imsm_map *map = get_imsm_map(dev, MAP_0);
1211
1212                 if (get_imsm_disk_slot(map, dl->index) >= 0) {
1213                         e->start = pba_of_lba0(map);
1214                         e->size = blocks_per_member(map);
1215                         e++;
1216                 }
1217         }
1218         qsort(rv, memberships, sizeof(*rv), cmp_extent);
1219
1220         /* determine the start of the metadata
1221          * when no raid devices are defined use the default
1222          * ...otherwise allow the metadata to truncate the value
1223          * as is the case with older versions of imsm
1224          */
1225         if (memberships) {
1226                 struct extent *last = &rv[memberships - 1];
1227                 unsigned long long remainder;
1228
1229                 remainder = total_blocks(&dl->disk) - (last->start + last->size);
1230                 /* round down to 1k block to satisfy precision of the kernel
1231                  * 'size' interface
1232                  */
1233                 remainder &= ~1UL;
1234                 /* make sure remainder is still sane */
1235                 if (remainder < (unsigned)ROUND_UP(super->len, 512) >> 9)
1236                         remainder = ROUND_UP(super->len, 512) >> 9;
1237                 if (reservation > remainder)
1238                         reservation = remainder;
1239         }
1240         e->start = total_blocks(&dl->disk) - reservation;
1241         e->size = 0;
1242         return rv;
1243 }
1244
1245 /* try to determine how much space is reserved for metadata from
1246  * the last get_extents() entry, otherwise fallback to the
1247  * default
1248  */
1249 static __u32 imsm_reserved_sectors(struct intel_super *super, struct dl *dl)
1250 {
1251         struct extent *e;
1252         int i;
1253         __u32 rv;
1254
1255         /* for spares just return a minimal reservation which will grow
1256          * once the spare is picked up by an array
1257          */
1258         if (dl->index == -1)
1259                 return MPB_SECTOR_CNT;
1260
1261         e = get_extents(super, dl);
1262         if (!e)
1263                 return MPB_SECTOR_CNT + IMSM_RESERVED_SECTORS;
1264
1265         /* scroll to last entry */
1266         for (i = 0; e[i].size; i++)
1267                 continue;
1268
1269         rv = total_blocks(&dl->disk) - e[i].start;
1270
1271         free(e);
1272
1273         return rv;
1274 }
1275
1276 static int is_spare(struct imsm_disk *disk)
1277 {
1278         return (disk->status & SPARE_DISK) == SPARE_DISK;
1279 }
1280
1281 static int is_configured(struct imsm_disk *disk)
1282 {
1283         return (disk->status & CONFIGURED_DISK) == CONFIGURED_DISK;
1284 }
1285
1286 static int is_failed(struct imsm_disk *disk)
1287 {
1288         return (disk->status & FAILED_DISK) == FAILED_DISK;
1289 }
1290
1291 /* try to determine how much space is reserved for metadata from
1292  * the last get_extents() entry on the smallest active disk,
1293  * otherwise fallback to the default
1294  */
1295 static __u32 imsm_min_reserved_sectors(struct intel_super *super)
1296 {
1297         struct extent *e;
1298         int i;
1299         unsigned long long min_active;
1300         __u32 remainder;
1301         __u32 rv = MPB_SECTOR_CNT + IMSM_RESERVED_SECTORS;
1302         struct dl *dl, *dl_min = NULL;
1303
1304         if (!super)
1305                 return rv;
1306
1307         min_active = 0;
1308         for (dl = super->disks; dl; dl = dl->next) {
1309                 if (dl->index < 0)
1310                         continue;
1311                 unsigned long long blocks = total_blocks(&dl->disk);
1312                 if (blocks < min_active || min_active == 0) {
1313                         dl_min = dl;
1314                         min_active = blocks;
1315                 }
1316         }
1317         if (!dl_min)
1318                 return rv;
1319
1320         /* find last lba used by subarrays on the smallest active disk */
1321         e = get_extents(super, dl_min);
1322         if (!e)
1323                 return rv;
1324         for (i = 0; e[i].size; i++)
1325                 continue;
1326
1327         remainder = min_active - e[i].start;
1328         free(e);
1329
1330         /* to give priority to recovery we should not require full
1331            IMSM_RESERVED_SECTORS from the spare */
1332         rv = MPB_SECTOR_CNT + NUM_BLOCKS_DIRTY_STRIPE_REGION;
1333
1334         /* if real reservation is smaller use that value */
1335         return  (remainder < rv) ? remainder : rv;
1336 }
1337
1338 /* Return minimum size of a spare that can be used in this array*/
1339 static unsigned long long min_acceptable_spare_size_imsm(struct supertype *st)
1340 {
1341         struct intel_super *super = st->sb;
1342         struct dl *dl;
1343         struct extent *e;
1344         int i;
1345         unsigned long long rv = 0;
1346
1347         if (!super)
1348                 return rv;
1349         /* find first active disk in array */
1350         dl = super->disks;
1351         while (dl && (is_failed(&dl->disk) || dl->index == -1))
1352                 dl = dl->next;
1353         if (!dl)
1354                 return rv;
1355         /* find last lba used by subarrays */
1356         e = get_extents(super, dl);
1357         if (!e)
1358                 return rv;
1359         for (i = 0; e[i].size; i++)
1360                 continue;
1361         if (i > 0)
1362                 rv = e[i-1].start + e[i-1].size;
1363         free(e);
1364
1365         /* add the amount of space needed for metadata */
1366         rv = rv + imsm_min_reserved_sectors(super);
1367
1368         return rv * 512;
1369 }
1370
1371 static int is_gen_migration(struct imsm_dev *dev);
1372
1373 #define IMSM_4K_DIV 8
1374
1375 #ifndef MDASSEMBLE
1376 static __u64 blocks_per_migr_unit(struct intel_super *super,
1377                                   struct imsm_dev *dev);
1378
1379 static void print_imsm_dev(struct intel_super *super,
1380                            struct imsm_dev *dev,
1381                            char *uuid,
1382                            int disk_idx)
1383 {
1384         __u64 sz;
1385         int slot, i;
1386         struct imsm_map *map = get_imsm_map(dev, MAP_0);
1387         struct imsm_map *map2 = get_imsm_map(dev, MAP_1);
1388         __u32 ord;
1389
1390         printf("\n");
1391         printf("[%.16s]:\n", dev->volume);
1392         printf("           UUID : %s\n", uuid);
1393         printf("     RAID Level : %d", get_imsm_raid_level(map));
1394         if (map2)
1395                 printf(" <-- %d", get_imsm_raid_level(map2));
1396         printf("\n");
1397         printf("        Members : %d", map->num_members);
1398         if (map2)
1399                 printf(" <-- %d", map2->num_members);
1400         printf("\n");
1401         printf("          Slots : [");
1402         for (i = 0; i < map->num_members; i++) {
1403                 ord = get_imsm_ord_tbl_ent(dev, i, MAP_0);
1404                 printf("%s", ord & IMSM_ORD_REBUILD ? "_" : "U");
1405         }
1406         printf("]");
1407         if (map2) {
1408                 printf(" <-- [");
1409                 for (i = 0; i < map2->num_members; i++) {
1410                         ord = get_imsm_ord_tbl_ent(dev, i, MAP_1);
1411                         printf("%s", ord & IMSM_ORD_REBUILD ? "_" : "U");
1412                 }
1413                 printf("]");
1414         }
1415         printf("\n");
1416         printf("    Failed disk : ");
1417         if (map->failed_disk_num == 0xff)
1418                 printf("none");
1419         else
1420                 printf("%i", map->failed_disk_num);
1421         printf("\n");
1422         slot = get_imsm_disk_slot(map, disk_idx);
1423         if (slot >= 0) {
1424                 ord = get_imsm_ord_tbl_ent(dev, slot, MAP_X);
1425                 printf("      This Slot : %d%s\n", slot,
1426                        ord & IMSM_ORD_REBUILD ? " (out-of-sync)" : "");
1427         } else
1428                 printf("      This Slot : ?\n");
1429         sz = __le32_to_cpu(dev->size_high);
1430         sz <<= 32;
1431         sz += __le32_to_cpu(dev->size_low);
1432         printf("     Array Size : %llu%s\n", (unsigned long long)sz,
1433                human_size(sz * 512));
1434         sz = blocks_per_member(map);
1435         printf("   Per Dev Size : %llu%s\n", (unsigned long long)sz,
1436                human_size(sz * 512));
1437         printf("  Sector Offset : %llu\n",
1438                 pba_of_lba0(map));
1439         printf("    Num Stripes : %llu\n",
1440                 num_data_stripes(map));
1441         printf("     Chunk Size : %u KiB",
1442                 __le16_to_cpu(map->blocks_per_strip) / 2);
1443         if (map2)
1444                 printf(" <-- %u KiB",
1445                         __le16_to_cpu(map2->blocks_per_strip) / 2);
1446         printf("\n");
1447         printf("       Reserved : %d\n", __le32_to_cpu(dev->reserved_blocks));
1448         printf("  Migrate State : ");
1449         if (dev->vol.migr_state) {
1450                 if (migr_type(dev) == MIGR_INIT)
1451                         printf("initialize\n");
1452                 else if (migr_type(dev) == MIGR_REBUILD)
1453                         printf("rebuild\n");
1454                 else if (migr_type(dev) == MIGR_VERIFY)
1455                         printf("check\n");
1456                 else if (migr_type(dev) == MIGR_GEN_MIGR)
1457                         printf("general migration\n");
1458                 else if (migr_type(dev) == MIGR_STATE_CHANGE)
1459                         printf("state change\n");
1460                 else if (migr_type(dev) == MIGR_REPAIR)
1461                         printf("repair\n");
1462                 else
1463                         printf("<unknown:%d>\n", migr_type(dev));
1464         } else
1465                 printf("idle\n");
1466         printf("      Map State : %s", map_state_str[map->map_state]);
1467         if (dev->vol.migr_state) {
1468                 struct imsm_map *map = get_imsm_map(dev, MAP_1);
1469
1470                 printf(" <-- %s", map_state_str[map->map_state]);
1471                 printf("\n     Checkpoint : %u ",
1472                            __le32_to_cpu(dev->vol.curr_migr_unit));
1473                 if (is_gen_migration(dev) && (slot > 1 || slot < 0))
1474                         printf("(N/A)");
1475                 else
1476                         printf("(%llu)", (unsigned long long)
1477                                    blocks_per_migr_unit(super, dev));
1478         }
1479         printf("\n");
1480         printf("    Dirty State : %s\n", dev->vol.dirty ? "dirty" : "clean");
1481 }
1482
1483 static void print_imsm_disk(struct imsm_disk *disk, int index, __u32 reserved)
1484 {
1485         char str[MAX_RAID_SERIAL_LEN + 1];
1486         __u64 sz;
1487
1488         if (index < -1 || !disk)
1489                 return;
1490
1491         printf("\n");
1492         snprintf(str, MAX_RAID_SERIAL_LEN + 1, "%s", disk->serial);
1493         if (index >= 0)
1494                 printf("  Disk%02d Serial : %s\n", index, str);
1495         else
1496                 printf("    Disk Serial : %s\n", str);
1497         printf("          State :%s%s%s\n", is_spare(disk) ? " spare" : "",
1498                                             is_configured(disk) ? " active" : "",
1499                                             is_failed(disk) ? " failed" : "");
1500         printf("             Id : %08x\n", __le32_to_cpu(disk->scsi_id));
1501         sz = total_blocks(disk) - reserved;
1502         printf("    Usable Size : %llu%s\n", (unsigned long long)sz,
1503                human_size(sz * 512));
1504 }
1505
1506 void convert_to_4k_imsm_migr_rec(struct intel_super *super)
1507 {
1508         struct migr_record *migr_rec = super->migr_rec;
1509
1510         migr_rec->blocks_per_unit /= IMSM_4K_DIV;
1511         migr_rec->ckpt_area_pba /= IMSM_4K_DIV;
1512         migr_rec->dest_1st_member_lba /= IMSM_4K_DIV;
1513         migr_rec->dest_depth_per_unit /= IMSM_4K_DIV;
1514         split_ull((join_u32(migr_rec->post_migr_vol_cap,
1515                  migr_rec->post_migr_vol_cap_hi) / IMSM_4K_DIV),
1516                  &migr_rec->post_migr_vol_cap, &migr_rec->post_migr_vol_cap_hi);
1517 }
1518
1519 void convert_to_4k_imsm_disk(struct imsm_disk *disk)
1520 {
1521         set_total_blocks(disk, (total_blocks(disk)/IMSM_4K_DIV));
1522 }
1523
1524 void convert_to_4k(struct intel_super *super)
1525 {
1526         struct imsm_super *mpb = super->anchor;
1527         struct imsm_disk *disk;
1528         int i;
1529         __u32 bbm_log_size = __le32_to_cpu(mpb->bbm_log_size);
1530
1531         for (i = 0; i < mpb->num_disks ; i++) {
1532                 disk = __get_imsm_disk(mpb, i);
1533                 /* disk */
1534                 convert_to_4k_imsm_disk(disk);
1535         }
1536         for (i = 0; i < mpb->num_raid_devs; i++) {
1537                 struct imsm_dev *dev = __get_imsm_dev(mpb, i);
1538                 struct imsm_map *map = get_imsm_map(dev, MAP_0);
1539                 /* dev */
1540                 split_ull((join_u32(dev->size_low, dev->size_high)/IMSM_4K_DIV),
1541                                  &dev->size_low, &dev->size_high);
1542                 dev->vol.curr_migr_unit /= IMSM_4K_DIV;
1543
1544                 /* map0 */
1545                 set_blocks_per_member(map, blocks_per_member(map)/IMSM_4K_DIV);
1546                 map->blocks_per_strip /= IMSM_4K_DIV;
1547                 set_pba_of_lba0(map, pba_of_lba0(map)/IMSM_4K_DIV);
1548
1549                 if (dev->vol.migr_state) {
1550                         /* map1 */
1551                         map = get_imsm_map(dev, MAP_1);
1552                         set_blocks_per_member(map,
1553                             blocks_per_member(map)/IMSM_4K_DIV);
1554                         map->blocks_per_strip /= IMSM_4K_DIV;
1555                         set_pba_of_lba0(map, pba_of_lba0(map)/IMSM_4K_DIV);
1556                 }
1557         }
1558         if (bbm_log_size) {
1559                 struct bbm_log *log = (void *)mpb +
1560                         __le32_to_cpu(mpb->mpb_size) - bbm_log_size;
1561                 __u32 i;
1562
1563                 for (i = 0; i < log->entry_count; i++) {
1564                         struct bbm_log_entry *entry =
1565                                 &log->marked_block_entries[i];
1566
1567                         __u8 count = entry->marked_count + 1;
1568                         unsigned long long sector =
1569                                 __le48_to_cpu(&entry->defective_block_start);
1570
1571                         entry->defective_block_start =
1572                                 __cpu_to_le48(sector/IMSM_4K_DIV);
1573                         entry->marked_count = max(count/IMSM_4K_DIV, 1) - 1;
1574                 }
1575         }
1576
1577         mpb->check_sum = __gen_imsm_checksum(mpb);
1578 }
1579
1580 void examine_migr_rec_imsm(struct intel_super *super)
1581 {
1582         struct migr_record *migr_rec = super->migr_rec;
1583         struct imsm_super *mpb = super->anchor;
1584         int i;
1585
1586         for (i = 0; i < mpb->num_raid_devs; i++) {
1587                 struct imsm_dev *dev = __get_imsm_dev(mpb, i);
1588                 struct imsm_map *map;
1589                 int slot = -1;
1590
1591                 if (is_gen_migration(dev) == 0)
1592                                 continue;
1593
1594                 printf("\nMigration Record Information:");
1595
1596                 /* first map under migration */
1597                 map = get_imsm_map(dev, MAP_0);
1598                 if (map)
1599                         slot = get_imsm_disk_slot(map, super->disks->index);
1600                 if (map == NULL || slot > 1 || slot < 0) {
1601                         printf(" Empty\n                              ");
1602                         printf("Examine one of first two disks in array\n");
1603                         break;
1604                 }
1605                 printf("\n                     Status : ");
1606                 if (__le32_to_cpu(migr_rec->rec_status) == UNIT_SRC_NORMAL)
1607                         printf("Normal\n");
1608                 else
1609                         printf("Contains Data\n");
1610                 printf("               Current Unit : %u\n",
1611                        __le32_to_cpu(migr_rec->curr_migr_unit));
1612                 printf("                     Family : %u\n",
1613                        __le32_to_cpu(migr_rec->family_num));
1614                 printf("                  Ascending : %u\n",
1615                        __le32_to_cpu(migr_rec->ascending_migr));
1616                 printf("            Blocks Per Unit : %u\n",
1617                        __le32_to_cpu(migr_rec->blocks_per_unit));
1618                 printf("       Dest. Depth Per Unit : %u\n",
1619                        __le32_to_cpu(migr_rec->dest_depth_per_unit));
1620                 printf("        Checkpoint Area pba : %u\n",
1621                        __le32_to_cpu(migr_rec->ckpt_area_pba));
1622                 printf("           First member lba : %u\n",
1623                        __le32_to_cpu(migr_rec->dest_1st_member_lba));
1624                 printf("      Total Number of Units : %u\n",
1625                        __le32_to_cpu(migr_rec->num_migr_units));
1626                 printf("             Size of volume : %u\n",
1627                        __le32_to_cpu(migr_rec->post_migr_vol_cap));
1628                 printf("  Expansion space for LBA64 : %u\n",
1629                        __le32_to_cpu(migr_rec->post_migr_vol_cap_hi));
1630                 printf("       Record was read from : %u\n",
1631                        __le32_to_cpu(migr_rec->ckpt_read_disk_num));
1632
1633                 break;
1634         }
1635 }
1636 #endif /* MDASSEMBLE */
1637
1638 void convert_from_4k_imsm_migr_rec(struct intel_super *super)
1639 {
1640         struct migr_record *migr_rec = super->migr_rec;
1641
1642         migr_rec->blocks_per_unit *= IMSM_4K_DIV;
1643         migr_rec->ckpt_area_pba *= IMSM_4K_DIV;
1644         migr_rec->dest_1st_member_lba *= IMSM_4K_DIV;
1645         migr_rec->dest_depth_per_unit *= IMSM_4K_DIV;
1646         split_ull((join_u32(migr_rec->post_migr_vol_cap,
1647                  migr_rec->post_migr_vol_cap_hi) * IMSM_4K_DIV),
1648                  &migr_rec->post_migr_vol_cap,
1649                  &migr_rec->post_migr_vol_cap_hi);
1650 }
1651
1652 void convert_from_4k(struct intel_super *super)
1653 {
1654         struct imsm_super *mpb = super->anchor;
1655         struct imsm_disk *disk;
1656         int i;
1657         __u32 bbm_log_size = __le32_to_cpu(mpb->bbm_log_size);
1658
1659         for (i = 0; i < mpb->num_disks ; i++) {
1660                 disk = __get_imsm_disk(mpb, i);
1661                 /* disk */
1662                 set_total_blocks(disk, (total_blocks(disk)*IMSM_4K_DIV));
1663         }
1664
1665         for (i = 0; i < mpb->num_raid_devs; i++) {
1666                 struct imsm_dev *dev = __get_imsm_dev(mpb, i);
1667                 struct imsm_map *map = get_imsm_map(dev, MAP_0);
1668                 /* dev */
1669                 split_ull((join_u32(dev->size_low, dev->size_high)*IMSM_4K_DIV),
1670                                  &dev->size_low, &dev->size_high);
1671                 dev->vol.curr_migr_unit *= IMSM_4K_DIV;
1672
1673                 /* map0 */
1674                 set_blocks_per_member(map, blocks_per_member(map)*IMSM_4K_DIV);
1675                 map->blocks_per_strip *= IMSM_4K_DIV;
1676                 set_pba_of_lba0(map, pba_of_lba0(map)*IMSM_4K_DIV);
1677
1678                 if (dev->vol.migr_state) {
1679                         /* map1 */
1680                         map = get_imsm_map(dev, MAP_1);
1681                         set_blocks_per_member(map,
1682                             blocks_per_member(map)*IMSM_4K_DIV);
1683                         map->blocks_per_strip *= IMSM_4K_DIV;
1684                         set_pba_of_lba0(map, pba_of_lba0(map)*IMSM_4K_DIV);
1685                 }
1686         }
1687         if (bbm_log_size) {
1688                 struct bbm_log *log = (void *)mpb +
1689                         __le32_to_cpu(mpb->mpb_size) - bbm_log_size;
1690                 __u32 i;
1691
1692                 for (i = 0; i < log->entry_count; i++) {
1693                         struct bbm_log_entry *entry =
1694                                 &log->marked_block_entries[i];
1695
1696                         __u8 count = entry->marked_count + 1;
1697                         unsigned long long sector =
1698                                 __le48_to_cpu(&entry->defective_block_start);
1699
1700                         entry->defective_block_start =
1701                                 __cpu_to_le48(sector*IMSM_4K_DIV);
1702                         entry->marked_count = count*IMSM_4K_DIV - 1;
1703                 }
1704         }
1705
1706         mpb->check_sum = __gen_imsm_checksum(mpb);
1707 }
1708
1709 /*******************************************************************************
1710  * function: imsm_check_attributes
1711  * Description: Function checks if features represented by attributes flags
1712  *              are supported by mdadm.
1713  * Parameters:
1714  *              attributes - Attributes read from metadata
1715  * Returns:
1716  *              0 - passed attributes contains unsupported features flags
1717  *              1 - all features are supported
1718  ******************************************************************************/
1719 static int imsm_check_attributes(__u32 attributes)
1720 {
1721         int ret_val = 1;
1722         __u32 not_supported = MPB_ATTRIB_SUPPORTED^0xffffffff;
1723
1724         not_supported &= ~MPB_ATTRIB_IGNORED;
1725
1726         not_supported &= attributes;
1727         if (not_supported) {
1728                 pr_err("(IMSM): Unsupported attributes : %x\n",
1729                         (unsigned)__le32_to_cpu(not_supported));
1730                 if (not_supported & MPB_ATTRIB_CHECKSUM_VERIFY) {
1731                         dprintf("\t\tMPB_ATTRIB_CHECKSUM_VERIFY \n");
1732                         not_supported ^= MPB_ATTRIB_CHECKSUM_VERIFY;
1733                 }
1734                 if (not_supported & MPB_ATTRIB_2TB) {
1735                         dprintf("\t\tMPB_ATTRIB_2TB\n");
1736                         not_supported ^= MPB_ATTRIB_2TB;
1737                 }
1738                 if (not_supported & MPB_ATTRIB_RAID0) {
1739                         dprintf("\t\tMPB_ATTRIB_RAID0\n");
1740                         not_supported ^= MPB_ATTRIB_RAID0;
1741                 }
1742                 if (not_supported & MPB_ATTRIB_RAID1) {
1743                         dprintf("\t\tMPB_ATTRIB_RAID1\n");
1744                         not_supported ^= MPB_ATTRIB_RAID1;
1745                 }
1746                 if (not_supported & MPB_ATTRIB_RAID10) {
1747                         dprintf("\t\tMPB_ATTRIB_RAID10\n");
1748                         not_supported ^= MPB_ATTRIB_RAID10;
1749                 }
1750                 if (not_supported & MPB_ATTRIB_RAID1E) {
1751                         dprintf("\t\tMPB_ATTRIB_RAID1E\n");
1752                         not_supported ^= MPB_ATTRIB_RAID1E;
1753                 }
1754                 if (not_supported & MPB_ATTRIB_RAID5) {
1755                 dprintf("\t\tMPB_ATTRIB_RAID5\n");
1756                         not_supported ^= MPB_ATTRIB_RAID5;
1757                 }
1758                 if (not_supported & MPB_ATTRIB_RAIDCNG) {
1759                         dprintf("\t\tMPB_ATTRIB_RAIDCNG\n");
1760                         not_supported ^= MPB_ATTRIB_RAIDCNG;
1761                 }
1762                 if (not_supported & MPB_ATTRIB_BBM) {
1763                         dprintf("\t\tMPB_ATTRIB_BBM\n");
1764                 not_supported ^= MPB_ATTRIB_BBM;
1765                 }
1766                 if (not_supported & MPB_ATTRIB_CHECKSUM_VERIFY) {
1767                         dprintf("\t\tMPB_ATTRIB_CHECKSUM_VERIFY (== MPB_ATTRIB_LEGACY)\n");
1768                         not_supported ^= MPB_ATTRIB_CHECKSUM_VERIFY;
1769                 }
1770                 if (not_supported & MPB_ATTRIB_EXP_STRIPE_SIZE) {
1771                         dprintf("\t\tMPB_ATTRIB_EXP_STRIP_SIZE\n");
1772                         not_supported ^= MPB_ATTRIB_EXP_STRIPE_SIZE;
1773                 }
1774                 if (not_supported & MPB_ATTRIB_2TB_DISK) {
1775                         dprintf("\t\tMPB_ATTRIB_2TB_DISK\n");
1776                         not_supported ^= MPB_ATTRIB_2TB_DISK;
1777                 }
1778                 if (not_supported & MPB_ATTRIB_NEVER_USE2) {
1779                         dprintf("\t\tMPB_ATTRIB_NEVER_USE2\n");
1780                         not_supported ^= MPB_ATTRIB_NEVER_USE2;
1781                 }
1782                 if (not_supported & MPB_ATTRIB_NEVER_USE) {
1783                         dprintf("\t\tMPB_ATTRIB_NEVER_USE\n");
1784                         not_supported ^= MPB_ATTRIB_NEVER_USE;
1785                 }
1786
1787                 if (not_supported)
1788                         dprintf("(IMSM): Unknown attributes : %x\n", not_supported);
1789
1790                 ret_val = 0;
1791         }
1792
1793         return ret_val;
1794 }
1795
1796 #ifndef MDASSEMBLE
1797 static void getinfo_super_imsm(struct supertype *st, struct mdinfo *info, char *map);
1798
1799 static void examine_super_imsm(struct supertype *st, char *homehost)
1800 {
1801         struct intel_super *super = st->sb;
1802         struct imsm_super *mpb = super->anchor;
1803         char str[MAX_SIGNATURE_LENGTH];
1804         int i;
1805         struct mdinfo info;
1806         char nbuf[64];
1807         __u32 sum;
1808         __u32 reserved = imsm_reserved_sectors(super, super->disks);
1809         struct dl *dl;
1810
1811         snprintf(str, MPB_SIG_LEN, "%s", mpb->sig);
1812         printf("          Magic : %s\n", str);
1813         snprintf(str, strlen(MPB_VERSION_RAID0), "%s", get_imsm_version(mpb));
1814         printf("        Version : %s\n", get_imsm_version(mpb));
1815         printf("    Orig Family : %08x\n", __le32_to_cpu(mpb->orig_family_num));
1816         printf("         Family : %08x\n", __le32_to_cpu(mpb->family_num));
1817         printf("     Generation : %08x\n", __le32_to_cpu(mpb->generation_num));
1818         printf("     Attributes : ");
1819         if (imsm_check_attributes(mpb->attributes))
1820                 printf("All supported\n");
1821         else
1822                 printf("not supported\n");
1823         getinfo_super_imsm(st, &info, NULL);
1824         fname_from_uuid(st, &info, nbuf, ':');
1825         printf("           UUID : %s\n", nbuf + 5);
1826         sum = __le32_to_cpu(mpb->check_sum);
1827         printf("       Checksum : %08x %s\n", sum,
1828                 __gen_imsm_checksum(mpb) == sum ? "correct" : "incorrect");
1829         printf("    MPB Sectors : %d\n", mpb_sectors(mpb, super->sector_size));
1830         printf("          Disks : %d\n", mpb->num_disks);
1831         printf("   RAID Devices : %d\n", mpb->num_raid_devs);
1832         print_imsm_disk(__get_imsm_disk(mpb, super->disks->index), super->disks->index, reserved);
1833         if (get_imsm_bbm_log_size(super->bbm_log)) {
1834                 struct bbm_log *log = super->bbm_log;
1835
1836                 printf("\n");
1837                 printf("Bad Block Management Log:\n");
1838                 printf("       Log Size : %d\n", __le32_to_cpu(mpb->bbm_log_size));
1839                 printf("      Signature : %x\n", __le32_to_cpu(log->signature));
1840                 printf("    Entry Count : %d\n", __le32_to_cpu(log->entry_count));
1841         }
1842         for (i = 0; i < mpb->num_raid_devs; i++) {
1843                 struct mdinfo info;
1844                 struct imsm_dev *dev = __get_imsm_dev(mpb, i);
1845
1846                 super->current_vol = i;
1847                 getinfo_super_imsm(st, &info, NULL);
1848                 fname_from_uuid(st, &info, nbuf, ':');
1849                 print_imsm_dev(super, dev, nbuf + 5, super->disks->index);
1850         }
1851         for (i = 0; i < mpb->num_disks; i++) {
1852                 if (i == super->disks->index)
1853                         continue;
1854                 print_imsm_disk(__get_imsm_disk(mpb, i), i, reserved);
1855         }
1856
1857         for (dl = super->disks; dl; dl = dl->next)
1858                 if (dl->index == -1)
1859                         print_imsm_disk(&dl->disk, -1, reserved);
1860
1861         examine_migr_rec_imsm(super);
1862 }
1863
1864 static void brief_examine_super_imsm(struct supertype *st, int verbose)
1865 {
1866         /* We just write a generic IMSM ARRAY entry */
1867         struct mdinfo info;
1868         char nbuf[64];
1869         struct intel_super *super = st->sb;
1870
1871         if (!super->anchor->num_raid_devs) {
1872                 printf("ARRAY metadata=imsm\n");
1873                 return;
1874         }
1875
1876         getinfo_super_imsm(st, &info, NULL);
1877         fname_from_uuid(st, &info, nbuf, ':');
1878         printf("ARRAY metadata=imsm UUID=%s\n", nbuf + 5);
1879 }
1880
1881 static void brief_examine_subarrays_imsm(struct supertype *st, int verbose)
1882 {
1883         /* We just write a generic IMSM ARRAY entry */
1884         struct mdinfo info;
1885         char nbuf[64];
1886         char nbuf1[64];
1887         struct intel_super *super = st->sb;
1888         int i;
1889
1890         if (!super->anchor->num_raid_devs)
1891                 return;
1892
1893         getinfo_super_imsm(st, &info, NULL);
1894         fname_from_uuid(st, &info, nbuf, ':');
1895         for (i = 0; i < super->anchor->num_raid_devs; i++) {
1896                 struct imsm_dev *dev = get_imsm_dev(super, i);
1897
1898                 super->current_vol = i;
1899                 getinfo_super_imsm(st, &info, NULL);
1900                 fname_from_uuid(st, &info, nbuf1, ':');
1901                 printf("ARRAY /dev/md/%.16s container=%s member=%d UUID=%s\n",
1902                        dev->volume, nbuf + 5, i, nbuf1 + 5);
1903         }
1904 }
1905
1906 static void export_examine_super_imsm(struct supertype *st)
1907 {
1908         struct intel_super *super = st->sb;
1909         struct imsm_super *mpb = super->anchor;
1910         struct mdinfo info;
1911         char nbuf[64];
1912
1913         getinfo_super_imsm(st, &info, NULL);
1914         fname_from_uuid(st, &info, nbuf, ':');
1915         printf("MD_METADATA=imsm\n");
1916         printf("MD_LEVEL=container\n");
1917         printf("MD_UUID=%s\n", nbuf+5);
1918         printf("MD_DEVICES=%u\n", mpb->num_disks);
1919 }
1920
1921 static int copy_metadata_imsm(struct supertype *st, int from, int to)
1922 {
1923         /* The second last sector of the device contains
1924          * the "struct imsm_super" metadata.
1925          * This contains mpb_size which is the size in bytes of the
1926          * extended metadata.  This is located immediately before
1927          * the imsm_super.
1928          * We want to read all that, plus the last sector which
1929          * may contain a migration record, and write it all
1930          * to the target.
1931          */
1932         void *buf;
1933         unsigned long long dsize, offset;
1934         int sectors;
1935         struct imsm_super *sb;
1936         struct intel_super *super = st->sb;
1937         unsigned int sector_size = super->sector_size;
1938         unsigned int written = 0;
1939
1940         if (posix_memalign(&buf, MAX_SECTOR_SIZE, MAX_SECTOR_SIZE) != 0)
1941                 return 1;
1942
1943         if (!get_dev_size(from, NULL, &dsize))
1944                 goto err;
1945
1946         if (lseek64(from, dsize-(2*sector_size), 0) < 0)
1947                 goto err;
1948         if (read(from, buf, sector_size) != sector_size)
1949                 goto err;
1950         sb = buf;
1951         if (strncmp((char*)sb->sig, MPB_SIGNATURE, MPB_SIG_LEN) != 0)
1952                 goto err;
1953
1954         sectors = mpb_sectors(sb, sector_size) + 2;
1955         offset = dsize - sectors * sector_size;
1956         if (lseek64(from, offset, 0) < 0 ||
1957             lseek64(to, offset, 0) < 0)
1958                 goto err;
1959         while (written < sectors * sector_size) {
1960                 int n = sectors*sector_size - written;
1961                 if (n > 4096)
1962                         n = 4096;
1963                 if (read(from, buf, n) != n)
1964                         goto err;
1965                 if (write(to, buf, n) != n)
1966                         goto err;
1967                 written += n;
1968         }
1969         free(buf);
1970         return 0;
1971 err:
1972         free(buf);
1973         return 1;
1974 }
1975
1976 static void detail_super_imsm(struct supertype *st, char *homehost)
1977 {
1978         struct mdinfo info;
1979         char nbuf[64];
1980
1981         getinfo_super_imsm(st, &info, NULL);
1982         fname_from_uuid(st, &info, nbuf, ':');
1983         printf("\n           UUID : %s\n", nbuf + 5);
1984 }
1985
1986 static void brief_detail_super_imsm(struct supertype *st)
1987 {
1988         struct mdinfo info;
1989         char nbuf[64];
1990         getinfo_super_imsm(st, &info, NULL);
1991         fname_from_uuid(st, &info, nbuf, ':');
1992         printf(" UUID=%s", nbuf + 5);
1993 }
1994
1995 static int imsm_read_serial(int fd, char *devname, __u8 *serial);
1996 static void fd2devname(int fd, char *name);
1997
1998 static int ahci_enumerate_ports(const char *hba_path, int port_count, int host_base, int verbose)
1999 {
2000         /* dump an unsorted list of devices attached to AHCI Intel storage
2001          * controller, as well as non-connected ports
2002          */
2003         int hba_len = strlen(hba_path) + 1;
2004         struct dirent *ent;
2005         DIR *dir;
2006         char *path = NULL;
2007         int err = 0;
2008         unsigned long port_mask = (1 << port_count) - 1;
2009
2010         if (port_count > (int)sizeof(port_mask) * 8) {
2011                 if (verbose > 0)
2012                         pr_err("port_count %d out of range\n", port_count);
2013                 return 2;
2014         }
2015
2016         /* scroll through /sys/dev/block looking for devices attached to
2017          * this hba
2018          */
2019         dir = opendir("/sys/dev/block");
2020         if (!dir)
2021                 return 1;
2022
2023         for (ent = readdir(dir); ent; ent = readdir(dir)) {
2024                 int fd;
2025                 char model[64];
2026                 char vendor[64];
2027                 char buf[1024];
2028                 int major, minor;
2029                 char *device;
2030                 char *c;
2031                 int port;
2032                 int type;
2033
2034                 if (sscanf(ent->d_name, "%d:%d", &major, &minor) != 2)
2035                         continue;
2036                 path = devt_to_devpath(makedev(major, minor));
2037                 if (!path)
2038                         continue;
2039                 if (!path_attached_to_hba(path, hba_path)) {
2040                         free(path);
2041                         path = NULL;
2042                         continue;
2043                 }
2044
2045                 /* retrieve the scsi device type */
2046                 if (asprintf(&device, "/sys/dev/block/%d:%d/device/xxxxxxx", major, minor) < 0) {
2047                         if (verbose > 0)
2048                                 pr_err("failed to allocate 'device'\n");
2049                         err = 2;
2050                         break;
2051                 }
2052                 sprintf(device, "/sys/dev/block/%d:%d/device/type", major, minor);
2053                 if (load_sys(device, buf, sizeof(buf)) != 0) {
2054                         if (verbose > 0)
2055                                 pr_err("failed to read device type for %s\n",
2056                                         path);
2057                         err = 2;
2058                         free(device);
2059                         break;
2060                 }
2061                 type = strtoul(buf, NULL, 10);
2062
2063                 /* if it's not a disk print the vendor and model */
2064                 if (!(type == 0 || type == 7 || type == 14)) {
2065                         vendor[0] = '\0';
2066                         model[0] = '\0';
2067                         sprintf(device, "/sys/dev/block/%d:%d/device/vendor", major, minor);
2068                         if (load_sys(device, buf, sizeof(buf)) == 0) {
2069                                 strncpy(vendor, buf, sizeof(vendor));
2070                                 vendor[sizeof(vendor) - 1] = '\0';
2071                                 c = (char *) &vendor[sizeof(vendor) - 1];
2072                                 while (isspace(*c) || *c == '\0')
2073                                         *c-- = '\0';
2074
2075                         }
2076                         sprintf(device, "/sys/dev/block/%d:%d/device/model", major, minor);
2077                         if (load_sys(device, buf, sizeof(buf)) == 0) {
2078                                 strncpy(model, buf, sizeof(model));
2079                                 model[sizeof(model) - 1] = '\0';
2080                                 c = (char *) &model[sizeof(model) - 1];
2081                                 while (isspace(*c) || *c == '\0')
2082                                         *c-- = '\0';
2083                         }
2084
2085                         if (vendor[0] && model[0])
2086                                 sprintf(buf, "%.64s %.64s", vendor, model);
2087                         else
2088                                 switch (type) { /* numbers from hald/linux/device.c */
2089                                 case 1: sprintf(buf, "tape"); break;
2090                                 case 2: sprintf(buf, "printer"); break;
2091                                 case 3: sprintf(buf, "processor"); break;
2092                                 case 4:
2093                                 case 5: sprintf(buf, "cdrom"); break;
2094                                 case 6: sprintf(buf, "scanner"); break;
2095                                 case 8: sprintf(buf, "media_changer"); break;
2096                                 case 9: sprintf(buf, "comm"); break;
2097                                 case 12: sprintf(buf, "raid"); break;
2098                                 default: sprintf(buf, "unknown");
2099                                 }
2100                 } else
2101                         buf[0] = '\0';
2102                 free(device);
2103
2104                 /* chop device path to 'host%d' and calculate the port number */
2105                 c = strchr(&path[hba_len], '/');
2106                 if (!c) {
2107                         if (verbose > 0)
2108                                 pr_err("%s - invalid path name\n", path + hba_len);
2109                         err = 2;
2110                         break;
2111                 }
2112                 *c = '\0';
2113                 if ((sscanf(&path[hba_len], "ata%d", &port) == 1) ||
2114                    ((sscanf(&path[hba_len], "host%d", &port) == 1)))
2115                         port -= host_base;
2116                 else {
2117                         if (verbose > 0) {
2118                                 *c = '/'; /* repair the full string */
2119                                 pr_err("failed to determine port number for %s\n",
2120                                         path);
2121                         }
2122                         err = 2;
2123                         break;
2124                 }
2125
2126                 /* mark this port as used */
2127                 port_mask &= ~(1 << port);
2128
2129                 /* print out the device information */
2130                 if (buf[0]) {
2131                         printf("          Port%d : - non-disk device (%s) -\n", port, buf);
2132                         continue;
2133                 }
2134
2135                 fd = dev_open(ent->d_name, O_RDONLY);
2136                 if (fd < 0)
2137                         printf("          Port%d : - disk info unavailable -\n", port);
2138                 else {
2139                         fd2devname(fd, buf);
2140                         printf("          Port%d : %s", port, buf);
2141                         if (imsm_read_serial(fd, NULL, (__u8 *) buf) == 0)
2142                                 printf(" (%.*s)\n", MAX_RAID_SERIAL_LEN, buf);
2143                         else
2144                                 printf(" ()\n");
2145                         close(fd);
2146                 }
2147                 free(path);
2148                 path = NULL;
2149         }
2150         if (path)
2151                 free(path);
2152         if (dir)
2153                 closedir(dir);
2154         if (err == 0) {
2155                 int i;
2156
2157                 for (i = 0; i < port_count; i++)
2158                         if (port_mask & (1 << i))
2159                                 printf("          Port%d : - no device attached -\n", i);
2160         }
2161
2162         return err;
2163 }
2164
2165 static int print_vmd_attached_devs(struct sys_dev *hba)
2166 {
2167         struct dirent *ent;
2168         DIR *dir;
2169         char path[292];
2170         char link[256];
2171         char *c, *rp;
2172
2173         if (hba->type != SYS_DEV_VMD)
2174                 return 1;
2175
2176         /* scroll through /sys/dev/block looking for devices attached to
2177          * this hba
2178          */
2179         dir = opendir("/sys/bus/pci/drivers/nvme");
2180         if (!dir)
2181                 return 1;
2182
2183         for (ent = readdir(dir); ent; ent = readdir(dir)) {
2184                 int n;
2185
2186                 /* is 'ent' a device? check that the 'subsystem' link exists and
2187                  * that its target matches 'bus'
2188                  */
2189                 sprintf(path, "/sys/bus/pci/drivers/nvme/%s/subsystem",
2190                         ent->d_name);
2191                 n = readlink(path, link, sizeof(link));
2192                 if (n < 0 || n >= (int)sizeof(link))
2193                         continue;
2194                 link[n] = '\0';
2195                 c = strrchr(link, '/');
2196                 if (!c)
2197                         continue;
2198                 if (strncmp("pci", c+1, strlen("pci")) != 0)
2199                         continue;
2200
2201                 sprintf(path, "/sys/bus/pci/drivers/nvme/%s", ent->d_name);
2202
2203                 rp = realpath(path, NULL);
2204                 if (!rp)
2205                         continue;
2206
2207                 if (path_attached_to_hba(rp, hba->path)) {
2208                         printf(" NVMe under VMD : %s\n", rp);
2209                 }
2210                 free(rp);
2211         }
2212
2213         closedir(dir);
2214         return 0;
2215 }
2216
2217 static void print_found_intel_controllers(struct sys_dev *elem)
2218 {
2219         for (; elem; elem = elem->next) {
2220                 pr_err("found Intel(R) ");
2221                 if (elem->type == SYS_DEV_SATA)
2222                         fprintf(stderr, "SATA ");
2223                 else if (elem->type == SYS_DEV_SAS)
2224                         fprintf(stderr, "SAS ");
2225                 else if (elem->type == SYS_DEV_NVME)
2226                         fprintf(stderr, "NVMe ");
2227
2228                 if (elem->type == SYS_DEV_VMD)
2229                         fprintf(stderr, "VMD domain");
2230                 else
2231                         fprintf(stderr, "RAID controller");
2232
2233                 if (elem->pci_id)
2234                         fprintf(stderr, " at %s", elem->pci_id);
2235                 fprintf(stderr, ".\n");
2236         }
2237         fflush(stderr);
2238 }
2239
2240 static int ahci_get_port_count(const char *hba_path, int *port_count)
2241 {
2242         struct dirent *ent;
2243         DIR *dir;
2244         int host_base = -1;
2245
2246         *port_count = 0;
2247         if ((dir = opendir(hba_path)) == NULL)
2248                 return -1;
2249
2250         for (ent = readdir(dir); ent; ent = readdir(dir)) {
2251                 int host;
2252
2253                 if ((sscanf(ent->d_name, "ata%d", &host) != 1) &&
2254                    ((sscanf(ent->d_name, "host%d", &host) != 1)))
2255                         continue;
2256                 if (*port_count == 0)
2257                         host_base = host;
2258                 else if (host < host_base)
2259                         host_base = host;
2260
2261                 if (host + 1 > *port_count + host_base)
2262                         *port_count = host + 1 - host_base;
2263         }
2264         closedir(dir);
2265         return host_base;
2266 }
2267
2268 static void print_imsm_capability(const struct imsm_orom *orom)
2269 {
2270         printf("       Platform : Intel(R) ");
2271         if (orom->capabilities == 0 && orom->driver_features == 0)
2272                 printf("Matrix Storage Manager\n");
2273         else
2274                 printf("Rapid Storage Technology%s\n",
2275                         imsm_orom_is_enterprise(orom) ? " enterprise" : "");
2276         if (orom->major_ver || orom->minor_ver || orom->hotfix_ver || orom->build)
2277                 printf("        Version : %d.%d.%d.%d\n", orom->major_ver,
2278                                 orom->minor_ver, orom->hotfix_ver, orom->build);
2279         printf("    RAID Levels :%s%s%s%s%s\n",
2280                imsm_orom_has_raid0(orom) ? " raid0" : "",
2281                imsm_orom_has_raid1(orom) ? " raid1" : "",
2282                imsm_orom_has_raid1e(orom) ? " raid1e" : "",
2283                imsm_orom_has_raid10(orom) ? " raid10" : "",
2284                imsm_orom_has_raid5(orom) ? " raid5" : "");
2285         printf("    Chunk Sizes :%s%s%s%s%s%s%s%s%s%s%s%s%s%s%s%s\n",
2286                imsm_orom_has_chunk(orom, 2) ? " 2k" : "",
2287                imsm_orom_has_chunk(orom, 4) ? " 4k" : "",
2288                imsm_orom_has_chunk(orom, 8) ? " 8k" : "",
2289                imsm_orom_has_chunk(orom, 16) ? " 16k" : "",
2290                imsm_orom_has_chunk(orom, 32) ? " 32k" : "",
2291                imsm_orom_has_chunk(orom, 64) ? " 64k" : "",
2292                imsm_orom_has_chunk(orom, 128) ? " 128k" : "",
2293                imsm_orom_has_chunk(orom, 256) ? " 256k" : "",
2294                imsm_orom_has_chunk(orom, 512) ? " 512k" : "",
2295                imsm_orom_has_chunk(orom, 1024*1) ? " 1M" : "",
2296                imsm_orom_has_chunk(orom, 1024*2) ? " 2M" : "",
2297                imsm_orom_has_chunk(orom, 1024*4) ? " 4M" : "",
2298                imsm_orom_has_chunk(orom, 1024*8) ? " 8M" : "",
2299                imsm_orom_has_chunk(orom, 1024*16) ? " 16M" : "",
2300                imsm_orom_has_chunk(orom, 1024*32) ? " 32M" : "",
2301                imsm_orom_has_chunk(orom, 1024*64) ? " 64M" : "");
2302         printf("    2TB volumes :%s supported\n",
2303                (orom->attr & IMSM_OROM_ATTR_2TB)?"":" not");
2304         printf("      2TB disks :%s supported\n",
2305                (orom->attr & IMSM_OROM_ATTR_2TB_DISK)?"":" not");
2306         printf("      Max Disks : %d\n", orom->tds);
2307         printf("    Max Volumes : %d per array, %d per %s\n",
2308                orom->vpa, orom->vphba,
2309                imsm_orom_is_nvme(orom) ? "platform" : "controller");
2310         return;
2311 }
2312
2313 static void print_imsm_capability_export(const struct imsm_orom *orom)
2314 {
2315         printf("MD_FIRMWARE_TYPE=imsm\n");
2316         if (orom->major_ver || orom->minor_ver || orom->hotfix_ver || orom->build)
2317                 printf("IMSM_VERSION=%d.%d.%d.%d\n", orom->major_ver, orom->minor_ver,
2318                                 orom->hotfix_ver, orom->build);
2319         printf("IMSM_SUPPORTED_RAID_LEVELS=%s%s%s%s%s\n",
2320                         imsm_orom_has_raid0(orom) ? "raid0 " : "",
2321                         imsm_orom_has_raid1(orom) ? "raid1 " : "",
2322                         imsm_orom_has_raid1e(orom) ? "raid1e " : "",
2323                         imsm_orom_has_raid5(orom) ? "raid10 " : "",
2324                         imsm_orom_has_raid10(orom) ? "raid5 " : "");
2325         printf("IMSM_SUPPORTED_CHUNK_SIZES=%s%s%s%s%s%s%s%s%s%s%s%s%s%s%s%s\n",
2326                         imsm_orom_has_chunk(orom, 2) ? "2k " : "",
2327                         imsm_orom_has_chunk(orom, 4) ? "4k " : "",
2328                         imsm_orom_has_chunk(orom, 8) ? "8k " : "",
2329                         imsm_orom_has_chunk(orom, 16) ? "16k " : "",
2330                         imsm_orom_has_chunk(orom, 32) ? "32k " : "",
2331                         imsm_orom_has_chunk(orom, 64) ? "64k " : "",
2332                         imsm_orom_has_chunk(orom, 128) ? "128k " : "",
2333                         imsm_orom_has_chunk(orom, 256) ? "256k " : "",
2334                         imsm_orom_has_chunk(orom, 512) ? "512k " : "",
2335                         imsm_orom_has_chunk(orom, 1024*1) ? "1M " : "",
2336                         imsm_orom_has_chunk(orom, 1024*2) ? "2M " : "",
2337                         imsm_orom_has_chunk(orom, 1024*4) ? "4M " : "",
2338                         imsm_orom_has_chunk(orom, 1024*8) ? "8M " : "",
2339                         imsm_orom_has_chunk(orom, 1024*16) ? "16M " : "",
2340                         imsm_orom_has_chunk(orom, 1024*32) ? "32M " : "",
2341                         imsm_orom_has_chunk(orom, 1024*64) ? "64M " : "");
2342         printf("IMSM_2TB_VOLUMES=%s\n",(orom->attr & IMSM_OROM_ATTR_2TB) ? "yes" : "no");
2343         printf("IMSM_2TB_DISKS=%s\n",(orom->attr & IMSM_OROM_ATTR_2TB_DISK) ? "yes" : "no");
2344         printf("IMSM_MAX_DISKS=%d\n",orom->tds);
2345         printf("IMSM_MAX_VOLUMES_PER_ARRAY=%d\n",orom->vpa);
2346         printf("IMSM_MAX_VOLUMES_PER_CONTROLLER=%d\n",orom->vphba);
2347 }
2348
2349 static int detail_platform_imsm(int verbose, int enumerate_only, char *controller_path)
2350 {
2351         /* There are two components to imsm platform support, the ahci SATA
2352          * controller and the option-rom.  To find the SATA controller we
2353          * simply look in /sys/bus/pci/drivers/ahci to see if an ahci
2354          * controller with the Intel vendor id is present.  This approach
2355          * allows mdadm to leverage the kernel's ahci detection logic, with the
2356          * caveat that if ahci.ko is not loaded mdadm will not be able to
2357          * detect platform raid capabilities.  The option-rom resides in a
2358          * platform "Adapter ROM".  We scan for its signature to retrieve the
2359          * platform capabilities.  If raid support is disabled in the BIOS the
2360          * option-rom capability structure will not be available.
2361          */
2362         struct sys_dev *list, *hba;
2363         int host_base = 0;
2364         int port_count = 0;
2365         int result=1;
2366
2367         if (enumerate_only) {
2368                 if (check_env("IMSM_NO_PLATFORM"))
2369                         return 0;
2370                 list = find_intel_devices();
2371                 if (!list)
2372                         return 2;
2373                 for (hba = list; hba; hba = hba->next) {
2374                         if (find_imsm_capability(hba)) {
2375                                 result = 0;
2376                                 break;
2377                         }
2378                         else
2379                                 result = 2;
2380                 }
2381                 return result;
2382         }
2383
2384         list = find_intel_devices();
2385         if (!list) {
2386                 if (verbose > 0)
2387                         pr_err("no active Intel(R) RAID controller found.\n");
2388                 return 2;
2389         } else if (verbose > 0)
2390                 print_found_intel_controllers(list);
2391
2392         for (hba = list; hba; hba = hba->next) {
2393                 if (controller_path && (compare_paths(hba->path, controller_path) != 0))
2394                         continue;
2395                 if (!find_imsm_capability(hba)) {
2396                         char buf[PATH_MAX];
2397                         pr_err("imsm capabilities not found for controller: %s (type %s)\n",
2398                                   hba->type == SYS_DEV_VMD ? vmd_domain_to_controller(hba, buf) : hba->path,
2399                                   get_sys_dev_type(hba->type));
2400                         continue;
2401                 }
2402                 result = 0;
2403         }
2404
2405         if (controller_path && result == 1) {
2406                 pr_err("no active Intel(R) RAID controller found under %s\n",
2407                                 controller_path);
2408                 return result;
2409         }
2410
2411         const struct orom_entry *entry;
2412
2413         for (entry = orom_entries; entry; entry = entry->next) {
2414                 if (entry->type == SYS_DEV_VMD) {
2415                         print_imsm_capability(&entry->orom);
2416                         printf(" 3rd party NVMe :%s supported\n",
2417                             imsm_orom_has_tpv_support(&entry->orom)?"":" not");
2418                         for (hba = list; hba; hba = hba->next) {
2419                                 if (hba->type == SYS_DEV_VMD) {
2420                                         char buf[PATH_MAX];
2421                                         printf(" I/O Controller : %s (%s)\n",
2422                                                 vmd_domain_to_controller(hba, buf), get_sys_dev_type(hba->type));
2423                                         if (print_vmd_attached_devs(hba)) {
2424                                                 if (verbose > 0)
2425                                                         pr_err("failed to get devices attached to VMD domain.\n");
2426                                                 result |= 2;
2427                                         }
2428                                 }
2429                         }
2430                         printf("\n");
2431                         continue;
2432                 }
2433
2434                 print_imsm_capability(&entry->orom);
2435                 if (entry->type == SYS_DEV_NVME) {
2436                         for (hba = list; hba; hba = hba->next) {
2437                                 if (hba->type == SYS_DEV_NVME)
2438                                         printf("    NVMe Device : %s\n", hba->path);
2439                         }
2440                         printf("\n");
2441                         continue;
2442                 }
2443
2444                 struct devid_list *devid;
2445                 for (devid = entry->devid_list; devid; devid = devid->next) {
2446                         hba = device_by_id(devid->devid);
2447                         if (!hba)
2448                                 continue;
2449
2450                         printf(" I/O Controller : %s (%s)\n",
2451                                 hba->path, get_sys_dev_type(hba->type));
2452                         if (hba->type == SYS_DEV_SATA) {
2453                                 host_base = ahci_get_port_count(hba->path, &port_count);
2454                                 if (ahci_enumerate_ports(hba->path, port_count, host_base, verbose)) {
2455                                         if (verbose > 0)
2456                                                 pr_err("failed to enumerate ports on SATA controller at %s.\n", hba->pci_id);
2457                                         result |= 2;
2458                                 }
2459                         }
2460                 }
2461                 printf("\n");
2462         }
2463
2464         return result;
2465 }
2466
2467 static int export_detail_platform_imsm(int verbose, char *controller_path)
2468 {
2469         struct sys_dev *list, *hba;
2470         int result=1;
2471
2472         list = find_intel_devices();
2473         if (!list) {
2474                 if (verbose > 0)
2475                         pr_err("IMSM_DETAIL_PLATFORM_ERROR=NO_INTEL_DEVICES\n");
2476                 result = 2;
2477                 return result;
2478         }
2479
2480         for (hba = list; hba; hba = hba->next) {
2481                 if (controller_path && (compare_paths(hba->path,controller_path) != 0))
2482                         continue;
2483                 if (!find_imsm_capability(hba) && verbose > 0) {
2484                         char buf[PATH_MAX];
2485                         pr_err("IMSM_DETAIL_PLATFORM_ERROR=NO_IMSM_CAPABLE_DEVICE_UNDER_%s\n",
2486                         hba->type == SYS_DEV_VMD ? vmd_domain_to_controller(hba, buf) : hba->path);
2487                 }
2488                 else
2489                         result = 0;
2490         }
2491
2492         const struct orom_entry *entry;
2493
2494         for (entry = orom_entries; entry; entry = entry->next) {
2495                 if (entry->type == SYS_DEV_VMD) {
2496                         for (hba = list; hba; hba = hba->next)
2497                                 print_imsm_capability_export(&entry->orom);
2498                         continue;
2499                 }
2500                 print_imsm_capability_export(&entry->orom);
2501         }
2502
2503         return result;
2504 }
2505
2506 #endif
2507
2508 static int match_home_imsm(struct supertype *st, char *homehost)
2509 {
2510         /* the imsm metadata format does not specify any host
2511          * identification information.  We return -1 since we can never
2512          * confirm nor deny whether a given array is "meant" for this
2513          * host.  We rely on compare_super and the 'family_num' fields to
2514          * exclude member disks that do not belong, and we rely on
2515          * mdadm.conf to specify the arrays that should be assembled.
2516          * Auto-assembly may still pick up "foreign" arrays.
2517          */
2518
2519         return -1;
2520 }
2521
2522 static void uuid_from_super_imsm(struct supertype *st, int uuid[4])
2523 {
2524         /* The uuid returned here is used for:
2525          *  uuid to put into bitmap file (Create, Grow)
2526          *  uuid for backup header when saving critical section (Grow)
2527          *  comparing uuids when re-adding a device into an array
2528          *    In these cases the uuid required is that of the data-array,
2529          *    not the device-set.
2530          *  uuid to recognise same set when adding a missing device back
2531          *    to an array.   This is a uuid for the device-set.
2532          *
2533          * For each of these we can make do with a truncated
2534          * or hashed uuid rather than the original, as long as
2535          * everyone agrees.
2536          * In each case the uuid required is that of the data-array,
2537          * not the device-set.
2538          */
2539         /* imsm does not track uuid's so we synthesis one using sha1 on
2540          * - The signature (Which is constant for all imsm array, but no matter)
2541          * - the orig_family_num of the container
2542          * - the index number of the volume
2543          * - the 'serial' number of the volume.
2544          * Hopefully these are all constant.
2545          */
2546         struct intel_super *super = st->sb;
2547
2548         char buf[20];
2549         struct sha1_ctx ctx;
2550         struct imsm_dev *dev = NULL;
2551         __u32 family_num;
2552
2553         /* some mdadm versions failed to set ->orig_family_num, in which
2554          * case fall back to ->family_num.  orig_family_num will be
2555          * fixed up with the first metadata update.
2556          */
2557         family_num = super->anchor->orig_family_num;
2558         if (family_num == 0)
2559                 family_num = super->anchor->family_num;
2560         sha1_init_ctx(&ctx);
2561         sha1_process_bytes(super->anchor->sig, MPB_SIG_LEN, &ctx);
2562         sha1_process_bytes(&family_num, sizeof(__u32), &ctx);
2563         if (super->current_vol >= 0)
2564                 dev = get_imsm_dev(super, super->current_vol);
2565         if (dev) {
2566                 __u32 vol = super->current_vol;
2567                 sha1_process_bytes(&vol, sizeof(vol), &ctx);
2568                 sha1_process_bytes(dev->volume, MAX_RAID_SERIAL_LEN, &ctx);
2569         }
2570         sha1_finish_ctx(&ctx, buf);
2571         memcpy(uuid, buf, 4*4);
2572 }
2573
2574 #if 0
2575 static void
2576 get_imsm_numerical_version(struct imsm_super *mpb, int *m, int *p)
2577 {
2578         __u8 *v = get_imsm_version(mpb);
2579         __u8 *end = mpb->sig + MAX_SIGNATURE_LENGTH;
2580         char major[] = { 0, 0, 0 };
2581         char minor[] = { 0 ,0, 0 };
2582         char patch[] = { 0, 0, 0 };
2583         char *ver_parse[] = { major, minor, patch };
2584         int i, j;
2585
2586         i = j = 0;
2587         while (*v != '\0' && v < end) {
2588                 if (*v != '.' && j < 2)
2589                         ver_parse[i][j++] = *v;
2590                 else {
2591                         i++;
2592                         j = 0;
2593                 }
2594                 v++;
2595         }
2596
2597         *m = strtol(minor, NULL, 0);
2598         *p = strtol(patch, NULL, 0);
2599 }
2600 #endif
2601
2602 static __u32 migr_strip_blocks_resync(struct imsm_dev *dev)
2603 {
2604         /* migr_strip_size when repairing or initializing parity */
2605         struct imsm_map *map = get_imsm_map(dev, MAP_0);
2606         __u32 chunk = __le32_to_cpu(map->blocks_per_strip);
2607
2608         switch (get_imsm_raid_level(map)) {
2609         case 5:
2610         case 10:
2611                 return chunk;
2612         default:
2613                 return 128*1024 >> 9;
2614         }
2615 }
2616
2617 static __u32 migr_strip_blocks_rebuild(struct imsm_dev *dev)
2618 {
2619         /* migr_strip_size when rebuilding a degraded disk, no idea why
2620          * this is different than migr_strip_size_resync(), but it's good
2621          * to be compatible
2622          */
2623         struct imsm_map *map = get_imsm_map(dev, MAP_1);
2624         __u32 chunk = __le32_to_cpu(map->blocks_per_strip);
2625
2626         switch (get_imsm_raid_level(map)) {
2627         case 1:
2628         case 10:
2629                 if (map->num_members % map->num_domains == 0)
2630                         return 128*1024 >> 9;
2631                 else
2632                         return chunk;
2633         case 5:
2634                 return max((__u32) 64*1024 >> 9, chunk);
2635         default:
2636                 return 128*1024 >> 9;
2637         }
2638 }
2639
2640 static __u32 num_stripes_per_unit_resync(struct imsm_dev *dev)
2641 {
2642         struct imsm_map *lo = get_imsm_map(dev, MAP_0);
2643         struct imsm_map *hi = get_imsm_map(dev, MAP_1);
2644         __u32 lo_chunk = __le32_to_cpu(lo->blocks_per_strip);
2645         __u32 hi_chunk = __le32_to_cpu(hi->blocks_per_strip);
2646
2647         return max((__u32) 1, hi_chunk / lo_chunk);
2648 }
2649
2650 static __u32 num_stripes_per_unit_rebuild(struct imsm_dev *dev)
2651 {
2652         struct imsm_map *lo = get_imsm_map(dev, MAP_0);
2653         int level = get_imsm_raid_level(lo);
2654
2655         if (level == 1 || level == 10) {
2656                 struct imsm_map *hi = get_imsm_map(dev, MAP_1);
2657
2658                 return hi->num_domains;
2659         } else
2660                 return num_stripes_per_unit_resync(dev);
2661 }
2662
2663 static __u8 imsm_num_data_members(struct imsm_dev *dev, int second_map)
2664 {
2665         /* named 'imsm_' because raid0, raid1 and raid10
2666          * counter-intuitively have the same number of data disks
2667          */
2668         struct imsm_map *map = get_imsm_map(dev, second_map);
2669
2670         switch (get_imsm_raid_level(map)) {
2671         case 0:
2672                 return map->num_members;
2673                 break;
2674         case 1:
2675         case 10:
2676                 return map->num_members/2;
2677         case 5:
2678                 return map->num_members - 1;
2679         default:
2680                 dprintf("unsupported raid level\n");
2681                 return 0;
2682         }
2683 }
2684
2685 static __u32 parity_segment_depth(struct imsm_dev *dev)
2686 {
2687         struct imsm_map *map = get_imsm_map(dev, MAP_0);
2688         __u32 chunk =  __le32_to_cpu(map->blocks_per_strip);
2689
2690         switch(get_imsm_raid_level(map)) {
2691         case 1:
2692         case 10:
2693                 return chunk * map->num_domains;
2694         case 5:
2695                 return chunk * map->num_members;
2696         default:
2697                 return chunk;
2698         }
2699 }
2700
2701 static __u32 map_migr_block(struct imsm_dev *dev, __u32 block)
2702 {
2703         struct imsm_map *map = get_imsm_map(dev, MAP_1);
2704         __u32 chunk = __le32_to_cpu(map->blocks_per_strip);
2705         __u32 strip = block / chunk;
2706
2707         switch (get_imsm_raid_level(map)) {
2708         case 1:
2709         case 10: {
2710                 __u32 vol_strip = (strip * map->num_domains) + 1;
2711                 __u32 vol_stripe = vol_strip / map->num_members;
2712
2713                 return vol_stripe * chunk + block % chunk;
2714         } case 5: {
2715                 __u32 stripe = strip / (map->num_members - 1);
2716
2717                 return stripe * chunk + block % chunk;
2718         }
2719         default:
2720                 return 0;
2721         }
2722 }
2723
2724 static __u64 blocks_per_migr_unit(struct intel_super *super,
2725                                   struct imsm_dev *dev)
2726 {
2727         /* calculate the conversion factor between per member 'blocks'
2728          * (md/{resync,rebuild}_start) and imsm migration units, return
2729          * 0 for the 'not migrating' and 'unsupported migration' cases
2730          */
2731         if (!dev->vol.migr_state)
2732                 return 0;
2733
2734         switch (migr_type(dev)) {
2735         case MIGR_GEN_MIGR: {
2736                 struct migr_record *migr_rec = super->migr_rec;
2737                 return __le32_to_cpu(migr_rec->blocks_per_unit);
2738         }
2739         case MIGR_VERIFY:
2740         case MIGR_REPAIR:
2741         case MIGR_INIT: {
2742                 struct imsm_map *map = get_imsm_map(dev, MAP_0);
2743                 __u32 stripes_per_unit;
2744                 __u32 blocks_per_unit;
2745                 __u32 parity_depth;
2746                 __u32 migr_chunk;
2747                 __u32 block_map;
2748                 __u32 block_rel;
2749                 __u32 segment;
2750                 __u32 stripe;
2751                 __u8  disks;
2752
2753                 /* yes, this is really the translation of migr_units to
2754                  * per-member blocks in the 'resync' case
2755                  */
2756                 stripes_per_unit = num_stripes_per_unit_resync(dev);
2757                 migr_chunk = migr_strip_blocks_resync(dev);
2758                 disks = imsm_num_data_members(dev, MAP_0);
2759                 blocks_per_unit = stripes_per_unit * migr_chunk * disks;
2760                 stripe = __le16_to_cpu(map->blocks_per_strip) * disks;
2761                 segment = blocks_per_unit / stripe;
2762                 block_rel = blocks_per_unit - segment * stripe;
2763                 parity_depth = parity_segment_depth(dev);
2764                 block_map = map_migr_block(dev, block_rel);
2765                 return block_map + parity_depth * segment;
2766         }
2767         case MIGR_REBUILD: {
2768                 __u32 stripes_per_unit;
2769                 __u32 migr_chunk;
2770
2771                 stripes_per_unit = num_stripes_per_unit_rebuild(dev);
2772                 migr_chunk = migr_strip_blocks_rebuild(dev);
2773                 return migr_chunk * stripes_per_unit;
2774         }
2775         case MIGR_STATE_CHANGE:
2776         default:
2777                 return 0;
2778         }
2779 }
2780
2781 static int imsm_level_to_layout(int level)
2782 {
2783         switch (level) {
2784         case 0:
2785         case 1:
2786                 return 0;
2787         case 5:
2788         case 6:
2789                 return ALGORITHM_LEFT_ASYMMETRIC;
2790         case 10:
2791                 return 0x102;
2792         }
2793         return UnSet;
2794 }
2795
2796 /*******************************************************************************
2797  * Function:    read_imsm_migr_rec
2798  * Description: Function reads imsm migration record from last sector of disk
2799  * Parameters:
2800  *      fd      : disk descriptor
2801  *      super   : metadata info
2802  * Returns:
2803  *       0 : success,
2804  *      -1 : fail
2805  ******************************************************************************/
2806 static int read_imsm_migr_rec(int fd, struct intel_super *super)
2807 {
2808         int ret_val = -1;
2809         unsigned int sector_size = super->sector_size;
2810         unsigned long long dsize;
2811
2812         get_dev_size(fd, NULL, &dsize);
2813         if (lseek64(fd, dsize - (sector_size*MIGR_REC_SECTOR_POSITION),
2814                    SEEK_SET) < 0) {
2815                 pr_err("Cannot seek to anchor block: %s\n",
2816                        strerror(errno));
2817                 goto out;
2818         }
2819         if (read(fd, super->migr_rec_buf,
2820             MIGR_REC_BUF_SECTORS*sector_size) !=
2821             MIGR_REC_BUF_SECTORS*sector_size) {
2822                 pr_err("Cannot read migr record block: %s\n",
2823                        strerror(errno));
2824                 goto out;
2825         }
2826         ret_val = 0;
2827         if (sector_size == 4096)
2828                 convert_from_4k_imsm_migr_rec(super);
2829
2830 out:
2831         return ret_val;
2832 }
2833
2834 static struct imsm_dev *imsm_get_device_during_migration(
2835         struct intel_super *super)
2836 {
2837
2838         struct intel_dev *dv;
2839
2840         for (dv = super->devlist; dv; dv = dv->next) {
2841                 if (is_gen_migration(dv->dev))
2842                         return dv->dev;
2843         }
2844         return NULL;
2845 }
2846
2847 /*******************************************************************************
2848  * Function:    load_imsm_migr_rec
2849  * Description: Function reads imsm migration record (it is stored at the last
2850  *              sector of disk)
2851  * Parameters:
2852  *      super   : imsm internal array info
2853  *      info    : general array info
2854  * Returns:
2855  *       0 : success
2856  *      -1 : fail
2857  *      -2 : no migration in progress
2858  ******************************************************************************/
2859 static int load_imsm_migr_rec(struct intel_super *super, struct mdinfo *info)
2860 {
2861         struct mdinfo *sd;
2862         struct dl *dl;
2863         char nm[30];
2864         int retval = -1;
2865         int fd = -1;
2866         struct imsm_dev *dev;
2867         struct imsm_map *map;
2868         int slot = -1;
2869
2870         /* find map under migration */
2871         dev = imsm_get_device_during_migration(super);
2872         /* nothing to load,no migration in progress?
2873         */
2874         if (dev == NULL)
2875                 return -2;
2876
2877         if (info) {
2878                 for (sd = info->devs ; sd ; sd = sd->next) {
2879                         /* read only from one of the first two slots */
2880                         if ((sd->disk.raid_disk < 0) ||
2881                             (sd->disk.raid_disk > 1))
2882                                 continue;
2883
2884                         sprintf(nm, "%d:%d", sd->disk.major, sd->disk.minor);
2885                         fd = dev_open(nm, O_RDONLY);
2886                         if (fd >= 0)
2887                                 break;
2888                 }
2889         }
2890         if (fd < 0) {
2891                 map = get_imsm_map(dev, MAP_0);
2892                 for (dl = super->disks; dl; dl = dl->next) {
2893                         /* skip spare and failed disks
2894                         */
2895                         if (dl->index < 0)
2896                                 continue;
2897                         /* read only from one of the first two slots */
2898                         if (map)
2899                                 slot = get_imsm_disk_slot(map, dl->index);
2900                         if (map == NULL || slot > 1 || slot < 0)
2901                                 continue;
2902                         sprintf(nm, "%d:%d", dl->major, dl->minor);
2903                         fd = dev_open(nm, O_RDONLY);
2904                         if (fd >= 0)
2905                                 break;
2906                 }
2907         }
2908         if (fd < 0)
2909                 goto out;
2910         retval = read_imsm_migr_rec(fd, super);
2911
2912 out:
2913         if (fd >= 0)
2914                 close(fd);
2915         return retval;
2916 }
2917
2918 #ifndef MDASSEMBLE
2919 /*******************************************************************************
2920  * function: imsm_create_metadata_checkpoint_update
2921  * Description: It creates update for checkpoint change.
2922  * Parameters:
2923  *      super   : imsm internal array info
2924  *      u       : pointer to prepared update
2925  * Returns:
2926  *      Uptate length.
2927  *      If length is equal to 0, input pointer u contains no update
2928  ******************************************************************************/
2929 static int imsm_create_metadata_checkpoint_update(
2930         struct intel_super *super,
2931         struct imsm_update_general_migration_checkpoint **u)
2932 {
2933
2934         int update_memory_size = 0;
2935
2936         dprintf("(enter)\n");
2937
2938         if (u == NULL)
2939                 return 0;
2940         *u = NULL;
2941
2942         /* size of all update data without anchor */
2943         update_memory_size =
2944                 sizeof(struct imsm_update_general_migration_checkpoint);
2945
2946         *u = xcalloc(1, update_memory_size);
2947         if (*u == NULL) {
2948                 dprintf("error: cannot get memory\n");
2949                 return 0;
2950         }
2951         (*u)->type = update_general_migration_checkpoint;
2952         (*u)->curr_migr_unit = __le32_to_cpu(super->migr_rec->curr_migr_unit);
2953         dprintf("prepared for %u\n", (*u)->curr_migr_unit);
2954
2955         return update_memory_size;
2956 }
2957
2958 static void imsm_update_metadata_locally(struct supertype *st,
2959                                          void *buf, int len);
2960
2961 /*******************************************************************************
2962  * Function:    write_imsm_migr_rec
2963  * Description: Function writes imsm migration record
2964  *              (at the last sector of disk)
2965  * Parameters:
2966  *      super   : imsm internal array info
2967  * Returns:
2968  *       0 : success
2969  *      -1 : if fail
2970  ******************************************************************************/
2971 static int write_imsm_migr_rec(struct supertype *st)
2972 {
2973         struct intel_super *super = st->sb;
2974         unsigned int sector_size = super->sector_size;
2975         unsigned long long dsize;
2976         char nm[30];
2977         int fd = -1;
2978         int retval = -1;
2979         struct dl *sd;
2980         int len;
2981         struct imsm_update_general_migration_checkpoint *u;
2982         struct imsm_dev *dev;
2983         struct imsm_map *map;
2984
2985         /* find map under migration */
2986         dev = imsm_get_device_during_migration(super);
2987         /* if no migration, write buffer anyway to clear migr_record
2988          * on disk based on first available device
2989         */
2990         if (dev == NULL)
2991                 dev = get_imsm_dev(super, super->current_vol < 0 ? 0 :
2992                                           super->current_vol);
2993
2994         map = get_imsm_map(dev, MAP_0);
2995
2996         if (sector_size == 4096)
2997                 convert_to_4k_imsm_migr_rec(super);
2998         for (sd = super->disks ; sd ; sd = sd->next) {
2999                 int slot = -1;
3000
3001                 /* skip failed and spare devices */
3002                 if (sd->index < 0)
3003                         continue;
3004                 /* write to 2 first slots only */
3005                 if (map)
3006                         slot = get_imsm_disk_slot(map, sd->index);
3007                 if (map == NULL || slot > 1 || slot < 0)
3008                         continue;
3009
3010                 sprintf(nm, "%d:%d", sd->major, sd->minor);
3011                 fd = dev_open(nm, O_RDWR);
3012                 if (fd < 0)
3013                         continue;
3014                 get_dev_size(fd, NULL, &dsize);
3015                 if (lseek64(fd, dsize - (MIGR_REC_SECTOR_POSITION*sector_size),
3016                     SEEK_SET) < 0) {
3017                         pr_err("Cannot seek to anchor block: %s\n",
3018                                strerror(errno));
3019                         goto out;
3020                 }
3021                 if (write(fd, super->migr_rec_buf,
3022                     MIGR_REC_BUF_SECTORS*sector_size) !=
3023                     MIGR_REC_BUF_SECTORS*sector_size) {
3024                         pr_err("Cannot write migr record block: %s\n",
3025                                strerror(errno));
3026                         goto out;
3027                 }
3028                 close(fd);
3029                 fd = -1;
3030         }
3031         if (sector_size == 4096)
3032                 convert_from_4k_imsm_migr_rec(super);
3033         /* update checkpoint information in metadata */
3034         len = imsm_create_metadata_checkpoint_update(super, &u);
3035         if (len <= 0) {
3036                 dprintf("imsm: Cannot prepare update\n");
3037                 goto out;
3038         }
3039         /* update metadata locally */
3040         imsm_update_metadata_locally(st, u, len);
3041         /* and possibly remotely */
3042         if (st->update_tail) {
3043                 append_metadata_update(st, u, len);
3044                 /* during reshape we do all work inside metadata handler
3045                  * manage_reshape(), so metadata update has to be triggered
3046                  * insida it
3047                  */
3048                 flush_metadata_updates(st);
3049                 st->update_tail = &st->updates;
3050         } else
3051                 free(u);
3052
3053         retval = 0;
3054  out:
3055         if (fd >= 0)
3056                 close(fd);
3057         return retval;
3058 }
3059 #endif /* MDASSEMBLE */
3060
3061 /* spare/missing disks activations are not allowe when
3062  * array/container performs reshape operation, because
3063  * all arrays in container works on the same disks set
3064  */
3065 int imsm_reshape_blocks_arrays_changes(struct intel_super *super)
3066 {
3067         int rv = 0;
3068         struct intel_dev *i_dev;
3069         struct imsm_dev *dev;
3070
3071         /* check whole container
3072          */
3073         for (i_dev = super->devlist; i_dev; i_dev = i_dev->next) {
3074                 dev = i_dev->dev;
3075                 if (is_gen_migration(dev)) {
3076                         /* No repair during any migration in container
3077                          */
3078                         rv = 1;
3079                         break;
3080                 }
3081         }
3082         return rv;
3083 }
3084 static unsigned long long imsm_component_size_aligment_check(int level,
3085                                               int chunk_size,
3086                                               unsigned int sector_size,
3087                                               unsigned long long component_size)
3088 {
3089         unsigned int component_size_alligment;
3090
3091         /* check component size aligment
3092         */
3093         component_size_alligment = component_size % (chunk_size/sector_size);
3094
3095         dprintf("(Level: %i, chunk_size = %i, component_size = %llu), component_size_alligment = %u\n",
3096                 level, chunk_size, component_size,
3097                 component_size_alligment);
3098
3099         if (component_size_alligment && (level != 1) && (level != UnSet)) {
3100                 dprintf("imsm: reported component size alligned from %llu ",
3101                         component_size);
3102                 component_size -= component_size_alligment;
3103                 dprintf_cont("to %llu (%i).\n",
3104                         component_size, component_size_alligment);
3105         }
3106
3107         return component_size;
3108 }
3109
3110 static void getinfo_super_imsm_volume(struct supertype *st, struct mdinfo *info, char *dmap)
3111 {
3112         struct intel_super *super = st->sb;
3113         struct migr_record *migr_rec = super->migr_rec;
3114         struct imsm_dev *dev = get_imsm_dev(super, super->current_vol);
3115         struct imsm_map *map = get_imsm_map(dev, MAP_0);
3116         struct imsm_map *prev_map = get_imsm_map(dev, MAP_1);
3117         struct imsm_map *map_to_analyse = map;
3118         struct dl *dl;
3119         int map_disks = info->array.raid_disks;
3120
3121         memset(info, 0, sizeof(*info));
3122         if (prev_map)
3123                 map_to_analyse = prev_map;
3124
3125         dl = super->current_disk;
3126
3127         info->container_member    = super->current_vol;
3128         info->array.raid_disks    = map->num_members;
3129         info->array.level         = get_imsm_raid_level(map_to_analyse);
3130         info->array.layout        = imsm_level_to_layout(info->array.level);
3131         info->array.md_minor      = -1;
3132         info->array.ctime         = 0;
3133         info->array.utime         = 0;
3134         info->array.chunk_size    =
3135                 __le16_to_cpu(map_to_analyse->blocks_per_strip) << 9;
3136         info->array.state         = !dev->vol.dirty;
3137         info->custom_array_size   = __le32_to_cpu(dev->size_high);
3138         info->custom_array_size   <<= 32;
3139         info->custom_array_size   |= __le32_to_cpu(dev->size_low);
3140         info->recovery_blocked = imsm_reshape_blocks_arrays_changes(st->sb);
3141
3142         if (is_gen_migration(dev)) {
3143                 info->reshape_active = 1;
3144                 info->new_level = get_imsm_raid_level(map);
3145                 info->new_layout = imsm_level_to_layout(info->new_level);
3146                 info->new_chunk = __le16_to_cpu(map->blocks_per_strip) << 9;
3147                 info->delta_disks = map->num_members - prev_map->num_members;
3148                 if (info->delta_disks) {
3149                         /* this needs to be applied to every array
3150                          * in the container.
3151                          */
3152                         info->reshape_active = CONTAINER_RESHAPE;
3153                 }
3154                 /* We shape information that we give to md might have to be
3155                  * modify to cope with md's requirement for reshaping arrays.
3156                  * For example, when reshaping a RAID0, md requires it to be
3157                  * presented as a degraded RAID4.
3158                  * Also if a RAID0 is migrating to a RAID5 we need to specify
3159                  * the array as already being RAID5, but the 'before' layout
3160                  * is a RAID4-like layout.
3161                  */
3162                 switch (info->array.level) {
3163                 case 0:
3164                         switch(info->new_level) {
3165                         case 0:
3166                                 /* conversion is happening as RAID4 */
3167                                 info->array.level = 4;
3168                                 info->array.raid_disks += 1;
3169                                 break;
3170                         case 5:
3171                                 /* conversion is happening as RAID5 */
3172                                 info->array.level = 5;
3173                                 info->array.layout = ALGORITHM_PARITY_N;
3174                                 info->delta_disks -= 1;
3175                                 break;
3176                         default:
3177                                 /* FIXME error message */
3178                                 info->array.level = UnSet;
3179                                 break;
3180                         }
3181                         break;
3182                 }
3183         } else {
3184                 info->new_level = UnSet;
3185                 info->new_layout = UnSet;
3186                 info->new_chunk = info->array.chunk_size;
3187                 info->delta_disks = 0;
3188         }
3189
3190         if (dl) {
3191                 info->disk.major = dl->major;
3192                 info->disk.minor = dl->minor;
3193                 info->disk.number = dl->index;
3194                 info->disk.raid_disk = get_imsm_disk_slot(map_to_analyse,
3195                                                           dl->index);
3196         }
3197
3198         info->data_offset         = pba_of_lba0(map_to_analyse);
3199
3200         if (info->array.level == 5) {
3201                 info->component_size = num_data_stripes(map_to_analyse) *
3202                                        map_to_analyse->blocks_per_strip;
3203         } else {
3204                 info->component_size = blocks_per_member(map_to_analyse);
3205         }
3206
3207         info->component_size = imsm_component_size_aligment_check(
3208                                                         info->array.level,
3209                                                         info->array.chunk_size,
3210                                                         super->sector_size,
3211                                                         info->component_size);
3212         info->bb.supported = 0;
3213
3214         memset(info->uuid, 0, sizeof(info->uuid));
3215         info->recovery_start = MaxSector;
3216
3217         info->reshape_progress = 0;
3218         info->resync_start = MaxSector;
3219         if ((map_to_analyse->map_state == IMSM_T_STATE_UNINITIALIZED ||
3220             dev->vol.dirty) &&
3221             imsm_reshape_blocks_arrays_changes(super) == 0) {
3222                 info->resync_start = 0;
3223         }
3224         if (dev->vol.migr_state) {
3225                 switch (migr_type(dev)) {
3226                 case MIGR_REPAIR:
3227                 case MIGR_INIT: {
3228                         __u64 blocks_per_unit = blocks_per_migr_unit(super,
3229                                                                      dev);
3230                         __u64 units = __le32_to_cpu(dev->vol.curr_migr_unit);
3231
3232                         info->resync_start = blocks_per_unit * units;
3233                         break;
3234                 }
3235                 case MIGR_GEN_MIGR: {
3236                         __u64 blocks_per_unit = blocks_per_migr_unit(super,
3237                                                                      dev);
3238                         __u64 units = __le32_to_cpu(migr_rec->curr_migr_unit);
3239                         unsigned long long array_blocks;
3240                         int used_disks;
3241
3242                         if (__le32_to_cpu(migr_rec->ascending_migr) &&
3243                             (units <
3244                                 (__le32_to_cpu(migr_rec->num_migr_units)-1)) &&
3245                             (super->migr_rec->rec_status ==
3246                                         __cpu_to_le32(UNIT_SRC_IN_CP_AREA)))
3247                                 units++;
3248
3249                         info->reshape_progress = blocks_per_unit * units;
3250
3251                         dprintf("IMSM: General Migration checkpoint : %llu (%llu) -> read reshape progress : %llu\n",
3252                                 (unsigned long long)units,
3253                                 (unsigned long long)blocks_per_unit,
3254                                 info->reshape_progress);
3255
3256                         used_disks = imsm_num_data_members(dev, MAP_1);
3257                         if (used_disks > 0) {
3258                                 array_blocks = blocks_per_member(map) *
3259                                         used_disks;
3260                                 /* round array size down to closest MB
3261                                  */
3262                                 info->custom_array_size = (array_blocks
3263                                                 >> SECT_PER_MB_SHIFT)
3264                                                 << SECT_PER_MB_SHIFT;
3265                         }
3266                 }
3267                 case MIGR_VERIFY:
3268                         /* we could emulate the checkpointing of
3269                          * 'sync_action=check' migrations, but for now
3270                          * we just immediately complete them
3271                          */
3272                 case MIGR_REBUILD:
3273                         /* this is handled by container_content_imsm() */
3274                 case MIGR_STATE_CHANGE:
3275                         /* FIXME handle other migrations */
3276                 default:
3277                         /* we are not dirty, so... */
3278                         info->resync_start = MaxSector;
3279                 }
3280         }
3281
3282         strncpy(info->name, (char *) dev->volume, MAX_RAID_SERIAL_LEN);
3283         info->name[MAX_RAID_SERIAL_LEN] = 0;
3284
3285         info->array.major_version = -1;
3286         info->array.minor_version = -2;
3287         sprintf(info->text_version, "/%s/%d", st->container_devnm, info->container_member);
3288         info->safe_mode_delay = 4000;  /* 4 secs like the Matrix driver */
3289         uuid_from_super_imsm(st, info->uuid);
3290
3291         if (dmap) {
3292                 int i, j;
3293                 for (i=0; i<map_disks; i++) {
3294                         dmap[i] = 0;
3295                         if (i < info->array.raid_disks) {
3296                                 struct imsm_disk *dsk;
3297                                 j = get_imsm_disk_idx(dev, i, MAP_X);
3298                                 dsk = get_imsm_disk(super, j);
3299                                 if (dsk && (dsk->status & CONFIGURED_DISK))
3300                                         dmap[i] = 1;
3301                         }
3302                 }
3303         }
3304 }
3305
3306 static __u8 imsm_check_degraded(struct intel_super *super, struct imsm_dev *dev,
3307                                 int failed, int look_in_map);
3308
3309 static int imsm_count_failed(struct intel_super *super, struct imsm_dev *dev,
3310                              int look_in_map);
3311
3312 #ifndef MDASSEMBLE
3313 static void manage_second_map(struct intel_super *super, struct imsm_dev *dev)
3314 {
3315         if (is_gen_migration(dev)) {
3316                 int failed;
3317                 __u8 map_state;
3318                 struct imsm_map *map2 = get_imsm_map(dev, MAP_1);
3319
3320                 failed = imsm_count_failed(super, dev, MAP_1);
3321                 map_state = imsm_check_degraded(super, dev, failed, MAP_1);
3322                 if (map2->map_state != map_state) {
3323                         map2->map_state = map_state;
3324                         super->updates_pending++;
3325                 }
3326         }
3327 }
3328 #endif
3329
3330 static struct imsm_disk *get_imsm_missing(struct intel_super *super, __u8 index)
3331 {
3332         struct dl *d;
3333
3334         for (d = super->missing; d; d = d->next)
3335                 if (d->index == index)
3336                         return &d->disk;
3337         return NULL;
3338 }
3339
3340 static void getinfo_super_imsm(struct supertype *st, struct mdinfo *info, char *map)
3341 {
3342         struct intel_super *super = st->sb;
3343         struct imsm_disk *disk;
3344         int map_disks = info->array.raid_disks;
3345         int max_enough = -1;
3346         int i;
3347         struct imsm_super *mpb;
3348
3349         if (super->current_vol >= 0) {
3350                 getinfo_super_imsm_volume(st, info, map);
3351                 return;
3352         }
3353         memset(info, 0, sizeof(*info));
3354
3355         /* Set raid_disks to zero so that Assemble will always pull in valid
3356          * spares
3357          */
3358         info->array.raid_disks    = 0;
3359         info->array.level         = LEVEL_CONTAINER;
3360         info->array.layout        = 0;
3361         info->array.md_minor      = -1;
3362         info->array.ctime         = 0; /* N/A for imsm */
3363         info->array.utime         = 0;
3364         info->array.chunk_size    = 0;
3365
3366         info->disk.major = 0;
3367         info->disk.minor = 0;
3368         info->disk.raid_disk = -1;
3369         info->reshape_active = 0;
3370         info->array.major_version = -1;
3371         info->array.minor_version = -2;
3372         strcpy(info->text_version, "imsm");
3373         info->safe_mode_delay = 0;
3374         info->disk.number = -1;
3375         info->disk.state = 0;
3376         info->name[0] = 0;
3377         info->recovery_start = MaxSector;
3378         info->recovery_blocked = imsm_reshape_blocks_arrays_changes(st->sb);
3379         info->bb.supported = 0;
3380
3381         /* do we have the all the insync disks that we expect? */
3382         mpb = super->anchor;
3383
3384         for (i = 0; i < mpb->num_raid_devs; i++) {
3385                 struct imsm_dev *dev = get_imsm_dev(super, i);
3386                 int failed, enough, j, missing = 0;
3387                 struct imsm_map *map;
3388                 __u8 state;
3389
3390                 failed = imsm_count_failed(super, dev, MAP_0);
3391                 state = imsm_check_degraded(super, dev, failed, MAP_0);
3392                 map = get_imsm_map(dev, MAP_0);
3393
3394                 /* any newly missing disks?
3395                  * (catches single-degraded vs double-degraded)
3396                  */
3397                 for (j = 0; j < map->num_members; j++) {
3398                         __u32 ord = get_imsm_ord_tbl_ent(dev, j, MAP_0);
3399                         __u32 idx = ord_to_idx(ord);
3400
3401                         if (!(ord & IMSM_ORD_REBUILD) &&
3402                             get_imsm_missing(super, idx)) {
3403                                 missing = 1;
3404                                 break;
3405                         }
3406                 }
3407
3408                 if (state == IMSM_T_STATE_FAILED)
3409                         enough = -1;
3410                 else if (state == IMSM_T_STATE_DEGRADED &&
3411                          (state != map->map_state || missing))
3412                         enough = 0;
3413                 else /* we're normal, or already degraded */
3414                         enough = 1;
3415                 if (is_gen_migration(dev) && missing) {
3416                         /* during general migration we need all disks
3417                          * that process is running on.
3418                          * No new missing disk is allowed.
3419                          */
3420                         max_enough = -1;
3421                         enough = -1;
3422                         /* no more checks necessary
3423                          */
3424                         break;
3425                 }
3426                 /* in the missing/failed disk case check to see
3427                  * if at least one array is runnable
3428                  */
3429                 max_enough = max(max_enough, enough);
3430         }
3431         dprintf("enough: %d\n", max_enough);
3432         info->container_enough = max_enough;
3433
3434         if (super->disks) {
3435                 __u32 reserved = imsm_reserved_sectors(super, super->disks);
3436
3437                 disk = &super->disks->disk;
3438                 info->data_offset = total_blocks(&super->disks->disk) - reserved;
3439                 info->component_size = reserved;
3440                 info->disk.state  = is_configured(disk) ? (1 << MD_DISK_ACTIVE) : 0;
3441                 /* we don't change info->disk.raid_disk here because
3442                  * this state will be finalized in mdmon after we have
3443                  * found the 'most fresh' version of the metadata
3444                  */
3445                 info->disk.state |= is_failed(disk) ? (1 << MD_DISK_FAULTY) : 0;
3446                 info->disk.state |= is_spare(disk) ? 0 : (1 << MD_DISK_SYNC);
3447         }
3448
3449         /* only call uuid_from_super_imsm when this disk is part of a populated container,
3450          * ->compare_super may have updated the 'num_raid_devs' field for spares
3451          */
3452         if (info->disk.state & (1 << MD_DISK_SYNC) || super->anchor->num_raid_devs)
3453                 uuid_from_super_imsm(st, info->uuid);
3454         else
3455                 memcpy(info->uuid, uuid_zero, sizeof(uuid_zero));
3456
3457         /* I don't know how to compute 'map' on imsm, so use safe default */
3458         if (map) {
3459                 int i;
3460                 for (i = 0; i < map_disks; i++)
3461                         map[i] = 1;
3462         }
3463
3464 }
3465
3466 /* allocates memory and fills disk in mdinfo structure
3467  * for each disk in array */
3468 struct mdinfo *getinfo_super_disks_imsm(struct supertype *st)
3469 {
3470         struct mdinfo *mddev;
3471         struct intel_super *super = st->sb;
3472         struct imsm_disk *disk;
3473         int count = 0;
3474         struct dl *dl;
3475         if (!super || !super->disks)
3476                 return NULL;
3477         dl = super->disks;
3478         mddev = xcalloc(1, sizeof(*mddev));
3479         while (dl) {
3480                 struct mdinfo *tmp;
3481                 disk = &dl->disk;
3482                 tmp = xcalloc(1, sizeof(*tmp));
3483                 if (mddev->devs)
3484                         tmp->next = mddev->devs;
3485                 mddev->devs = tmp;
3486                 tmp->disk.number = count++;
3487                 tmp->disk.major = dl->major;
3488                 tmp->disk.minor = dl->minor;
3489                 tmp->disk.state = is_configured(disk) ?
3490                                   (1 << MD_DISK_ACTIVE) : 0;
3491                 tmp->disk.state |= is_failed(disk) ? (1 << MD_DISK_FAULTY) : 0;
3492                 tmp->disk.state |= is_spare(disk) ? 0 : (1 << MD_DISK_SYNC);
3493                 tmp->disk.raid_disk = -1;
3494                 dl = dl->next;
3495         }
3496         return mddev;
3497 }
3498
3499 static int update_super_imsm(struct supertype *st, struct mdinfo *info,
3500                              char *update, char *devname, int verbose,
3501                              int uuid_set, char *homehost)
3502 {
3503         /* For 'assemble' and 'force' we need to return non-zero if any
3504          * change was made.  For others, the return value is ignored.
3505          * Update options are:
3506          *  force-one : This device looks a bit old but needs to be included,
3507          *        update age info appropriately.
3508          *  assemble: clear any 'faulty' flag to allow this device to
3509          *              be assembled.
3510          *  force-array: Array is degraded but being forced, mark it clean
3511          *         if that will be needed to assemble it.
3512          *
3513          *  newdev:  not used ????
3514          *  grow:  Array has gained a new device - this is currently for
3515          *              linear only
3516          *  resync: mark as dirty so a resync will happen.
3517          *  name:  update the name - preserving the homehost
3518          *  uuid:  Change the uuid of the array to match watch is given
3519          *
3520          * Following are not relevant for this imsm:
3521          *  sparc2.2 : update from old dodgey metadata
3522          *  super-minor: change the preferred_minor number
3523          *  summaries:  update redundant counters.
3524          *  homehost:  update the recorded homehost
3525          *  _reshape_progress: record new reshape_progress position.
3526          */
3527         int rv = 1;
3528         struct intel_super *super = st->sb;
3529         struct imsm_super *mpb;
3530
3531         /* we can only update container info */
3532         if (!super || super->current_vol >= 0 || !super->anchor)
3533                 return 1;
3534
3535         mpb = super->anchor;
3536
3537         if (strcmp(update, "uuid") == 0) {
3538                 /* We take this to mean that the family_num should be updated.
3539                  * However that is much smaller than the uuid so we cannot really
3540                  * allow an explicit uuid to be given.  And it is hard to reliably
3541                  * know if one was.
3542                  * So if !uuid_set we know the current uuid is random and just used
3543                  * the first 'int' and copy it to the other 3 positions.
3544                  * Otherwise we require the 4 'int's to be the same as would be the
3545                  * case if we are using a random uuid.  So an explicit uuid will be
3546                  * accepted as long as all for ints are the same... which shouldn't hurt
3547                  */
3548                 if (!uuid_set) {
3549                         info->uuid[1] = info->uuid[2] = info->uuid[3] = info->uuid[0];
3550                         rv = 0;
3551                 } else {
3552                         if (info->uuid[0] != info->uuid[1] ||
3553                             info->uuid[1] != info->uuid[2] ||
3554                             info->uuid[2] != info->uuid[3])
3555                                 rv = -1;
3556                         else
3557                                 rv = 0;
3558                 }
3559                 if (rv == 0)
3560                         mpb->orig_family_num = info->uuid[0];
3561         } else if (strcmp(update, "assemble") == 0)
3562                 rv = 0;
3563         else
3564                 rv = -1;
3565
3566         /* successful update? recompute checksum */
3567         if (rv == 0)
3568                 mpb->check_sum = __le32_to_cpu(__gen_imsm_checksum(mpb));
3569
3570         return rv;
3571 }
3572
3573 static size_t disks_to_mpb_size(int disks)
3574 {
3575         size_t size;
3576
3577         size = sizeof(struct imsm_super);
3578         size += (disks - 1) * sizeof(struct imsm_disk);
3579         size += 2 * sizeof(struct imsm_dev);
3580         /* up to 2 maps per raid device (-2 for imsm_maps in imsm_dev */
3581         size += (4 - 2) * sizeof(struct imsm_map);
3582         /* 4 possible disk_ord_tbl's */
3583         size += 4 * (disks - 1) * sizeof(__u32);
3584         /* maximum bbm log */
3585         size += sizeof(struct bbm_log);
3586
3587         return size;
3588 }
3589
3590 static __u64 avail_size_imsm(struct supertype *st, __u64 devsize,
3591                              unsigned long long data_offset)
3592 {
3593         if (devsize < (MPB_SECTOR_CNT + IMSM_RESERVED_SECTORS))
3594                 return 0;
3595
3596         return devsize - (MPB_SECTOR_CNT + IMSM_RESERVED_SECTORS);
3597 }
3598
3599 static void free_devlist(struct intel_super *super)
3600 {
3601         struct intel_dev *dv;
3602
3603         while (super->devlist) {
3604                 dv = super->devlist->next;
3605                 free(super->devlist->dev);
3606                 free(super->devlist);
3607                 super->devlist = dv;
3608         }
3609 }
3610
3611 static void imsm_copy_dev(struct imsm_dev *dest, struct imsm_dev *src)
3612 {
3613         memcpy(dest, src, sizeof_imsm_dev(src, 0));
3614 }
3615
3616 static int compare_super_imsm(struct supertype *st, struct supertype *tst)
3617 {
3618         /*
3619          * return:
3620          *  0 same, or first was empty, and second was copied
3621          *  1 second had wrong number
3622          *  2 wrong uuid
3623          *  3 wrong other info
3624          */
3625         struct intel_super *first = st->sb;
3626         struct intel_super *sec = tst->sb;
3627
3628         if (!first) {
3629                 st->sb = tst->sb;
3630                 tst->sb = NULL;
3631                 return 0;
3632         }
3633         /* in platform dependent environment test if the disks
3634          * use the same Intel hba
3635          * If not on Intel hba at all, allow anything.
3636          */
3637         if (!check_env("IMSM_NO_PLATFORM") && first->hba && sec->hba) {
3638                 if (first->hba->type != sec->hba->type) {
3639                         fprintf(stderr,
3640                                 "HBAs of devices do not match %s != %s\n",
3641                                 get_sys_dev_type(first->hba->type),
3642                                 get_sys_dev_type(sec->hba->type));
3643                         return 3;
3644                 }
3645                 if (first->orom != sec->orom) {
3646                         fprintf(stderr,
3647                                 "HBAs of devices do not match %s != %s\n",
3648                                 first->hba->pci_id, sec->hba->pci_id);
3649                         return 3;
3650                 }
3651         }
3652
3653         /* if an anchor does not have num_raid_devs set then it is a free
3654          * floating spare
3655          */
3656         if (first->anchor->num_raid_devs > 0 &&
3657             sec->anchor->num_raid_devs > 0) {
3658                 /* Determine if these disks might ever have been
3659                  * related.  Further disambiguation can only take place
3660                  * in load_super_imsm_all
3661                  */
3662                 __u32 first_family = first->anchor->orig_family_num;
3663                 __u32 sec_family = sec->anchor->orig_family_num;
3664
3665                 if (memcmp(first->anchor->sig, sec->anchor->sig,
3666                            MAX_SIGNATURE_LENGTH) != 0)
3667                         return 3;
3668
3669                 if (first_family == 0)
3670                         first_family = first->anchor->family_num;
3671                 if (sec_family == 0)
3672                         sec_family = sec->anchor->family_num;
3673
3674                 if (first_family != sec_family)
3675                         return 3;
3676
3677         }
3678
3679         /* if 'first' is a spare promote it to a populated mpb with sec's
3680          * family number
3681          */
3682         if (first->anchor->num_raid_devs == 0 &&
3683             sec->anchor->num_raid_devs > 0) {
3684                 int i;
3685                 struct intel_dev *dv;
3686                 struct imsm_dev *dev;
3687
3688                 /* we need to copy raid device info from sec if an allocation
3689                  * fails here we don't associate the spare
3690                  */
3691                 for (i = 0; i < sec->anchor->num_raid_devs; i++) {
3692                         dv = xmalloc(sizeof(*dv));
3693                         dev = xmalloc(sizeof_imsm_dev(get_imsm_dev(sec, i), 1));
3694                         dv->dev = dev;
3695                         dv->index = i;
3696                         dv->next = first->devlist;
3697                         first->devlist = dv;
3698                 }
3699                 if (i < sec->anchor->num_raid_devs) {
3700                         /* allocation failure */
3701                         free_devlist(first);
3702                         pr_err("imsm: failed to associate spare\n");
3703                         return 3;
3704                 }
3705                 first->anchor->num_raid_devs = sec->anchor->num_raid_devs;
3706                 first->anchor->orig_family_num = sec->anchor->orig_family_num;
3707                 first->anchor->family_num = sec->anchor->family_num;
3708                 memcpy(first->anchor->sig, sec->anchor->sig, MAX_SIGNATURE_LENGTH);
3709                 for (i = 0; i < sec->anchor->num_raid_devs; i++)
3710                         imsm_copy_dev(get_imsm_dev(first, i), get_imsm_dev(sec, i));
3711         }
3712
3713         return 0;
3714 }
3715
3716 static void fd2devname(int fd, char *name)
3717 {
3718         struct stat st;
3719         char path[256];
3720         char dname[PATH_MAX];
3721         char *nm;
3722         int rv;
3723
3724         name[0] = '\0';
3725         if (fstat(fd, &st) != 0)
3726                 return;
3727         sprintf(path, "/sys/dev/block/%d:%d",
3728                 major(st.st_rdev), minor(st.st_rdev));
3729
3730         rv = readlink(path, dname, sizeof(dname)-1);
3731         if (rv <= 0)
3732                 return;
3733
3734         dname[rv] = '\0';
3735         nm = strrchr(dname, '/');
3736         if (nm) {
3737                 nm++;
3738                 snprintf(name, MAX_RAID_SERIAL_LEN, "/dev/%s", nm);
3739         }
3740 }
3741
3742 static int nvme_get_serial(int fd, void *buf, size_t buf_len)
3743 {
3744         char path[60];
3745         char *name = fd2kname(fd);
3746
3747         if (!name)
3748                 return 1;
3749
3750         if (strncmp(name, "nvme", 4) != 0)
3751                 return 1;
3752
3753         snprintf(path, sizeof(path) - 1, "/sys/block/%s/device/serial", name);
3754
3755         return load_sys(path, buf, buf_len);
3756 }
3757
3758 extern int scsi_get_serial(int fd, void *buf, size_t buf_len);
3759
3760 static int imsm_read_serial(int fd, char *devname,
3761                             __u8 serial[MAX_RAID_SERIAL_LEN])
3762 {
3763         char buf[50];
3764         int rv;
3765         int len;
3766         char *dest;
3767         char *src;
3768         unsigned int i;
3769
3770         memset(buf, 0, sizeof(buf));
3771
3772         rv = nvme_get_serial(fd, buf, sizeof(buf));
3773
3774         if (rv)
3775                 rv = scsi_get_serial(fd, buf, sizeof(buf));
3776
3777         if (rv && check_env("IMSM_DEVNAME_AS_SERIAL")) {
3778                 memset(serial, 0, MAX_RAID_SERIAL_LEN);
3779                 fd2devname(fd, (char *) serial);
3780                 return 0;
3781         }
3782
3783         if (rv != 0) {
3784                 if (devname)
3785                         pr_err("Failed to retrieve serial for %s\n",
3786                                devname);
3787                 return rv;
3788         }
3789
3790         /* trim all whitespace and non-printable characters and convert
3791          * ':' to ';'
3792          */
3793         for (i = 0, dest = buf; i < sizeof(buf) && buf[i]; i++) {
3794                 src = &buf[i];
3795                 if (*src > 0x20) {
3796                         /* ':' is reserved for use in placeholder serial
3797                          * numbers for missing disks
3798                          */
3799                         if (*src == ':')
3800                                 *dest++ = ';';
3801                         else
3802                                 *dest++ = *src;
3803                 }
3804         }
3805         len = dest - buf;
3806         dest = buf;
3807
3808         /* truncate leading characters */
3809         if (len > MAX_RAID_SERIAL_LEN) {
3810                 dest += len - MAX_RAID_SERIAL_LEN;
3811                 len = MAX_RAID_SERIAL_LEN;
3812         }
3813
3814         memset(serial, 0, MAX_RAID_SERIAL_LEN);
3815         memcpy(serial, dest, len);
3816
3817         return 0;
3818 }
3819
3820 static int serialcmp(__u8 *s1, __u8 *s2)
3821 {
3822         return strncmp((char *) s1, (char *) s2, MAX_RAID_SERIAL_LEN);
3823 }
3824
3825 static void serialcpy(__u8 *dest, __u8 *src)
3826 {
3827         strncpy((char *) dest, (char *) src, MAX_RAID_SERIAL_LEN);
3828 }
3829
3830 static struct dl *serial_to_dl(__u8 *serial, struct intel_super *super)
3831 {
3832         struct dl *dl;
3833
3834         for (dl = super->disks; dl; dl = dl->next)
3835                 if (serialcmp(dl->serial, serial) == 0)
3836                         break;
3837
3838         return dl;
3839 }
3840
3841 static struct imsm_disk *
3842 __serial_to_disk(__u8 *serial, struct imsm_super *mpb, int *idx)
3843 {
3844         int i;
3845
3846         for (i = 0; i < mpb->num_disks; i++) {
3847                 struct imsm_disk *disk = __get_imsm_disk(mpb, i);
3848
3849                 if (serialcmp(disk->serial, serial) == 0) {
3850                         if (idx)
3851                                 *idx = i;
3852                         return disk;
3853                 }
3854         }
3855
3856         return NULL;
3857 }
3858
3859 static int
3860 load_imsm_disk(int fd, struct intel_super *super, char *devname, int keep_fd)
3861 {
3862         struct imsm_disk *disk;
3863         struct dl *dl;
3864         struct stat stb;
3865         int rv;
3866         char name[40];
3867         __u8 serial[MAX_RAID_SERIAL_LEN];
3868
3869         rv = imsm_read_serial(fd, devname, serial);
3870
3871         if (rv != 0)
3872                 return 2;
3873
3874         dl = xcalloc(1, sizeof(*dl));
3875
3876         fstat(fd, &stb);
3877         dl->major = major(stb.st_rdev);
3878         dl->minor = minor(stb.st_rdev);
3879         dl->next = super->disks;
3880         dl->fd = keep_fd ? fd : -1;
3881         assert(super->disks == NULL);
3882         super->disks = dl;
3883         serialcpy(dl->serial, serial);
3884         dl->index = -2;
3885         dl->e = NULL;
3886         fd2devname(fd, name);
3887         if (devname)
3888                 dl->devname = xstrdup(devname);
3889         else
3890                 dl->devname = xstrdup(name);
3891
3892         /* look up this disk's index in the current anchor */
3893         disk = __serial_to_disk(dl->serial, super->anchor, &dl->index);
3894         if (disk) {
3895                 dl->disk = *disk;
3896                 /* only set index on disks that are a member of a
3897                  * populated contianer, i.e. one with raid_devs
3898                  */
3899                 if (is_failed(&dl->disk))
3900                         dl->index = -2;
3901                 else if (is_spare(&dl->disk))
3902                         dl->index = -1;
3903         }
3904
3905         return 0;
3906 }
3907
3908 #ifndef MDASSEMBLE
3909 /* When migrating map0 contains the 'destination' state while map1
3910  * contains the current state.  When not migrating map0 contains the
3911  * current state.  This routine assumes that map[0].map_state is set to
3912  * the current array state before being called.
3913  *
3914  * Migration is indicated by one of the following states
3915  * 1/ Idle (migr_state=0 map0state=normal||unitialized||degraded||failed)
3916  * 2/ Initialize (migr_state=1 migr_type=MIGR_INIT map0state=normal
3917  *    map1state=unitialized)
3918  * 3/ Repair (Resync) (migr_state=1 migr_type=MIGR_REPAIR  map0state=normal
3919  *    map1state=normal)
3920  * 4/ Rebuild (migr_state=1 migr_type=MIGR_REBUILD map0state=normal
3921  *    map1state=degraded)
3922  * 5/ Migration (mig_state=1 migr_type=MIGR_GEN_MIGR map0state=normal
3923  *    map1state=normal)
3924  */
3925 static void migrate(struct imsm_dev *dev, struct intel_super *super,
3926                     __u8 to_state, int migr_type)
3927 {
3928         struct imsm_map *dest;
3929         struct imsm_map *src = get_imsm_map(dev, MAP_0);
3930
3931         dev->vol.migr_state = 1;
3932         set_migr_type(dev, migr_type);
3933         dev->vol.curr_migr_unit = 0;
3934         dest = get_imsm_map(dev, MAP_1);
3935
3936         /* duplicate and then set the target end state in map[0] */
3937         memcpy(dest, src, sizeof_imsm_map(src));
3938         if (migr_type == MIGR_REBUILD || migr_type ==  MIGR_GEN_MIGR) {
3939                 __u32 ord;
3940                 int i;
3941
3942                 for (i = 0; i < src->num_members; i++) {
3943                         ord = __le32_to_cpu(src->disk_ord_tbl[i]);
3944                         set_imsm_ord_tbl_ent(src, i, ord_to_idx(ord));
3945                 }
3946         }
3947
3948         if (migr_type == MIGR_GEN_MIGR)
3949                 /* Clear migration record */
3950                 memset(super->migr_rec, 0, sizeof(struct migr_record));
3951
3952         src->map_state = to_state;
3953 }
3954
3955 static void end_migration(struct imsm_dev *dev, struct intel_super *super,
3956                           __u8 map_state)
3957 {
3958         struct imsm_map *map = get_imsm_map(dev, MAP_0);
3959         struct imsm_map *prev = get_imsm_map(dev, dev->vol.migr_state == 0 ?
3960                                                     MAP_0 : MAP_1);
3961         int i, j;
3962
3963         /* merge any IMSM_ORD_REBUILD bits that were not successfully
3964          * completed in the last migration.
3965          *
3966          * FIXME add support for raid-level-migration
3967          */
3968         if (map_state != map->map_state && (is_gen_migration(dev) == 0) &&
3969             prev->map_state != IMSM_T_STATE_UNINITIALIZED) {
3970                 /* when final map state is other than expected
3971                  * merge maps (not for migration)
3972                  */
3973                 int failed;
3974
3975                 for (i = 0; i < prev->num_members; i++)
3976                         for (j = 0; j < map->num_members; j++)
3977                                 /* during online capacity expansion
3978                                  * disks position can be changed
3979                                  * if takeover is used
3980                                  */
3981                                 if (ord_to_idx(map->disk_ord_tbl[j]) ==
3982                                     ord_to_idx(prev->disk_ord_tbl[i])) {
3983                                         map->disk_ord_tbl[j] |=
3984                                                 prev->disk_ord_tbl[i];
3985                                         break;
3986                                 }
3987                 failed = imsm_count_failed(super, dev, MAP_0);
3988                 map_state = imsm_check_degraded(super, dev, failed, MAP_0);
3989         }
3990
3991         dev->vol.migr_state = 0;
3992         set_migr_type(dev, 0);
3993         dev->vol.curr_migr_unit = 0;
3994         map->map_state = map_state;
3995 }
3996 #endif
3997
3998 static int parse_raid_devices(struct intel_super *super)
3999 {
4000         int i;
4001         struct imsm_dev *dev_new;
4002         size_t len, len_migr;
4003         size_t max_len = 0;
4004         size_t space_needed = 0;
4005         struct imsm_super *mpb = super->anchor;
4006
4007         for (i = 0; i < super->anchor->num_raid_devs; i++) {
4008                 struct imsm_dev *dev_iter = __get_imsm_dev(super->anchor, i);
4009                 struct intel_dev *dv;
4010
4011                 len = sizeof_imsm_dev(dev_iter, 0);
4012                 len_migr = sizeof_imsm_dev(dev_iter, 1);
4013                 if (len_migr > len)
4014                         space_needed += len_migr - len;
4015
4016                 dv = xmalloc(sizeof(*dv));
4017                 if (max_len < len_migr)
4018                         max_len = len_migr;
4019                 if (max_len > len_migr)
4020                         space_needed += max_len - len_migr;
4021                 dev_new = xmalloc(max_len);
4022                 imsm_copy_dev(dev_new, dev_iter);
4023                 dv->dev = dev_new;
4024                 dv->index = i;
4025                 dv->next = super->devlist;
4026                 super->devlist = dv;
4027         }
4028
4029         /* ensure that super->buf is large enough when all raid devices
4030          * are migrating
4031          */
4032         if (__le32_to_cpu(mpb->mpb_size) + space_needed > super->len) {
4033                 void *buf;
4034
4035                 len = ROUND_UP(__le32_to_cpu(mpb->mpb_size) + space_needed,
4036                               super->sector_size);
4037                 if (posix_memalign(&buf, MAX_SECTOR_SIZE, len) != 0)
4038                         return 1;
4039
4040                 memcpy(buf, super->buf, super->len);
4041                 memset(buf + super->len, 0, len - super->len);
4042                 free(super->buf);
4043                 super->buf = buf;
4044                 super->len = len;
4045         }
4046
4047         super->extra_space += space_needed;
4048
4049         return 0;
4050 }
4051
4052 /*******************************************************************************
4053  * Function:    check_mpb_migr_compatibility
4054  * Description: Function checks for unsupported migration features:
4055  *              - migration optimization area (pba_of_lba0)
4056  *              - descending reshape (ascending_migr)
4057  * Parameters:
4058  *      super   : imsm metadata information
4059  * Returns:
4060  *       0 : migration is compatible
4061  *      -1 : migration is not compatible
4062  ******************************************************************************/
4063 int check_mpb_migr_compatibility(struct intel_super *super)
4064 {
4065         struct imsm_map *map0, *map1;
4066         struct migr_record *migr_rec = super->migr_rec;
4067         int i;
4068
4069         for (i = 0; i < super->anchor->num_raid_devs; i++) {
4070                 struct imsm_dev *dev_iter = __get_imsm_dev(super->anchor, i);
4071
4072                 if (dev_iter &&
4073                     dev_iter->vol.migr_state == 1 &&
4074                     dev_iter->vol.migr_type == MIGR_GEN_MIGR) {
4075                         /* This device is migrating */
4076                         map0 = get_imsm_map(dev_iter, MAP_0);
4077                         map1 = get_imsm_map(dev_iter, MAP_1);
4078                         if (pba_of_lba0(map0) != pba_of_lba0(map1))
4079                                 /* migration optimization area was used */
4080                                 return -1;
4081                         if (migr_rec->ascending_migr == 0
4082                                 && migr_rec->dest_depth_per_unit > 0)
4083                                 /* descending reshape not supported yet */
4084                                 return -1;
4085                 }
4086         }
4087         return 0;
4088 }
4089
4090 static void __free_imsm(struct intel_super *super, int free_disks);
4091
4092 /* load_imsm_mpb - read matrix metadata
4093  * allocates super->mpb to be freed by free_imsm
4094  */
4095 static int load_imsm_mpb(int fd, struct intel_super *super, char *devname)
4096 {
4097         unsigned long long dsize;
4098         unsigned long long sectors;
4099         unsigned int sector_size = super->sector_size;
4100         struct stat;
4101         struct imsm_super *anchor;
4102         __u32 check_sum;
4103
4104         get_dev_size(fd, NULL, &dsize);
4105         if (dsize < 2*sector_size) {
4106                 if (devname)
4107                         pr_err("%s: device to small for imsm\n",
4108                                devname);
4109                 return 1;
4110         }
4111
4112         if (lseek64(fd, dsize - (sector_size * 2), SEEK_SET) < 0) {
4113                 if (devname)
4114                         pr_err("Cannot seek to anchor block on %s: %s\n",
4115                                devname, strerror(errno));
4116                 return 1;
4117         }
4118
4119         if (posix_memalign((void **)&anchor, sector_size, sector_size) != 0) {
4120                 if (devname)
4121                         pr_err("Failed to allocate imsm anchor buffer on %s\n", devname);
4122                 return 1;
4123         }
4124         if (read(fd, anchor, sector_size) != sector_size) {
4125                 if (devname)
4126                         pr_err("Cannot read anchor block on %s: %s\n",
4127                                devname, strerror(errno));
4128                 free(anchor);
4129                 return 1;
4130         }
4131
4132         if (strncmp((char *) anchor->sig, MPB_SIGNATURE, MPB_SIG_LEN) != 0) {
4133                 if (devname)
4134                         pr_err("no IMSM anchor on %s\n", devname);
4135                 free(anchor);
4136                 return 2;
4137         }
4138
4139         __free_imsm(super, 0);
4140         /*  reload capability and hba */
4141
4142         /* capability and hba must be updated with new super allocation */
4143         find_intel_hba_capability(fd, super, devname);
4144         super->len = ROUND_UP(anchor->mpb_size, sector_size);
4145         if (posix_memalign(&super->buf, MAX_SECTOR_SIZE, super->len) != 0) {
4146                 if (devname)
4147                         pr_err("unable to allocate %zu byte mpb buffer\n",
4148                                super->len);
4149                 free(anchor);
4150                 return 2;
4151         }
4152         memcpy(super->buf, anchor, sector_size);
4153
4154         sectors = mpb_sectors(anchor, sector_size) - 1;
4155         free(anchor);
4156
4157         if (posix_memalign(&super->migr_rec_buf, sector_size,
4158             MIGR_REC_BUF_SECTORS*sector_size) != 0) {
4159                 pr_err("could not allocate migr_rec buffer\n");
4160                 free(super->buf);
4161                 return 2;
4162         }
4163         super->clean_migration_record_by_mdmon = 0;
4164
4165         if (!sectors) {
4166                 check_sum = __gen_imsm_checksum(super->anchor);
4167                 if (check_sum != __le32_to_cpu(super->anchor->check_sum)) {
4168                         if (devname)
4169                                 pr_err("IMSM checksum %x != %x on %s\n",
4170                                        check_sum,
4171                                        __le32_to_cpu(super->anchor->check_sum),
4172                                        devname);
4173                         return 2;
4174                 }
4175
4176                 return 0;
4177         }
4178
4179         /* read the extended mpb */
4180         if (lseek64(fd, dsize - (sector_size * (2 + sectors)), SEEK_SET) < 0) {
4181                 if (devname)
4182                         pr_err("Cannot seek to extended mpb on %s: %s\n",
4183                                devname, strerror(errno));
4184                 return 1;
4185         }
4186
4187         if ((unsigned int)read(fd, super->buf + sector_size,
4188                     super->len - sector_size) != super->len - sector_size) {
4189                 if (devname)
4190                         pr_err("Cannot read extended mpb on %s: %s\n",
4191                                devname, strerror(errno));
4192                 return 2;
4193         }
4194
4195         check_sum = __gen_imsm_checksum(super->anchor);
4196         if (check_sum != __le32_to_cpu(super->anchor->check_sum)) {
4197                 if (devname)
4198                         pr_err("IMSM checksum %x != %x on %s\n",
4199                                check_sum, __le32_to_cpu(super->anchor->check_sum),
4200                                devname);
4201                 return 3;
4202         }
4203
4204         return 0;
4205 }
4206
4207 static int read_imsm_migr_rec(int fd, struct intel_super *super);
4208
4209 /* clears hi bits in metadata if MPB_ATTRIB_2TB_DISK not set */
4210 static void clear_hi(struct intel_super *super)
4211 {
4212         struct imsm_super *mpb = super->anchor;
4213         int i, n;
4214         if (mpb->attributes & MPB_ATTRIB_2TB_DISK)
4215                 return;
4216         for (i = 0; i < mpb->num_disks; ++i) {
4217                 struct imsm_disk *disk = &mpb->disk[i];
4218                 disk->total_blocks_hi = 0;
4219         }
4220         for (i = 0; i < mpb->num_raid_devs; ++i) {
4221                 struct imsm_dev *dev = get_imsm_dev(super, i);
4222                 if (!dev)
4223                         return;
4224                 for (n = 0; n < 2; ++n) {
4225                         struct imsm_map *map = get_imsm_map(dev, n);
4226                         if (!map)
4227                                 continue;
4228                         map->pba_of_lba0_hi = 0;
4229                         map->blocks_per_member_hi = 0;
4230                         map->num_data_stripes_hi = 0;
4231                 }
4232         }
4233 }
4234
4235 static int
4236 load_and_parse_mpb(int fd, struct intel_super *super, char *devname, int keep_fd)
4237 {
4238         int err;
4239
4240         err = load_imsm_mpb(fd, super, devname);
4241         if (err)
4242                 return err;
4243         if (super->sector_size == 4096)
4244                 convert_from_4k(super);
4245         err = load_imsm_disk(fd, super, devname, keep_fd);
4246         if (err)
4247                 return err;
4248         err = parse_raid_devices(super);
4249         if (err)
4250                 return err;
4251         err = load_bbm_log(super);
4252         clear_hi(super);
4253         return err;
4254 }
4255
4256 static void __free_imsm_disk(struct dl *d)
4257 {
4258         if (d->fd >= 0)
4259                 close(d->fd);
4260         if (d->devname)
4261                 free(d->devname);
4262         if (d->e)
4263                 free(d->e);
4264         free(d);
4265
4266 }
4267
4268 static void free_imsm_disks(struct intel_super *super)
4269 {
4270         struct dl *d;
4271
4272         while (super->disks) {
4273                 d = super->disks;
4274                 super->disks = d->next;
4275                 __free_imsm_disk(d);
4276         }
4277         while (super->disk_mgmt_list) {
4278                 d = super->disk_mgmt_list;
4279                 super->disk_mgmt_list = d->next;
4280                 __free_imsm_disk(d);
4281         }
4282         while (super->missing) {
4283                 d = super->missing;
4284                 super->missing = d->next;
4285                 __free_imsm_disk(d);
4286         }
4287
4288 }
4289
4290 /* free all the pieces hanging off of a super pointer */
4291 static void __free_imsm(struct intel_super *super, int free_disks)
4292 {
4293         struct intel_hba *elem, *next;
4294
4295         if (super->buf) {
4296                 free(super->buf);
4297                 super->buf = NULL;
4298         }
4299         /* unlink capability description */
4300         super->orom = NULL;
4301         if (super->migr_rec_buf) {
4302                 free(super->migr_rec_buf);
4303                 super->migr_rec_buf = NULL;
4304         }
4305         if (free_disks)
4306                 free_imsm_disks(super);
4307         free_devlist(super);
4308         elem = super->hba;
4309         while (elem) {
4310                 if (elem->path)
4311                         free((void *)elem->path);
4312                 next = elem->next;
4313                 free(elem);
4314                 elem = next;
4315         }
4316         if (super->bbm_log)
4317                 free(super->bbm_log);
4318         super->hba = NULL;
4319 }
4320
4321 static void free_imsm(struct intel_super *super)
4322 {
4323         __free_imsm(super, 1);
4324         free(super->bb.entries);
4325         free(super);
4326 }
4327
4328 static void free_super_imsm(struct supertype *st)
4329 {
4330         struct intel_super *super = st->sb;
4331
4332         if (!super)
4333                 return;
4334
4335         free_imsm(super);
4336         st->sb = NULL;
4337 }
4338
4339 static struct intel_super *alloc_super(void)
4340 {
4341         struct intel_super *super = xcalloc(1, sizeof(*super));
4342
4343         super->current_vol = -1;
4344         super->create_offset = ~((unsigned long long) 0);
4345
4346         super->bb.entries = xmalloc(BBM_LOG_MAX_ENTRIES *
4347                                    sizeof(struct md_bb_entry));
4348         if (!super->bb.entries) {
4349                 free(super);
4350                 return NULL;
4351         }
4352
4353         return super;
4354 }
4355
4356 /*
4357  * find and allocate hba and OROM/EFI based on valid fd of RAID component device
4358  */
4359 static int find_intel_hba_capability(int fd, struct intel_super *super, char *devname)
4360 {
4361         struct sys_dev *hba_name;
4362         int rv = 0;
4363
4364         if (fd < 0 || check_env("IMSM_NO_PLATFORM")) {
4365                 super->orom = NULL;
4366                 super->hba = NULL;
4367                 return 0;
4368         }
4369         hba_name = find_disk_attached_hba(fd, NULL);
4370         if (!hba_name) {
4371                 if (devname)
4372                         pr_err("%s is not attached to Intel(R) RAID controller.\n",
4373                                devname);
4374                 return 1;
4375         }
4376         rv = attach_hba_to_super(super, hba_name);
4377         if (rv == 2) {
4378                 if (devname) {
4379                         struct intel_hba *hba = super->hba;
4380
4381                         pr_err("%s is attached to Intel(R) %s %s (%s),\n"
4382                                 "    but the container is assigned to Intel(R) %s %s (",
4383                                 devname,
4384                                 get_sys_dev_type(hba_name->type),
4385                                 hba_name->type == SYS_DEV_VMD ? "domain" : "RAID controller",
4386                                 hba_name->pci_id ? : "Err!",
4387                                 get_sys_dev_type(super->hba->type),
4388                                 hba->type == SYS_DEV_VMD ? "domain" : "RAID controller");
4389
4390                         while (hba) {
4391                                 fprintf(stderr, "%s", hba->pci_id ? : "Err!");
4392                                 if (hba->next)
4393                                         fprintf(stderr, ", ");
4394                                 hba = hba->next;
4395                         }
4396                         fprintf(stderr, ").\n"
4397                                 "    Mixing devices attached to different %s is not allowed.\n",
4398                                 hba_name->type == SYS_DEV_VMD ? "VMD domains" : "controllers");
4399                 }
4400                 return 2;
4401         }
4402         super->orom = find_imsm_capability(hba_name);
4403         if (!super->orom)
4404                 return 3;
4405
4406         return 0;
4407 }
4408
4409 /* find_missing - helper routine for load_super_imsm_all that identifies
4410  * disks that have disappeared from the system.  This routine relies on
4411  * the mpb being uptodate, which it is at load time.
4412  */
4413 static int find_missing(struct intel_super *super)
4414 {
4415         int i;
4416         struct imsm_super *mpb = super->anchor;
4417         struct dl *dl;
4418         struct imsm_disk *disk;
4419
4420         for (i = 0; i < mpb->num_disks; i++) {
4421                 disk = __get_imsm_disk(mpb, i);
4422                 dl = serial_to_dl(disk->serial, super);
4423                 if (dl)
4424                         continue;
4425
4426                 dl = xmalloc(sizeof(*dl));
4427                 dl->major = 0;
4428                 dl->minor = 0;
4429                 dl->fd = -1;
4430                 dl->devname = xstrdup("missing");
4431                 dl->index = i;
4432                 serialcpy(dl->serial, disk->serial);
4433                 dl->disk = *disk;
4434                 dl->e = NULL;
4435                 dl->next = super->missing;
4436                 super->missing = dl;
4437         }
4438
4439         return 0;
4440 }
4441
4442 #ifndef MDASSEMBLE
4443 static struct intel_disk *disk_list_get(__u8 *serial, struct intel_disk *disk_list)
4444 {
4445         struct intel_disk *idisk = disk_list;
4446
4447         while (idisk) {
4448                 if (serialcmp(idisk->disk.serial, serial) == 0)
4449                         break;
4450                 idisk = idisk->next;
4451         }
4452
4453         return idisk;
4454 }
4455
4456 static int __prep_thunderdome(struct intel_super **table, int tbl_size,
4457                               struct intel_super *super,
4458                               struct intel_disk **disk_list)
4459 {
4460         struct imsm_disk *d = &super->disks->disk;
4461         struct imsm_super *mpb = super->anchor;
4462         int i, j;
4463
4464         for (i = 0; i < tbl_size; i++) {
4465                 struct imsm_super *tbl_mpb = table[i]->anchor;
4466                 struct imsm_disk *tbl_d = &table[i]->disks->disk;
4467
4468                 if (tbl_mpb->family_num == mpb->family_num) {
4469                         if (tbl_mpb->check_sum == mpb->check_sum) {
4470                                 dprintf("mpb from %d:%d matches %d:%d\n",
4471                                         super->disks->major,
4472                                         super->disks->minor,
4473                                         table[i]->disks->major,
4474                                         table[i]->disks->minor);
4475                                 break;
4476                         }
4477
4478                         if (((is_configured(d) && !is_configured(tbl_d)) ||
4479                              is_configured(d) == is_configured(tbl_d)) &&
4480                             tbl_mpb->generation_num < mpb->generation_num) {
4481                                 /* current version of the mpb is a
4482                                  * better candidate than the one in
4483                                  * super_table, but copy over "cross
4484                                  * generational" status
4485                                  */
4486                                 struct intel_disk *idisk;
4487
4488                                 dprintf("mpb from %d:%d replaces %d:%d\n",
4489                                         super->disks->major,
4490                                         super->disks->minor,
4491                                         table[i]->disks->major,
4492                                         table[i]->disks->minor);
4493
4494                                 idisk = disk_list_get(tbl_d->serial, *disk_list);
4495                                 if (idisk && is_failed(&idisk->disk))
4496                                         tbl_d->status |= FAILED_DISK;
4497                                 break;
4498                         } else {
4499                                 struct intel_disk *idisk;
4500                                 struct imsm_disk *disk;
4501
4502                                 /* tbl_mpb is more up to date, but copy
4503                                  * over cross generational status before
4504                                  * returning
4505                                  */
4506                                 disk = __serial_to_disk(d->serial, mpb, NULL);
4507                                 if (disk && is_failed(disk))
4508                                         d->status |= FAILED_DISK;
4509
4510                                 idisk = disk_list_get(d->serial, *disk_list);
4511                                 if (idisk) {
4512                                         idisk->owner = i;
4513                                         if (disk && is_configured(disk))
4514                                                 idisk->disk.status |= CONFIGURED_DISK;
4515                                 }
4516
4517                                 dprintf("mpb from %d:%d prefer %d:%d\n",
4518                                         super->disks->major,
4519                                         super->disks->minor,
4520                                         table[i]->disks->major,
4521                                         table[i]->disks->minor);
4522
4523                                 return tbl_size;
4524                         }
4525                 }
4526         }
4527
4528         if (i >= tbl_size)
4529                 table[tbl_size++] = super;
4530         else
4531                 table[i] = super;
4532
4533         /* update/extend the merged list of imsm_disk records */
4534         for (j = 0; j < mpb->num_disks; j++) {
4535                 struct imsm_disk *disk = __get_imsm_disk(mpb, j);
4536                 struct intel_disk *idisk;
4537
4538                 idisk = disk_list_get(disk->serial, *disk_list);
4539                 if (idisk) {
4540                         idisk->disk.status |= disk->status;
4541                         if (is_configured(&idisk->disk) ||
4542                             is_failed(&idisk->disk))
4543                                 idisk->disk.status &= ~(SPARE_DISK);
4544                 } else {
4545                         idisk = xcalloc(1, sizeof(*idisk));
4546                         idisk->owner = IMSM_UNKNOWN_OWNER;
4547                         idisk->disk = *disk;
4548                         idisk->next = *disk_list;
4549                         *disk_list = idisk;
4550                 }
4551
4552                 if (serialcmp(idisk->disk.serial, d->serial) == 0)
4553                         idisk->owner = i;
4554         }
4555
4556         return tbl_size;
4557 }
4558
4559 static struct intel_super *
4560 validate_members(struct intel_super *super, struct intel_disk *disk_list,
4561                  const int owner)
4562 {
4563         struct imsm_super *mpb = super->anchor;
4564         int ok_count = 0;
4565         int i;
4566
4567         for (i = 0; i < mpb->num_disks; i++) {
4568                 struct imsm_disk *disk = __get_imsm_disk(mpb, i);
4569                 struct intel_disk *idisk;
4570
4571                 idisk = disk_list_get(disk->serial, disk_list);
4572                 if (idisk) {
4573                         if (idisk->owner == owner ||
4574                             idisk->owner == IMSM_UNKNOWN_OWNER)
4575                                 ok_count++;
4576                         else
4577                                 dprintf("'%.16s' owner %d != %d\n",
4578                                         disk->serial, idisk->owner,
4579                                         owner);
4580                 } else {
4581                         dprintf("unknown disk %x [%d]: %.16s\n",
4582                                 __le32_to_cpu(mpb->family_num), i,
4583                                 disk->serial);
4584                         break;
4585                 }
4586         }
4587
4588         if (ok_count == mpb->num_disks)
4589                 return super;
4590         return NULL;
4591 }
4592
4593 static void show_conflicts(__u32 family_num, struct intel_super *super_list)
4594 {
4595         struct intel_super *s;
4596
4597         for (s = super_list; s; s = s->next) {
4598                 if (family_num != s->anchor->family_num)
4599                         continue;
4600                 pr_err("Conflict, offlining family %#x on '%s'\n",
4601                         __le32_to_cpu(family_num), s->disks->devname);
4602         }
4603 }
4604
4605 static struct intel_super *
4606 imsm_thunderdome(struct intel_super **super_list, int len)
4607 {
4608         struct intel_super *super_table[len];
4609         struct intel_disk *disk_list = NULL;
4610         struct intel_super *champion, *spare;
4611         struct intel_super *s, **del;
4612         int tbl_size = 0;
4613         int conflict;
4614         int i;
4615
4616         memset(super_table, 0, sizeof(super_table));
4617         for (s = *super_list; s; s = s->next)
4618                 tbl_size = __prep_thunderdome(super_table, tbl_size, s, &disk_list);
4619
4620         for (i = 0; i < tbl_size; i++) {
4621                 struct imsm_disk *d;
4622                 struct intel_disk *idisk;
4623                 struct imsm_super *mpb = super_table[i]->anchor;
4624
4625                 s = super_table[i];
4626                 d = &s->disks->disk;
4627
4628                 /* 'd' must appear in merged disk list for its
4629                  * configuration to be valid
4630                  */
4631                 idisk = disk_list_get(d->serial, disk_list);
4632                 if (idisk && idisk->owner == i)
4633                         s = validate_members(s, disk_list, i);
4634                 else
4635                         s = NULL;
4636
4637                 if (!s)
4638                         dprintf("marking family: %#x from %d:%d offline\n",
4639                                 mpb->family_num,
4640                                 super_table[i]->disks->major,
4641                                 super_table[i]->disks->minor);
4642                 super_table[i] = s;
4643         }
4644
4645         /* This is where the mdadm implementation differs from the Windows
4646          * driver which has no strict concept of a container.  We can only
4647          * assemble one family from a container, so when returning a prodigal
4648          * array member to this system the code will not be able to disambiguate
4649          * the container contents that should be assembled ("foreign" versus
4650          * "local").  It requires user intervention to set the orig_family_num
4651          * to a new value to establish a new container.  The Windows driver in
4652          * this situation fixes up the volume name in place and manages the
4653          * foreign array as an independent entity.
4654          */
4655         s = NULL;
4656         spare = NULL;
4657         conflict = 0;
4658         for (i = 0; i < tbl_size; i++) {
4659                 struct intel_super *tbl_ent = super_table[i];
4660                 int is_spare = 0;
4661
4662                 if (!tbl_ent)
4663                         continue;
4664
4665                 if (tbl_ent->anchor->num_raid_devs == 0) {
4666                         spare = tbl_ent;
4667                         is_spare = 1;
4668                 }
4669
4670                 if (s && !is_spare) {
4671                         show_conflicts(tbl_ent->anchor->family_num, *super_list);
4672                         conflict++;
4673                 } else if (!s && !is_spare)
4674                         s = tbl_ent;
4675         }
4676
4677         if (!s)
4678                 s = spare;
4679         if (!s) {
4680                 champion = NULL;
4681                 goto out;
4682         }
4683         champion = s;
4684
4685         if (conflict)
4686                 pr_err("Chose family %#x on '%s', assemble conflicts to new container with '--update=uuid'\n",
4687                         __le32_to_cpu(s->anchor->family_num), s->disks->devname);
4688
4689         /* collect all dl's onto 'champion', and update them to
4690          * champion's version of the status
4691          */
4692         for (s = *super_list; s; s = s->next) {
4693                 struct imsm_super *mpb = champion->anchor;
4694                 struct dl *dl = s->disks;
4695
4696                 if (s == champion)
4697                         continue;
4698
4699                 mpb->attributes |= s->anchor->attributes & MPB_ATTRIB_2TB_DISK;
4700
4701                 for (i = 0; i < mpb->num_disks; i++) {
4702                         struct imsm_disk *disk;
4703
4704                         disk = __serial_to_disk(dl->serial, mpb, &dl->index);
4705                         if (disk) {
4706                                 dl->disk = *disk;
4707                                 /* only set index on disks that are a member of
4708                                  * a populated contianer, i.e. one with
4709                                  * raid_devs
4710                                  */
4711                                 if (is_failed(&dl->disk))
4712                                         dl->index = -2;
4713                                 else if (is_spare(&dl->disk))
4714                                         dl->index = -1;
4715                                 break;
4716                         }
4717                 }
4718
4719                 if (i >= mpb->num_disks) {
4720                         struct intel_disk *idisk;
4721
4722                         idisk = disk_list_get(dl->serial, disk_list);
4723                         if (idisk && is_spare(&idisk->disk) &&
4724                             !is_failed(&idisk->disk) && !is_configured(&idisk->disk))
4725                                 dl->index = -1;
4726                         else {
4727                                 dl->index = -2;
4728                                 continue;
4729                         }
4730                 }
4731
4732                 dl->next = champion->disks;
4733                 champion->disks = dl;
4734                 s->disks = NULL;
4735         }
4736
4737         /* delete 'champion' from super_list */
4738         for (del = super_list; *del; ) {
4739                 if (*del == champion) {
4740                         *del = (*del)->next;
4741                         break;
4742                 } else
4743                         del = &(*del)->next;
4744         }
4745         champion->next = NULL;
4746
4747  out:
4748         while (disk_list) {
4749                 struct intel_disk *idisk = disk_list;
4750
4751                 disk_list = disk_list->next;
4752                 free(idisk);
4753         }
4754
4755         return champion;
4756 }
4757
4758 static int
4759 get_sra_super_block(int fd, struct intel_super **super_list, char *devname, int *max, int keep_fd);
4760 static int get_super_block(struct intel_super **super_list, char *devnm, char *devname,
4761                            int major, int minor, int keep_fd);
4762 static int
4763 get_devlist_super_block(struct md_list *devlist, struct intel_super **super_list,
4764                         int *max, int keep_fd);
4765
4766 static int load_super_imsm_all(struct supertype *st, int fd, void **sbp,
4767                                char *devname, struct md_list *devlist,
4768                                int keep_fd)
4769 {
4770         struct intel_super *super_list = NULL;
4771         struct intel_super *super = NULL;
4772         int err = 0;
4773         int i = 0;
4774
4775         if (fd >= 0)
4776                 /* 'fd' is an opened container */
4777                 err = get_sra_super_block(fd, &super_list, devname, &i, keep_fd);
4778         else
4779                 /* get super block from devlist devices */
4780                 err = get_devlist_super_block(devlist, &super_list, &i, keep_fd);
4781         if (err)
4782                 goto error;
4783         /* all mpbs enter, maybe one leaves */
4784         super = imsm_thunderdome(&super_list, i);
4785         if (!super) {
4786                 err = 1;
4787                 goto error;
4788         }
4789
4790         if (find_missing(super) != 0) {
4791                 free_imsm(super);
4792                 err = 2;
4793                 goto error;
4794         }
4795
4796         /* load migration record */
4797         err = load_imsm_migr_rec(super, NULL);
4798         if (err == -1) {
4799                 /* migration is in progress,
4800                  * but migr_rec cannot be loaded,
4801                  */
4802                 err = 4;
4803                 goto error;
4804         }
4805
4806         /* Check migration compatibility */
4807         if (err == 0 && check_mpb_migr_compatibility(super) != 0) {
4808                 pr_err("Unsupported migration detected");
4809                 if (devname)
4810                         fprintf(stderr, " on %s\n", devname);
4811                 else
4812                         fprintf(stderr, " (IMSM).\n");
4813
4814                 err = 5;
4815                 goto error;
4816         }
4817
4818         err = 0;
4819
4820  error:
4821         while (super_list) {
4822                 struct intel_super *s = super_list;
4823
4824                 super_list = super_list->next;
4825                 free_imsm(s);
4826         }
4827
4828         if (err)
4829                 return err;
4830
4831         *sbp = super;
4832         if (fd >= 0)
4833                 strcpy(st->container_devnm, fd2devnm(fd));
4834         else
4835                 st->container_devnm[0] = 0;
4836         if (err == 0 && st->ss == NULL) {
4837                 st->ss = &super_imsm;
4838                 st->minor_version = 0;
4839                 st->max_devs = IMSM_MAX_DEVICES;
4840         }
4841         return 0;
4842 }
4843
4844 static int
4845 get_devlist_super_block(struct md_list *devlist, struct intel_super **super_list,
4846                         int *max, int keep_fd)
4847 {
4848         struct md_list *tmpdev;
4849         int err = 0;
4850         int i = 0;
4851
4852         for (i = 0, tmpdev = devlist; tmpdev; tmpdev = tmpdev->next) {
4853                 if (tmpdev->used != 1)
4854                         continue;
4855                 if (tmpdev->container == 1) {
4856                         int lmax = 0;
4857                         int fd = dev_open(tmpdev->devname, O_RDONLY|O_EXCL);
4858                         if (fd < 0) {
4859                                 pr_err("cannot open device %s: %s\n",
4860                                         tmpdev->devname, strerror(errno));
4861                                 err = 8;
4862                                 goto error;
4863                         }
4864                         err = get_sra_super_block(fd, super_list,
4865                                                   tmpdev->devname, &lmax,
4866                                                   keep_fd);
4867                         i += lmax;
4868                         close(fd);
4869                         if (err) {
4870                                 err = 7;
4871                                 goto error;
4872                         }
4873                 } else {
4874                         int major = major(tmpdev->st_rdev);
4875                         int minor = minor(tmpdev->st_rdev);
4876                         err = get_super_block(super_list,
4877                                               NULL,
4878                                               tmpdev->devname,
4879                                               major, minor,
4880                                               keep_fd);
4881                         i++;
4882                         if (err) {
4883                                 err = 6;
4884                                 goto error;
4885                         }
4886                 }
4887         }
4888  error:
4889         *max = i;
4890         return err;
4891 }
4892
4893 static int get_super_block(struct intel_super **super_list, char *devnm, char *devname,
4894                            int major, int minor, int keep_fd)
4895 {
4896         struct intel_super *s;
4897         char nm[32];
4898         int dfd = -1;
4899         int err = 0;
4900         int retry;
4901
4902         s = alloc_super();
4903         if (!s) {
4904                 err = 1;
4905                 goto error;
4906         }
4907
4908         sprintf(nm, "%d:%d", major, minor);
4909         dfd = dev_open(nm, O_RDWR);
4910         if (dfd < 0) {
4911                 err = 2;
4912                 goto error;
4913         }
4914
4915         get_dev_sector_size(dfd, NULL, &s->sector_size);
4916         find_intel_hba_capability(dfd, s, devname);
4917         err = load_and_parse_mpb(dfd, s, NULL, keep_fd);
4918
4919         /* retry the load if we might have raced against mdmon */
4920         if (err == 3 && devnm && mdmon_running(devnm))
4921                 for (retry = 0; retry < 3; retry++) {
4922                         usleep(3000);
4923                         err = load_and_parse_mpb(dfd, s, NULL, keep_fd);
4924                         if (err != 3)
4925                                 break;
4926                 }
4927  error:
4928         if (!err) {
4929                 s->next = *super_list;
4930                 *super_list = s;
4931         } else {
4932                 if (s)
4933                         free_imsm(s);
4934                 if (dfd >= 0)
4935                         close(dfd);
4936         }
4937         if (dfd >= 0 && !keep_fd)
4938                 close(dfd);
4939         return err;
4940
4941 }
4942
4943 static int
4944 get_sra_super_block(int fd, struct intel_super **super_list, char *devname, int *max, int keep_fd)
4945 {
4946         struct mdinfo *sra;
4947         char *devnm;
4948         struct mdinfo *sd;
4949         int err = 0;
4950         int i = 0;
4951         sra = sysfs_read(fd, NULL, GET_LEVEL|GET_VERSION|GET_DEVS|GET_STATE);
4952         if (!sra)
4953                 return 1;
4954
4955         if (sra->array.major_version != -1 ||
4956             sra->array.minor_version != -2 ||
4957             strcmp(sra->text_version, "imsm") != 0) {
4958                 err = 1;
4959                 goto error;
4960         }
4961         /* load all mpbs */
4962         devnm = fd2devnm(fd);
4963         for (sd = sra->devs, i = 0; sd; sd = sd->next, i++) {
4964                 if (get_super_block(super_list, devnm, devname,
4965                                     sd->disk.major, sd->disk.minor, keep_fd) != 0) {
4966                         err = 7;
4967                         goto error;
4968                 }
4969         }
4970  error:
4971         sysfs_free(sra);
4972         *max = i;
4973         return err;
4974 }
4975
4976 static int load_container_imsm(struct supertype *st, int fd, char *devname)
4977 {
4978         return load_super_imsm_all(st, fd, &st->sb, devname, NULL, 1);
4979 }
4980 #endif
4981
4982 static int load_super_imsm(struct supertype *st, int fd, char *devname)
4983 {
4984         struct intel_super *super;
4985         int rv;
4986         int retry;
4987
4988         if (test_partition(fd))
4989                 /* IMSM not allowed on partitions */
4990                 return 1;
4991
4992         free_super_imsm(st);
4993
4994         super = alloc_super();
4995         get_dev_sector_size(fd, NULL, &super->sector_size);
4996         if (!super)
4997                 return 1;
4998         /* Load hba and capabilities if they exist.
4999          * But do not preclude loading metadata in case capabilities or hba are
5000          * non-compliant and ignore_hw_compat is set.
5001          */
5002         rv = find_intel_hba_capability(fd, super, devname);
5003         /* no orom/efi or non-intel hba of the disk */
5004         if (rv != 0 && st->ignore_hw_compat == 0) {
5005                 if (devname)
5006                         pr_err("No OROM/EFI properties for %s\n", devname);
5007                 free_imsm(super);
5008                 return 2;
5009         }
5010         rv = load_and_parse_mpb(fd, super, devname, 0);
5011
5012         /* retry the load if we might have raced against mdmon */
5013         if (rv == 3) {
5014                 struct mdstat_ent *mdstat = NULL;
5015                 char *name = fd2kname(fd);
5016
5017                 if (name)
5018                         mdstat = mdstat_by_component(name);
5019
5020                 if (mdstat && mdmon_running(mdstat->devnm) && getpid() != mdmon_pid(mdstat->devnm)) {
5021                         for (retry = 0; retry < 3; retry++) {
5022                                 usleep(3000);
5023                                 rv = load_and_parse_mpb(fd, super, devname, 0);
5024                                 if (rv != 3)
5025                                         break;
5026                         }
5027                 }
5028
5029                 free_mdstat(mdstat);
5030         }
5031
5032         if (rv) {
5033                 if (devname)
5034                         pr_err("Failed to load all information sections on %s\n", devname);
5035                 free_imsm(super);
5036                 return rv;
5037         }
5038
5039         st->sb = super;
5040         if (st->ss == NULL) {
5041                 st->ss = &super_imsm;
5042                 st->minor_version = 0;
5043                 st->max_devs = IMSM_MAX_DEVICES;
5044         }
5045
5046         /* load migration record */
5047         if (load_imsm_migr_rec(super, NULL) == 0) {
5048                 /* Check for unsupported migration features */
5049                 if (check_mpb_migr_compatibility(super) != 0) {
5050                         pr_err("Unsupported migration detected");
5051                         if (devname)
5052                                 fprintf(stderr, " on %s\n", devname);
5053                         else
5054                                 fprintf(stderr, " (IMSM).\n");
5055                         return 3;
5056                 }
5057         }
5058
5059         return 0;
5060 }
5061
5062 static __u16 info_to_blocks_per_strip(mdu_array_info_t *info)
5063 {
5064         if (info->level == 1)
5065                 return 128;
5066         return info->chunk_size >> 9;
5067 }
5068
5069 static unsigned long long info_to_blocks_per_member(mdu_array_info_t *info,
5070                                                     unsigned long long size)
5071 {
5072         if (info->level == 1)
5073                 return size * 2;
5074         else
5075                 return (size * 2) & ~(info_to_blocks_per_strip(info) - 1);
5076 }
5077
5078 static void imsm_update_version_info(struct intel_super *super)
5079 {
5080         /* update the version and attributes */
5081         struct imsm_super *mpb = super->anchor;
5082         char *version;
5083         struct imsm_dev *dev;
5084         struct imsm_map *map;
5085         int i;
5086
5087         for (i = 0; i < mpb->num_raid_devs; i++) {
5088                 dev = get_imsm_dev(super, i);
5089                 map = get_imsm_map(dev, MAP_0);
5090                 if (__le32_to_cpu(dev->size_high) > 0)
5091                         mpb->attributes |= MPB_ATTRIB_2TB;
5092
5093                 /* FIXME detect when an array spans a port multiplier */
5094                 #if 0
5095                 mpb->attributes |= MPB_ATTRIB_PM;
5096                 #endif
5097
5098                 if (mpb->num_raid_devs > 1 ||
5099                     mpb->attributes != MPB_ATTRIB_CHECKSUM_VERIFY) {
5100                         version = MPB_VERSION_ATTRIBS;
5101                         switch (get_imsm_raid_level(map)) {
5102                         case 0: mpb->attributes |= MPB_ATTRIB_RAID0; break;
5103                         case 1: mpb->attributes |= MPB_ATTRIB_RAID1; break;
5104                         case 10: mpb->attributes |= MPB_ATTRIB_RAID10; break;
5105                         case 5: mpb->attributes |= MPB_ATTRIB_RAID5; break;
5106                         }
5107                 } else {
5108                         if (map->num_members >= 5)
5109                                 version = MPB_VERSION_5OR6_DISK_ARRAY;
5110                         else if (dev->status == DEV_CLONE_N_GO)
5111                                 version = MPB_VERSION_CNG;
5112                         else if (get_imsm_raid_level(map) == 5)
5113                                 version = MPB_VERSION_RAID5;
5114                         else if (map->num_members >= 3)
5115                                 version = MPB_VERSION_3OR4_DISK_ARRAY;
5116                         else if (get_imsm_raid_level(map) == 1)
5117                                 version = MPB_VERSION_RAID1;
5118                         else
5119                                 version = MPB_VERSION_RAID0;
5120                 }
5121                 strcpy(((char *) mpb->sig) + strlen(MPB_SIGNATURE), version);
5122         }
5123 }
5124
5125 static int check_name(struct intel_super *super, char *name, int quiet)
5126 {
5127         struct imsm_super *mpb = super->anchor;
5128         char *reason = NULL;
5129         int i;
5130
5131         if (strlen(name) > MAX_RAID_SERIAL_LEN)
5132                 reason = "must be 16 characters or less";
5133
5134         for (i = 0; i < mpb->num_raid_devs; i++) {
5135                 struct imsm_dev *dev = get_imsm_dev(super, i);
5136
5137                 if (strncmp((char *) dev->volume, name, MAX_RAID_SERIAL_LEN) == 0) {
5138                         reason = "already exists";
5139                         break;
5140                 }
5141         }
5142
5143         if (reason && !quiet)
5144                 pr_err("imsm volume name %s\n", reason);
5145
5146         return !reason;
5147 }
5148
5149 static int init_super_imsm_volume(struct supertype *st, mdu_array_info_t *info,
5150                                   unsigned long long size, char *name,
5151                                   char *homehost, int *uuid,
5152                                   long long data_offset)
5153 {
5154         /* We are creating a volume inside a pre-existing container.
5155          * so st->sb is already set.
5156          */
5157         struct intel_super *super = st->sb;
5158         unsigned int sector_size = super->sector_size;
5159         struct imsm_super *mpb = super->anchor;
5160         struct intel_dev *dv;
5161         struct imsm_dev *dev;
5162         struct imsm_vol *vol;
5163         struct imsm_map *map;
5164         int idx = mpb->num_raid_devs;
5165         int i;
5166         unsigned long long array_blocks;
5167         size_t size_old, size_new;
5168         unsigned long long num_data_stripes;
5169
5170         if (super->orom && mpb->num_raid_devs >= super->orom->vpa) {
5171                 pr_err("This imsm-container already has the maximum of %d volumes\n", super->orom->vpa);
5172                 return 0;
5173         }
5174
5175         /* ensure the mpb is large enough for the new data */
5176         size_old = __le32_to_cpu(mpb->mpb_size);
5177         size_new = disks_to_mpb_size(info->nr_disks);
5178         if (size_new > size_old) {
5179                 void *mpb_new;
5180                 size_t size_round = ROUND_UP(size_new, sector_size);
5181
5182                 if (posix_memalign(&mpb_new, sector_size, size_round) != 0) {
5183                         pr_err("could not allocate new mpb\n");
5184                         return 0;
5185                 }
5186                 if (posix_memalign(&super->migr_rec_buf, sector_size,
5187                                    MIGR_REC_BUF_SECTORS*sector_size) != 0) {
5188                         pr_err("could not allocate migr_rec buffer\n");
5189                         free(super->buf);
5190                         free(super);
5191                         free(mpb_new);
5192                         return 0;
5193                 }
5194                 memcpy(mpb_new, mpb, size_old);
5195                 free(mpb);
5196                 mpb = mpb_new;
5197                 super->anchor = mpb_new;
5198                 mpb->mpb_size = __cpu_to_le32(size_new);
5199                 memset(mpb_new + size_old, 0, size_round - size_old);
5200                 super->len = size_round;
5201         }
5202         super->current_vol = idx;
5203
5204         /* handle 'failed_disks' by either:
5205          * a) create dummy disk entries in the table if this the first
5206          *    volume in the array.  We add them here as this is the only
5207          *    opportunity to add them. add_to_super_imsm_volume()
5208          *    handles the non-failed disks and continues incrementing
5209          *    mpb->num_disks.
5210          * b) validate that 'failed_disks' matches the current number
5211          *    of missing disks if the container is populated
5212          */
5213         if (super->current_vol == 0) {
5214                 mpb->num_disks = 0;
5215                 for (i = 0; i < info->failed_disks; i++) {
5216                         struct imsm_disk *disk;
5217
5218                         mpb->num_disks++;
5219                         disk = __get_imsm_disk(mpb, i);
5220                         disk->status = CONFIGURED_DISK | FAILED_DISK;
5221                         disk->scsi_id = __cpu_to_le32(~(__u32)0);
5222                         snprintf((char *) disk->serial, MAX_RAID_SERIAL_LEN,
5223                                  "missing:%d", i);
5224                 }
5225                 find_missing(super);
5226         } else {
5227                 int missing = 0;
5228                 struct dl *d;
5229
5230                 for (d = super->missing; d; d = d->next)
5231                         missing++;
5232                 if (info->failed_disks > missing) {
5233                         pr_err("unable to add 'missing' disk to container\n");
5234                         return 0;
5235                 }
5236         }
5237
5238         if (!check_name(super, name, 0))
5239                 return 0;
5240         dv = xmalloc(sizeof(*dv));
5241         dev = xcalloc(1, sizeof(*dev) + sizeof(__u32) * (info->raid_disks - 1));
5242         strncpy((char *) dev->volume, name, MAX_RAID_SERIAL_LEN);
5243         array_blocks = calc_array_size(info->level, info->raid_disks,
5244                                                info->layout, info->chunk_size,
5245                                                size * 2);
5246         /* round array size down to closest MB */
5247         array_blocks = (array_blocks >> SECT_PER_MB_SHIFT) << SECT_PER_MB_SHIFT;
5248
5249         dev->size_low = __cpu_to_le32((__u32) array_blocks);
5250         dev->size_high = __cpu_to_le32((__u32) (array_blocks >> 32));
5251         dev->status = (DEV_READ_COALESCING | DEV_WRITE_COALESCING);
5252         vol = &dev->vol;
5253         vol->migr_state = 0;
5254         set_migr_type(dev, MIGR_INIT);
5255         vol->dirty = !info->state;
5256         vol->curr_migr_unit = 0;
5257         map = get_imsm_map(dev, MAP_0);
5258         set_pba_of_lba0(map, super->create_offset);
5259         set_blocks_per_member(map, info_to_blocks_per_member(info, size));
5260         map->blocks_per_strip = __cpu_to_le16(info_to_blocks_per_strip(info));
5261         map->failed_disk_num = ~0;
5262         if (info->level > 0)
5263                 map->map_state = (info->state ? IMSM_T_STATE_NORMAL
5264                                   : IMSM_T_STATE_UNINITIALIZED);
5265         else
5266                 map->map_state = info->failed_disks ? IMSM_T_STATE_FAILED :
5267                                                       IMSM_T_STATE_NORMAL;
5268         map->ddf = 1;
5269
5270         if (info->level == 1 && info->raid_disks > 2) {
5271                 free(dev);
5272                 free(dv);
5273                 pr_err("imsm does not support more than 2 disksin a raid1 volume\n");
5274                 return 0;
5275         }
5276
5277         map->raid_level = info->level;
5278         if (info->level == 10) {
5279                 map->raid_level = 1;
5280                 map->num_domains = info->raid_disks / 2;
5281         } else if (info->level == 1)
5282                 map->num_domains = info->raid_disks;
5283         else
5284                 map->num_domains = 1;
5285
5286         /* info->size is only int so use the 'size' parameter instead */
5287         num_data_stripes = (size * 2) / info_to_blocks_per_strip(info);
5288         num_data_stripes /= map->num_domains;
5289         set_num_data_stripes(map, num_data_stripes);
5290
5291         map->num_members = info->raid_disks;
5292         for (i = 0; i < map->num_members; i++) {
5293                 /* initialized in add_to_super */
5294                 set_imsm_ord_tbl_ent(map, i, IMSM_ORD_REBUILD);
5295         }
5296         mpb->num_raid_devs++;
5297
5298         dv->dev = dev;
5299         dv->index = super->current_vol;
5300         dv->next = super->devlist;
5301         super->devlist = dv;
5302
5303         imsm_update_version_info(super);
5304
5305         return 1;
5306 }
5307
5308 static int init_super_imsm(struct supertype *st, mdu_array_info_t *info,
5309                            unsigned long long size, char *name,
5310                            char *homehost, int *uuid,
5311                            unsigned long long data_offset)
5312 {
5313         /* This is primarily called by Create when creating a new array.
5314          * We will then get add_to_super called for each component, and then
5315          * write_init_super called to write it out to each device.
5316          * For IMSM, Create can create on fresh devices or on a pre-existing
5317          * array.
5318          * To create on a pre-existing array a different method will be called.
5319          * This one is just for fresh drives.
5320          */
5321         struct intel_super *super;
5322         struct imsm_super *mpb;
5323         size_t mpb_size;
5324         char *version;
5325
5326         if (data_offset != INVALID_SECTORS) {
5327                 pr_err("data-offset not supported by imsm\n");
5328                 return 0;
5329         }
5330
5331         if (st->sb)
5332                 return init_super_imsm_volume(st, info, size, name, homehost, uuid,
5333                                               data_offset);
5334
5335         if (info)
5336                 mpb_size = disks_to_mpb_size(info->nr_disks);
5337         else
5338                 mpb_size = MAX_SECTOR_SIZE;
5339
5340         super = alloc_super();
5341         if (super &&
5342             posix_memalign(&super->buf, MAX_SECTOR_SIZE, mpb_size) != 0) {
5343                 free_imsm(super);
5344                 super = NULL;
5345         }
5346         if (!super) {
5347                 pr_err("could not allocate superblock\n");
5348                 return 0;
5349         }
5350         if (posix_memalign(&super->migr_rec_buf, MAX_SECTOR_SIZE,
5351             MIGR_REC_BUF_SECTORS*MAX_SECTOR_SIZE) != 0) {
5352                 pr_err("could not allocate migr_rec buffer\n");
5353                 free(super->buf);
5354                 free_imsm(super);
5355                 return 0;
5356         }
5357         memset(super->buf, 0, mpb_size);
5358         mpb = super->buf;
5359         mpb->mpb_size = __cpu_to_le32(mpb_size);
5360         st->sb = super;
5361
5362         if (info == NULL) {
5363                 /* zeroing superblock */
5364                 return 0;
5365         }
5366
5367         mpb->attributes = MPB_ATTRIB_CHECKSUM_VERIFY;
5368
5369         version = (char *) mpb->sig;
5370         strcpy(version, MPB_SIGNATURE);
5371         version += strlen(MPB_SIGNATURE);
5372         strcpy(version, MPB_VERSION_RAID0);
5373
5374         return 1;
5375 }
5376
5377 #ifndef MDASSEMBLE
5378 static int add_to_super_imsm_volume(struct supertype *st, mdu_disk_info_t *dk,
5379                                      int fd, char *devname)
5380 {
5381         struct intel_super *super = st->sb;
5382         struct imsm_super *mpb = super->anchor;
5383         struct imsm_disk *_disk;
5384         struct imsm_dev *dev;
5385         struct imsm_map *map;
5386         struct dl *dl, *df;
5387         int slot;
5388
5389         dev = get_imsm_dev(super, super->current_vol);
5390         map = get_imsm_map(dev, MAP_0);
5391
5392         if (! (dk->state & (1<<MD_DISK_SYNC))) {
5393                 pr_err("%s: Cannot add spare devices to IMSM volume\n",
5394                         devname);
5395                 return 1;
5396         }
5397
5398         if (fd == -1) {
5399                 /* we're doing autolayout so grab the pre-marked (in
5400                  * validate_geometry) raid_disk
5401                  */
5402                 for (dl = super->disks; dl; dl = dl->next)
5403                         if (dl->raiddisk == dk->raid_disk)
5404                                 break;
5405         } else {
5406                 for (dl = super->disks; dl ; dl = dl->next)
5407                         if (dl->major == dk->major &&
5408                             dl->minor == dk->minor)
5409                                 break;
5410         }
5411
5412         if (!dl) {
5413                 pr_err("%s is not a member of the same container\n", devname);
5414                 return 1;
5415         }
5416
5417         /* add a pristine spare to the metadata */
5418         if (dl->index < 0) {
5419                 dl->index = super->anchor->num_disks;
5420                 super->anchor->num_disks++;
5421         }
5422         /* Check the device has not already been added */
5423         slot = get_imsm_disk_slot(map, dl->index);
5424         if (slot >= 0 &&
5425             (get_imsm_ord_tbl_ent(dev, slot, MAP_X) & IMSM_ORD_REBUILD) == 0) {
5426                 pr_err("%s has been included in this array twice\n",
5427                         devname);
5428                 return 1;
5429         }
5430         set_imsm_ord_tbl_ent(map, dk->raid_disk, dl->index);
5431         dl->disk.status = CONFIGURED_DISK;
5432
5433         /* update size of 'missing' disks to be at least as large as the
5434          * largest acitve member (we only have dummy missing disks when
5435          * creating the first volume)
5436          */
5437         if (super->current_vol == 0) {
5438                 for (df = super->missing; df; df = df->next) {
5439                         if (total_blocks(&dl->disk) > total_blocks(&df->disk))
5440                                 set_total_blocks(&df->disk, total_blocks(&dl->disk));
5441                         _disk = __get_imsm_disk(mpb, df->index);
5442                         *_disk = df->disk;
5443                 }
5444         }
5445
5446         /* refresh unset/failed slots to point to valid 'missing' entries */
5447         for (df = super->missing; df; df = df->next)
5448                 for (slot = 0; slot < mpb->num_disks; slot++) {
5449                         __u32 ord = get_imsm_ord_tbl_ent(dev, slot, MAP_X);
5450
5451                         if ((ord & IMSM_ORD_REBUILD) == 0)
5452                                 continue;
5453                         set_imsm_ord_tbl_ent(map, slot, df->index | IMSM_ORD_REBUILD);
5454                         if (is_gen_migration(dev)) {
5455                                 struct imsm_map *map2 = get_imsm_map(dev,
5456                                                                      MAP_1);
5457                                 int slot2 = get_imsm_disk_slot(map2, df->index);
5458                                 if (slot2 < map2->num_members && slot2 >= 0) {
5459                                         __u32 ord2 = get_imsm_ord_tbl_ent(dev,
5460                                                                          slot2,
5461                                                                          MAP_1);
5462                                         if ((unsigned)df->index ==
5463                                                                ord_to_idx(ord2))
5464                                                 set_imsm_ord_tbl_ent(map2,
5465                                                         slot2,
5466                                                         df->index |
5467                                                         IMSM_ORD_REBUILD);
5468                                 }
5469                         }
5470                         dprintf("set slot:%d to missing disk:%d\n", slot, df->index);
5471                         break;
5472                 }
5473
5474         /* if we are creating the first raid device update the family number */
5475         if (super->current_vol == 0) {
5476                 __u32 sum;
5477                 struct imsm_dev *_dev = __get_imsm_dev(mpb, 0);
5478
5479                 _disk = __get_imsm_disk(mpb, dl->index);
5480                 if (!_dev || !_disk) {
5481                         pr_err("BUG mpb setup error\n");
5482                         return 1;
5483                 }
5484                 *_dev = *dev;
5485                 *_disk = dl->disk;
5486                 sum = random32();
5487                 sum += __gen_imsm_checksum(mpb);
5488                 mpb->family_num = __cpu_to_le32(sum);
5489                 mpb->orig_family_num = mpb->family_num;
5490         }
5491         super->current_disk = dl;
5492         return 0;
5493 }
5494
5495 /* mark_spare()
5496  *   Function marks disk as spare and restores disk serial
5497  *   in case it was previously marked as failed by takeover operation
5498  * reruns:
5499  *   -1 : critical error
5500  *    0 : disk is marked as spare but serial is not set
5501  *    1 : success
5502  */
5503 int mark_spare(struct dl *disk)
5504 {
5505         __u8 serial[MAX_RAID_SERIAL_LEN];
5506         int ret_val = -1;
5507
5508         if (!disk)
5509                 return ret_val;
5510
5511         ret_val = 0;
5512         if (!imsm_read_serial(disk->fd, NULL, serial)) {
5513                 /* Restore disk serial number, because takeover marks disk
5514                  * as failed and adds to serial ':0' before it becomes
5515                  * a spare disk.
5516                  */
5517                 serialcpy(disk->serial, serial);
5518                 serialcpy(disk->disk.serial, serial);
5519                 ret_val = 1;
5520         }
5521         disk->disk.status = SPARE_DISK;
5522         disk->index = -1;
5523
5524         return ret_val;
5525 }
5526
5527 static int add_to_super_imsm(struct supertype *st, mdu_disk_info_t *dk,
5528                              int fd, char *devname,
5529                              unsigned long long data_offset)
5530 {
5531         struct intel_super *super = st->sb;
5532         struct dl *dd;
5533         unsigned long long size;
5534         unsigned int member_sector_size;
5535         __u32 id;
5536         int rv;
5537         struct stat stb;
5538
5539         /* If we are on an RAID enabled platform check that the disk is
5540          * attached to the raid controller.
5541          * We do not need to test disks attachment for container based additions,
5542          * they shall be already tested when container was created/assembled.
5543          */
5544         rv = find_intel_hba_capability(fd, super, devname);
5545         /* no orom/efi or non-intel hba of the disk */
5546         if (rv != 0) {
5547                 dprintf("capability: %p fd: %d ret: %d\n",
5548                         super->orom, fd, rv);
5549                 return 1;
5550         }
5551
5552         if (super->current_vol >= 0)
5553                 return add_to_super_imsm_volume(st, dk, fd, devname);
5554
5555         fstat(fd, &stb);
5556         dd = xcalloc(sizeof(*dd), 1);
5557         dd->major = major(stb.st_rdev);
5558         dd->minor = minor(stb.st_rdev);
5559         dd->devname = devname ? xstrdup(devname) : NULL;
5560         dd->fd = fd;
5561         dd->e = NULL;
5562         dd->action = DISK_ADD;
5563         rv = imsm_read_serial(fd, devname, dd->serial);
5564         if (rv) {
5565                 pr_err("failed to retrieve scsi serial, aborting\n");
5566                 if (dd->devname)
5567                         free(dd->devname);
5568                 free(dd);
5569                 abort();
5570         }
5571         if (super->hba && ((super->hba->type == SYS_DEV_NVME) ||
5572            (super->hba->type == SYS_DEV_VMD))) {
5573                 int i;
5574                 char *devpath = diskfd_to_devpath(fd);
5575                 char controller_path[PATH_MAX];
5576
5577                 if (!devpath) {
5578                         pr_err("failed to get devpath, aborting\n");
5579                         if (dd->devname)
5580                                 free(dd->devname);
5581                         free(dd);
5582                         return 1;
5583                 }
5584
5585                 snprintf(controller_path, PATH_MAX-1, "%s/device", devpath);
5586                 free(devpath);
5587
5588                 if (devpath_to_vendor(controller_path) == 0x8086) {
5589                         /*
5590                          * If Intel's NVMe drive has serial ended with
5591                          * "-A","-B","-1" or "-2" it means that this is "x8"
5592                          * device (double drive on single PCIe card).
5593                          * User should be warned about potential data loss.
5594                          */
5595                         for (i = MAX_RAID_SERIAL_LEN-1; i > 0; i--) {
5596                                 /* Skip empty character at the end */
5597                                 if (dd->serial[i] == 0)
5598                                         continue;
5599
5600                                 if (((dd->serial[i] == 'A') ||
5601                                    (dd->serial[i] == 'B') ||
5602                                    (dd->serial[i] == '1') ||
5603                                    (dd->serial[i] == '2')) &&
5604                                    (dd->serial[i-1] == '-'))
5605                                         pr_err("\tThe action you are about to take may put your data at risk.\n"
5606                                                 "\tPlease note that x8 devices may consist of two separate x4 devices "
5607                                                 "located on a single PCIe port.\n"
5608                                                 "\tRAID 0 is the only supported configuration for this type of x8 device.\n");
5609                                 break;
5610                         }
5611                 } else if (super->hba->type == SYS_DEV_VMD && super->orom &&
5612                     !imsm_orom_has_tpv_support(super->orom)) {
5613                         pr_err("\tPlatform configuration does not support non-Intel NVMe drives.\n"
5614                                "\tPlease refer to Intel(R) RSTe user guide.\n");
5615                         free(dd->devname);
5616                         free(dd);
5617                         return 1;
5618                 }
5619         }
5620
5621         get_dev_size(fd, NULL, &size);
5622         get_dev_sector_size(fd, NULL, &member_sector_size);
5623
5624         if (super->sector_size == 0) {
5625                 /* this a first device, so sector_size is not set yet */
5626                 super->sector_size = member_sector_size;
5627         } else if (member_sector_size != super->sector_size) {
5628                 pr_err("Mixing between different sector size is forbidden, aborting...\n");
5629                 if (dd->devname)
5630                         free(dd->devname);
5631                 free(dd);
5632                 return 1;
5633         }
5634
5635         /* clear migr_rec when adding disk to container */
5636         memset(super->migr_rec_buf, 0, MIGR_REC_BUF_SECTORS*super->sector_size);
5637         if (lseek64(fd, size - MIGR_REC_SECTOR_POSITION*super->sector_size,
5638             SEEK_SET) >= 0) {
5639                 if (write(fd, super->migr_rec_buf,
5640                     MIGR_REC_BUF_SECTORS*super->sector_size) !=
5641                     MIGR_REC_BUF_SECTORS*super->sector_size)
5642                         perror("Write migr_rec failed");
5643         }
5644
5645         size /= 512;
5646         serialcpy(dd->disk.serial, dd->serial);
5647         set_total_blocks(&dd->disk, size);
5648         if (__le32_to_cpu(dd->disk.total_blocks_hi) > 0) {
5649                 struct imsm_super *mpb = super->anchor;
5650                 mpb->attributes |= MPB_ATTRIB_2TB_DISK;
5651         }
5652         mark_spare(dd);
5653         if (sysfs_disk_to_scsi_id(fd, &id) == 0)
5654                 dd->disk.scsi_id = __cpu_to_le32(id);
5655         else
5656                 dd->disk.scsi_id = __cpu_to_le32(0);
5657
5658         if (st->update_tail) {
5659                 dd->next = super->disk_mgmt_list;
5660                 super->disk_mgmt_list = dd;
5661         } else {
5662                 dd->next = super->disks;
5663                 super->disks = dd;
5664                 super->updates_pending++;
5665         }
5666
5667         return 0;
5668 }
5669
5670 static int remove_from_super_imsm(struct supertype *st, mdu_disk_info_t *dk)
5671 {
5672         struct intel_super *super = st->sb;
5673         struct dl *dd;
5674
5675         /* remove from super works only in mdmon - for communication
5676          * manager - monitor. Check if communication memory buffer
5677          * is prepared.
5678          */
5679         if (!st->update_tail) {
5680                 pr_err("shall be used in mdmon context only\n");
5681                 return 1;
5682         }
5683         dd = xcalloc(1, sizeof(*dd));
5684         dd->major = dk->major;
5685         dd->minor = dk->minor;
5686         dd->fd = -1;
5687         mark_spare(dd);
5688         dd->action = DISK_REMOVE;
5689
5690         dd->next = super->disk_mgmt_list;
5691         super->disk_mgmt_list = dd;
5692
5693         return 0;
5694 }
5695
5696 static int store_imsm_mpb(int fd, struct imsm_super *mpb);
5697
5698 static union {
5699         char buf[MAX_SECTOR_SIZE];
5700         struct imsm_super anchor;
5701 } spare_record __attribute__ ((aligned(MAX_SECTOR_SIZE)));
5702
5703 /* spare records have their own family number and do not have any defined raid
5704  * devices
5705  */
5706 static int write_super_imsm_spares(struct intel_super *super, int doclose)
5707 {
5708         struct imsm_super *mpb = super->anchor;
5709         struct imsm_super *spare = &spare_record.anchor;
5710         __u32 sum;
5711         struct dl *d;
5712
5713         spare->mpb_size = __cpu_to_le32(sizeof(struct imsm_super));
5714         spare->generation_num = __cpu_to_le32(1UL);
5715         spare->attributes = MPB_ATTRIB_CHECKSUM_VERIFY;
5716         spare->num_disks = 1;
5717         spare->num_raid_devs = 0;
5718         spare->cache_size = mpb->cache_size;
5719         spare->pwr_cycle_count = __cpu_to_le32(1);
5720
5721         snprintf((char *) spare->sig, MAX_SIGNATURE_LENGTH,
5722                  MPB_SIGNATURE MPB_VERSION_RAID0);
5723
5724         for (d = super->disks; d; d = d->next) {
5725                 if (d->index != -1)
5726                         continue;
5727
5728                 spare->disk[0] = d->disk;
5729                 if (__le32_to_cpu(d->disk.total_blocks_hi) > 0)
5730                         spare->attributes |= MPB_ATTRIB_2TB_DISK;
5731
5732                 if (super->sector_size == 4096)
5733                         convert_to_4k_imsm_disk(&spare->disk[0]);
5734
5735                 sum = __gen_imsm_checksum(spare);
5736                 spare->family_num = __cpu_to_le32(sum);
5737                 spare->orig_family_num = 0;
5738                 sum = __gen_imsm_checksum(spare);
5739                 spare->check_sum = __cpu_to_le32(sum);
5740
5741                 if (store_imsm_mpb(d->fd, spare)) {
5742                         pr_err("failed for device %d:%d %s\n",
5743                                 d->major, d->minor, strerror(errno));
5744                         return 1;
5745                 }
5746                 if (doclose) {
5747                         close(d->fd);
5748                         d->fd = -1;
5749                 }
5750         }
5751
5752         return 0;
5753 }
5754
5755 static int write_super_imsm(struct supertype *st, int doclose)
5756 {
5757         struct intel_super *super = st->sb;
5758         unsigned int sector_size = super->sector_size;
5759         struct imsm_super *mpb = super->anchor;
5760         struct dl *d;
5761         __u32 generation;
5762         __u32 sum;
5763         int spares = 0;
5764         int i;
5765         __u32 mpb_size = sizeof(struct imsm_super) - sizeof(struct imsm_disk);
5766         int num_disks = 0;
5767         int clear_migration_record = 1;
5768         __u32 bbm_log_size;
5769
5770         /* 'generation' is incremented everytime the metadata is written */
5771         generation = __le32_to_cpu(mpb->generation_num);
5772         generation++;
5773         mpb->generation_num = __cpu_to_le32(generation);
5774
5775         /* fix up cases where previous mdadm releases failed to set
5776          * orig_family_num
5777          */
5778         if (mpb->orig_family_num == 0)
5779                 mpb->orig_family_num = mpb->family_num;
5780
5781         for (d = super->disks; d; d = d->next) {
5782                 if (d->index == -1)
5783                         spares++;
5784                 else {
5785                         mpb->disk[d->index] = d->disk;
5786                         num_disks++;
5787                 }
5788         }
5789         for (d = super->missing; d; d = d->next) {
5790                 mpb->disk[d->index] = d->disk;
5791                 num_disks++;
5792         }
5793         mpb->num_disks = num_disks;
5794         mpb_size += sizeof(struct imsm_disk) * mpb->num_disks;
5795
5796         for (i = 0; i < mpb->num_raid_devs; i++) {
5797                 struct imsm_dev *dev = __get_imsm_dev(mpb, i);
5798                 struct imsm_dev *dev2 = get_imsm_dev(super, i);
5799                 if (dev && dev2) {
5800                         imsm_copy_dev(dev, dev2);
5801                         mpb_size += sizeof_imsm_dev(dev, 0);
5802                 }
5803                 if (is_gen_migration(dev2))
5804                         clear_migration_record = 0;
5805         }
5806
5807         bbm_log_size = get_imsm_bbm_log_size(super->bbm_log);
5808
5809         if (bbm_log_size) {
5810                 memcpy((void *)mpb + mpb_size, super->bbm_log, bbm_log_size);
5811                 mpb->attributes |= MPB_ATTRIB_BBM;
5812         } else
5813                 mpb->attributes &= ~MPB_ATTRIB_BBM;
5814
5815         super->anchor->bbm_log_size = __cpu_to_le32(bbm_log_size);
5816         mpb_size += bbm_log_size;
5817         mpb->mpb_size = __cpu_to_le32(mpb_size);
5818
5819 #ifdef DEBUG
5820         assert(super->len == 0 || mpb_size <= super->len);
5821 #endif
5822
5823         /* recalculate checksum */
5824         sum = __gen_imsm_checksum(mpb);
5825         mpb->check_sum = __cpu_to_le32(sum);
5826
5827         if (super->clean_migration_record_by_mdmon) {
5828                 clear_migration_record = 1;
5829                 super->clean_migration_record_by_mdmon = 0;
5830         }
5831         if (clear_migration_record)
5832                 memset(super->migr_rec_buf, 0,
5833                     MIGR_REC_BUF_SECTORS*sector_size);
5834
5835         if (sector_size == 4096)
5836                 convert_to_4k(super);
5837
5838         /* write the mpb for disks that compose raid devices */
5839         for (d = super->disks; d ; d = d->next) {
5840                 if (d->index < 0 || is_failed(&d->disk))
5841                         continue;
5842
5843                 if (clear_migration_record) {
5844                         unsigned long long dsize;
5845
5846                         get_dev_size(d->fd, NULL, &dsize);
5847                         if (lseek64(d->fd, dsize - sector_size,
5848                             SEEK_SET) >= 0) {
5849                                 if (write(d->fd, super->migr_rec_buf,
5850                                     MIGR_REC_BUF_SECTORS*sector_size) !=
5851                                     MIGR_REC_BUF_SECTORS*sector_size)
5852                                         perror("Write migr_rec failed");
5853                         }
5854                 }
5855
5856                 if (store_imsm_mpb(d->fd, mpb))
5857                         fprintf(stderr,
5858                                 "failed for device %d:%d (fd: %d)%s\n",
5859                                 d->major, d->minor,
5860                                 d->fd, strerror(errno));
5861
5862                 if (doclose) {
5863                         close(d->fd);
5864                         d->fd = -1;
5865                 }
5866         }
5867
5868         if (spares)
5869                 return write_super_imsm_spares(super, doclose);
5870
5871         return 0;
5872 }
5873
5874 static int create_array(struct supertype *st, int dev_idx)
5875 {
5876         size_t len;
5877         struct imsm_update_create_array *u;
5878         struct intel_super *super = st->sb;
5879         struct imsm_dev *dev = get_imsm_dev(super, dev_idx);
5880         struct imsm_map *map = get_imsm_map(dev, MAP_0);
5881         struct disk_info *inf;
5882         struct imsm_disk *disk;
5883         int i;
5884
5885         len = sizeof(*u) - sizeof(*dev) + sizeof_imsm_dev(dev, 0) +
5886               sizeof(*inf) * map->num_members;
5887         u = xmalloc(len);
5888         u->type = update_create_array;
5889         u->dev_idx = dev_idx;
5890         imsm_copy_dev(&u->dev, dev);
5891         inf = get_disk_info(u);
5892         for (i = 0; i < map->num_members; i++) {
5893                 int idx = get_imsm_disk_idx(dev, i, MAP_X);
5894
5895                 disk = get_imsm_disk(super, idx);
5896                 if (!disk)
5897                         disk = get_imsm_missing(super, idx);
5898                 serialcpy(inf[i].serial, disk->serial);
5899         }
5900         append_metadata_update(st, u, len);
5901
5902         return 0;
5903 }
5904
5905 static int mgmt_disk(struct supertype *st)
5906 {
5907         struct intel_super *super = st->sb;
5908         size_t len;
5909         struct imsm_update_add_remove_disk *u;
5910
5911         if (!super->disk_mgmt_list)
5912                 return 0;
5913
5914         len = sizeof(*u);
5915         u = xmalloc(len);
5916         u->type = update_add_remove_disk;
5917         append_metadata_update(st, u, len);
5918
5919         return 0;
5920 }
5921
5922 static int write_init_super_imsm(struct supertype *st)
5923 {
5924         struct intel_super *super = st->sb;
5925         int current_vol = super->current_vol;
5926
5927         /* we are done with current_vol reset it to point st at the container */
5928         super->current_vol = -1;
5929
5930         if (st->update_tail) {
5931                 /* queue the recently created array / added disk
5932                  * as a metadata update */
5933                 int rv;
5934
5935                 /* determine if we are creating a volume or adding a disk */
5936                 if (current_vol < 0) {
5937                         /* in the mgmt (add/remove) disk case we are running
5938                          * in mdmon context, so don't close fd's
5939                          */
5940                         return mgmt_disk(st);
5941                 } else
5942                         rv = create_array(st, current_vol);
5943
5944                 return rv;
5945         } else {
5946                 struct dl *d;
5947                 for (d = super->disks; d; d = d->next)
5948                         Kill(d->devname, NULL, 0, -1, 1);
5949                 return write_super_imsm(st, 1);
5950         }
5951 }
5952 #endif
5953
5954 static int store_super_imsm(struct supertype *st, int fd)
5955 {
5956         struct intel_super *super = st->sb;
5957         struct imsm_super *mpb = super ? super->anchor : NULL;
5958
5959         if (!mpb)
5960                 return 1;
5961
5962 #ifndef MDASSEMBLE
5963         if (super->sector_size == 4096)
5964                 convert_to_4k(super);
5965         return store_imsm_mpb(fd, mpb);
5966 #else
5967         return 1;
5968 #endif
5969 }
5970
5971 #ifndef MDASSEMBLE
5972 static int validate_geometry_imsm_container(struct supertype *st, int level,
5973                                             int layout, int raiddisks, int chunk,
5974                                             unsigned long long size,
5975                                             unsigned long long data_offset,
5976                                             char *dev,
5977                                             unsigned long long *freesize,
5978                                             int verbose)
5979 {
5980         int fd;
5981         unsigned long long ldsize;
5982         struct intel_super *super;
5983         int rv = 0;
5984
5985         if (level != LEVEL_CONTAINER)
5986                 return 0;
5987         if (!dev)
5988                 return 1;
5989
5990         fd = open(dev, O_RDONLY|O_EXCL, 0);
5991         if (fd < 0) {
5992                 if (verbose > 0)
5993                         pr_err("imsm: Cannot open %s: %s\n",
5994                                 dev, strerror(errno));
5995                 return 0;
5996         }
5997         if (!get_dev_size(fd, dev, &ldsize)) {
5998                 close(fd);
5999                 return 0;
6000         }
6001
6002         /* capabilities retrieve could be possible
6003          * note that there is no fd for the disks in array.
6004          */
6005         super = alloc_super();
6006         if (!super) {
6007                 close(fd);
6008                 return 0;
6009         }
6010         if (!get_dev_sector_size(fd, NULL, &super->sector_size)) {
6011                 close(fd);
6012                 free_imsm(super);
6013                 return 0;
6014         }
6015
6016         rv = find_intel_hba_capability(fd, super, verbose > 0 ? dev : NULL);
6017         if (rv != 0) {
6018 #if DEBUG
6019                 char str[256];
6020                 fd2devname(fd, str);
6021                 dprintf("fd: %d %s orom: %p rv: %d raiddisk: %d\n",
6022                         fd, str, super->orom, rv, raiddisks);
6023 #endif
6024                 /* no orom/efi or non-intel hba of the disk */
6025                 close(fd);
6026                 free_imsm(super);
6027                 return 0;
6028         }
6029         close(fd);
6030         if (super->orom) {
6031                 if (raiddisks > super->orom->tds) {
6032                         if (verbose)
6033                                 pr_err("%d exceeds maximum number of platform supported disks: %d\n",
6034                                         raiddisks, super->orom->tds);
6035                         free_imsm(super);
6036                         return 0;
6037                 }
6038                 if ((super->orom->attr & IMSM_OROM_ATTR_2TB_DISK) == 0 &&
6039                     (ldsize >> 9) >> 32 > 0) {
6040                         if (verbose)
6041                                 pr_err("%s exceeds maximum platform supported size\n", dev);
6042                         free_imsm(super);
6043                         return 0;
6044                 }
6045         }
6046
6047         *freesize = avail_size_imsm(st, ldsize >> 9, data_offset);
6048         free_imsm(super);
6049
6050         return 1;
6051 }
6052
6053 static unsigned long long find_size(struct extent *e, int *idx, int num_extents)
6054 {
6055         const unsigned long long base_start = e[*idx].start;
6056         unsigned long long end = base_start + e[*idx].size;
6057         int i;
6058
6059         if (base_start == end)
6060                 return 0;
6061
6062         *idx = *idx + 1;
6063         for (i = *idx; i < num_extents; i++) {
6064                 /* extend overlapping extents */
6065                 if (e[i].start >= base_start &&
6066                     e[i].start <= end) {
6067                         if (e[i].size == 0)
6068                                 return 0;
6069                         if (e[i].start + e[i].size > end)
6070                                 end = e[i].start + e[i].size;
6071                 } else if (e[i].start > end) {
6072                         *idx = i;
6073                         break;
6074                 }
6075         }
6076
6077         return end - base_start;
6078 }
6079
6080 static unsigned long long merge_extents(struct intel_super *super, int sum_extents)
6081 {
6082         /* build a composite disk with all known extents and generate a new
6083          * 'maxsize' given the "all disks in an array must share a common start
6084          * offset" constraint
6085          */
6086         struct extent *e = xcalloc(sum_extents, sizeof(*e));
6087         struct dl *dl;
6088         int i, j;
6089         int start_extent;
6090         unsigned long long pos;
6091         unsigned long long start = 0;
6092         unsigned long long maxsize;
6093         unsigned long reserve;
6094
6095         /* coalesce and sort all extents. also, check to see if we need to
6096          * reserve space between member arrays
6097          */
6098         j = 0;
6099         for (dl = super->disks; dl; dl = dl->next) {
6100                 if (!dl->e)
6101                         continue;
6102                 for (i = 0; i < dl->extent_cnt; i++)
6103                         e[j++] = dl->e[i];
6104         }
6105         qsort(e, sum_extents, sizeof(*e), cmp_extent);
6106
6107         /* merge extents */
6108         i = 0;
6109         j = 0;
6110         while (i < sum_extents) {
6111                 e[j].start = e[i].start;
6112                 e[j].size = find_size(e, &i, sum_extents);
6113                 j++;
6114                 if (e[j-1].size == 0)
6115                         break;
6116         }
6117
6118         pos = 0;
6119         maxsize = 0;
6120         start_extent = 0;
6121         i = 0;
6122         do {
6123                 unsigned long long esize;
6124
6125                 esize = e[i].start - pos;
6126                 if (esize >= maxsize) {
6127                         maxsize = esize;
6128                         start = pos;
6129                         start_extent = i;
6130                 }
6131                 pos = e[i].start + e[i].size;
6132                 i++;
6133         } while (e[i-1].size);
6134         free(e);
6135
6136         if (maxsize == 0)
6137                 return 0;
6138
6139         /* FIXME assumes volume at offset 0 is the first volume in a
6140          * container
6141          */
6142         if (start_extent > 0)
6143                 reserve = IMSM_RESERVED_SECTORS; /* gap between raid regions */
6144         else
6145                 reserve = 0;
6146
6147         if (maxsize < reserve)
6148                 return 0;
6149
6150         super->create_offset = ~((unsigned long long) 0);
6151         if (start + reserve > super->create_offset)
6152                 return 0; /* start overflows create_offset */
6153         super->create_offset = start + reserve;
6154
6155         return maxsize - reserve;
6156 }
6157
6158 static int is_raid_level_supported(const struct imsm_orom *orom, int level, int raiddisks)
6159 {
6160         if (level < 0 || level == 6 || level == 4)
6161                 return 0;
6162
6163         /* if we have an orom prevent invalid raid levels */
6164         if (orom)
6165                 switch (level) {
6166                 case 0: return imsm_orom_has_raid0(orom);
6167                 case 1:
6168                         if (raiddisks > 2)
6169                                 return imsm_orom_has_raid1e(orom);
6170                         return imsm_orom_has_raid1(orom) && raiddisks == 2;
6171                 case 10: return imsm_orom_has_raid10(orom) && raiddisks == 4;
6172                 case 5: return imsm_orom_has_raid5(orom) && raiddisks > 2;
6173                 }
6174         else
6175                 return 1; /* not on an Intel RAID platform so anything goes */
6176
6177         return 0;
6178 }
6179
6180 static int
6181 active_arrays_by_format(char *name, char* hba, struct md_list **devlist,
6182                         int dpa, int verbose)
6183 {
6184         struct mdstat_ent *mdstat = mdstat_read(0, 0);
6185         struct mdstat_ent *memb;
6186         int count = 0;
6187         int num = 0;
6188         struct md_list *dv;
6189         int found;
6190
6191         for (memb = mdstat ; memb ; memb = memb->next) {
6192                 if (memb->metadata_version &&
6193                     (strncmp(memb->metadata_version, "external:", 9) == 0)  &&
6194                     (strcmp(&memb->metadata_version[9], name) == 0) &&
6195                     !is_subarray(memb->metadata_version+9) &&
6196                     memb->members) {
6197                         struct dev_member *dev = memb->members;
6198                         int fd = -1;
6199                         while(dev && (fd < 0)) {
6200                                 char *path = xmalloc(strlen(dev->name) + strlen("/dev/") + 1);
6201                                 num = sprintf(path, "%s%s", "/dev/", dev->name);
6202                                 if (num > 0)
6203                                         fd = open(path, O_RDONLY, 0);
6204                                 if (num <= 0 || fd < 0) {
6205                                         pr_vrb("Cannot open %s: %s\n",
6206                                                dev->name, strerror(errno));
6207                                 }
6208                                 free(path);
6209                                 dev = dev->next;
6210                         }
6211                         found = 0;
6212                         if (fd >= 0 && disk_attached_to_hba(fd, hba)) {
6213                                 struct mdstat_ent *vol;
6214                                 for (vol = mdstat ; vol ; vol = vol->next) {
6215                                         if (vol->active > 0 &&
6216                                             vol->metadata_version &&
6217                                             is_container_member(vol, memb->devnm)) {
6218                                                 found++;
6219                                                 count++;
6220                                         }
6221                                 }
6222                                 if (*devlist && (found < dpa)) {
6223                                         dv = xcalloc(1, sizeof(*dv));
6224                                         dv->devname = xmalloc(strlen(memb->devnm) + strlen("/dev/") + 1);
6225                                         sprintf(dv->devname, "%s%s", "/dev/", memb->devnm);
6226                                         dv->found = found;
6227                                         dv->used = 0;
6228                                         dv->next = *devlist;
6229                                         *devlist = dv;
6230                                 }
6231                         }
6232                         if (fd >= 0)
6233                                 close(fd);
6234                 }
6235         }
6236         free_mdstat(mdstat);
6237         return count;
6238 }
6239
6240 #ifdef DEBUG_LOOP
6241 static struct md_list*
6242 get_loop_devices(void)
6243 {
6244         int i;
6245         struct md_list *devlist = NULL;
6246         struct md_list *dv;
6247
6248         for(i = 0; i < 12; i++) {
6249                 dv = xcalloc(1, sizeof(*dv));
6250                 dv->devname = xmalloc(40);
6251                 sprintf(dv->devname, "/dev/loop%d", i);
6252                 dv->next = devlist;
6253                 devlist = dv;
6254         }
6255         return devlist;
6256 }
6257 #endif
6258
6259 static struct md_list*
6260 get_devices(const char *hba_path)
6261 {
6262         struct md_list *devlist = NULL;
6263         struct md_list *dv;
6264         struct dirent *ent;
6265         DIR *dir;
6266         int err = 0;
6267
6268 #if DEBUG_LOOP
6269         devlist = get_loop_devices();
6270         return devlist;
6271 #endif
6272         /* scroll through /sys/dev/block looking for devices attached to
6273          * this hba
6274          */
6275         dir = opendir("/sys/dev/block");
6276         for (ent = dir ? readdir(dir) : NULL; ent; ent = readdir(dir)) {
6277                 int fd;
6278                 char buf[1024];
6279                 int major, minor;
6280                 char *path = NULL;
6281                 if (sscanf(ent->d_name, "%d:%d", &major, &minor) != 2)
6282                         continue;
6283                 path = devt_to_devpath(makedev(major, minor));
6284                 if (!path)
6285                         continue;
6286                 if (!path_attached_to_hba(path, hba_path)) {
6287                         free(path);
6288                         path = NULL;
6289                         continue;
6290                 }
6291                 free(path);
6292                 path = NULL;
6293                 fd = dev_open(ent->d_name, O_RDONLY);
6294                 if (fd >= 0) {
6295                         fd2devname(fd, buf);
6296                         close(fd);
6297                 } else {
6298                         pr_err("cannot open device: %s\n",
6299                                 ent->d_name);
6300                         continue;
6301                 }
6302
6303                 dv = xcalloc(1, sizeof(*dv));
6304                 dv->devname = xstrdup(buf);
6305                 dv->next = devlist;
6306                 devlist = dv;
6307         }
6308         if (err) {
6309                 while(devlist) {
6310                         dv = devlist;
6311                         devlist = devlist->next;
6312                         free(dv->devname);
6313                         free(dv);
6314                 }
6315         }
6316         closedir(dir);
6317         return devlist;
6318 }
6319
6320 static int
6321 count_volumes_list(struct md_list *devlist, char *homehost,
6322                    int verbose, int *found)
6323 {
6324         struct md_list *tmpdev;
6325         int count = 0;
6326         struct supertype *st;
6327
6328         /* first walk the list of devices to find a consistent set
6329          * that match the criterea, if that is possible.
6330          * We flag the ones we like with 'used'.
6331          */
6332         *found = 0;
6333         st = match_metadata_desc_imsm("imsm");
6334         if (st == NULL) {
6335                 pr_vrb("cannot allocate memory for imsm supertype\n");
6336                 return 0;
6337         }
6338
6339         for (tmpdev = devlist; tmpdev; tmpdev = tmpdev->next) {
6340                 char *devname = tmpdev->devname;
6341                 struct stat stb;
6342                 struct supertype *tst;
6343                 int dfd;
6344                 if (tmpdev->used > 1)
6345                         continue;
6346                 tst = dup_super(st);
6347                 if (tst == NULL) {
6348                         pr_vrb("cannot allocate memory for imsm supertype\n");
6349                         goto err_1;
6350                 }
6351                 tmpdev->container = 0;
6352                 dfd = dev_open(devname, O_RDONLY|O_EXCL);
6353                 if (dfd < 0) {
6354                         dprintf("cannot open device %s: %s\n",
6355                                 devname, strerror(errno));
6356                         tmpdev->used = 2;
6357                 } else if (fstat(dfd, &stb)< 0) {
6358                         /* Impossible! */
6359                         dprintf("fstat failed for %s: %s\n",
6360                                 devname, strerror(errno));
6361                         tmpdev->used = 2;
6362                 } else if ((stb.st_mode & S_IFMT) != S_IFBLK) {
6363                         dprintf("%s is not a block device.\n",
6364                                 devname);
6365                         tmpdev->used = 2;
6366                 } else if (must_be_container(dfd)) {
6367                         struct supertype *cst;
6368                         cst = super_by_fd(dfd, NULL);
6369                         if (cst == NULL) {
6370                                 dprintf("cannot recognize container type %s\n",
6371                                         devname);
6372                                 tmpdev->used = 2;
6373                         } else if (tst->ss != st->ss) {
6374                                 dprintf("non-imsm container - ignore it: %s\n",
6375                                         devname);
6376                                 tmpdev->used = 2;
6377                         } else if (!tst->ss->load_container ||
6378                                    tst->ss->load_container(tst, dfd, NULL))
6379                                 tmpdev->used = 2;
6380                         else {
6381                                 tmpdev->container = 1;
6382                         }
6383                         if (cst)
6384                                 cst->ss->free_super(cst);
6385                 } else {
6386                         tmpdev->st_rdev = stb.st_rdev;
6387                         if (tst->ss->load_super(tst,dfd, NULL)) {
6388                                 dprintf("no RAID superblock on %s\n",
6389                                         devname);
6390                                 tmpdev->used = 2;
6391                         } else if (tst->ss->compare_super == NULL) {
6392                                 dprintf("Cannot assemble %s metadata on %s\n",
6393                                         tst->ss->name, devname);
6394                                 tmpdev->used = 2;
6395                         }
6396                 }
6397                 if (dfd >= 0)
6398                         close(dfd);
6399                 if (tmpdev->used == 2 || tmpdev->used == 4) {
6400                         /* Ignore unrecognised devices during auto-assembly */
6401                         goto loop;
6402                 }
6403                 else {
6404                         struct mdinfo info;
6405                         tst->ss->getinfo_super(tst, &info, NULL);
6406
6407                         if (st->minor_version == -1)
6408                                 st->minor_version = tst->minor_version;
6409
6410                         if (memcmp(info.uuid, uuid_zero,
6411                                    sizeof(int[4])) == 0) {
6412                                 /* this is a floating spare.  It cannot define
6413                                  * an array unless there are no more arrays of
6414                                  * this type to be found.  It can be included
6415                                  * in an array of this type though.
6416                                  */
6417                                 tmpdev->used = 3;
6418                                 goto loop;
6419                         }
6420
6421                         if (st->ss != tst->ss ||
6422                             st->minor_version != tst->minor_version ||
6423                             st->ss->compare_super(st, tst) != 0) {
6424                                 /* Some mismatch. If exactly one array matches this host,
6425                                  * we can resolve on that one.
6426                                  * Or, if we are auto assembling, we just ignore the second
6427                                  * for now.
6428                                  */
6429                                 dprintf("superblock on %s doesn't match others - assembly aborted\n",
6430                                         devname);
6431                                 goto loop;
6432                         }
6433                         tmpdev->used = 1;
6434                         *found = 1;
6435                         dprintf("found: devname: %s\n", devname);
6436                 }
6437         loop:
6438                 if (tst)
6439                         tst->ss->free_super(tst);
6440         }
6441         if (*found != 0) {
6442                 int err;
6443                 if ((err = load_super_imsm_all(st, -1, &st->sb, NULL, devlist, 0)) == 0) {
6444                         struct mdinfo *iter, *head = st->ss->container_content(st, NULL);
6445                         for (iter = head; iter; iter = iter->next) {
6446                                 dprintf("content->text_version: %s vol\n",
6447                                         iter->text_version);
6448                                 if (iter->array.state & (1<<MD_SB_BLOCK_VOLUME)) {
6449                                         /* do not assemble arrays with unsupported
6450                                            configurations */
6451                                         dprintf("Cannot activate member %s.\n",
6452                                                 iter->text_version);
6453                                 } else
6454                                         count++;
6455                         }
6456                         sysfs_free(head);
6457
6458                 } else {
6459                         dprintf("No valid super block on device list: err: %d %p\n",
6460                                 err, st->sb);
6461                 }
6462         } else {
6463                 dprintf("no more devices to examine\n");
6464         }
6465
6466         for (tmpdev = devlist; tmpdev; tmpdev = tmpdev->next) {
6467                 if (tmpdev->used == 1 && tmpdev->found) {
6468                         if (count) {
6469                                 if (count < tmpdev->found)
6470                                         count = 0;
6471                                 else
6472                                         count -= tmpdev->found;
6473                         }
6474                 }
6475                 if (tmpdev->used == 1)
6476                         tmpdev->used = 4;
6477         }
6478         err_1:
6479         if (st)
6480                 st->ss->free_super(st);
6481         return count;
6482 }
6483
6484 static int
6485 count_volumes(struct intel_hba *hba, int dpa, int verbose)
6486 {
6487         struct sys_dev *idev, *intel_devices = find_intel_devices();
6488         int count = 0;
6489         const struct orom_entry *entry;
6490         struct devid_list *dv, *devid_list;
6491
6492         if (!hba || !hba->path)
6493                 return 0;
6494
6495         for (idev = intel_devices; idev; idev = idev->next) {
6496                 if (strstr(idev->path, hba->path))
6497                                 break;
6498         }
6499
6500         if (!idev || !idev->dev_id)
6501                 return 0;
6502
6503         entry = get_orom_entry_by_device_id(idev->dev_id);
6504
6505         if (!entry || !entry->devid_list)
6506                 return 0;
6507
6508         devid_list = entry->devid_list;
6509         for (dv = devid_list; dv; dv = dv->next) {
6510                 struct md_list *devlist;
6511                 struct sys_dev *device = device_by_id(dv->devid);
6512                 char *hba_path;
6513                 int found = 0;
6514
6515                 if (device)
6516                         hba_path = device->path;
6517                 else
6518                         return 0;
6519
6520                 devlist = get_devices(hba_path);
6521                 /* if no intel devices return zero volumes */
6522                 if (devlist == NULL)
6523                         return 0;
6524
6525                 count += active_arrays_by_format("imsm", hba_path, &devlist, dpa, verbose);
6526                 dprintf("path: %s active arrays: %d\n", hba_path, count);
6527                 if (devlist == NULL)
6528                         return 0;
6529                 do  {
6530                         found = 0;
6531                         count += count_volumes_list(devlist,
6532                                                         NULL,
6533                                                         verbose,
6534                                                         &found);
6535                         dprintf("found %d count: %d\n", found, count);
6536                 } while (found);
6537
6538                 dprintf("path: %s total number of volumes: %d\n", hba_path, count);
6539
6540                 while (devlist) {
6541                         struct md_list *dv = devlist;
6542                         devlist = devlist->next;
6543                         free(dv->devname);
6544                         free(dv);
6545                 }
6546         }
6547         return count;
6548 }
6549
6550 static int imsm_default_chunk(const struct imsm_orom *orom)
6551 {
6552         /* up to 512 if the plaform supports it, otherwise the platform max.
6553          * 128 if no platform detected
6554          */
6555         int fs = max(7, orom ? fls(orom->sss) : 0);
6556
6557         return min(512, (1 << fs));
6558 }
6559
6560 static int
6561 validate_geometry_imsm_orom(struct intel_super *super, int level, int layout,
6562                             int raiddisks, int *chunk, unsigned long long size, int verbose)
6563 {
6564         /* check/set platform and metadata limits/defaults */
6565         if (super->orom && raiddisks > super->orom->dpa) {
6566                 pr_vrb("platform supports a maximum of %d disks per array\n",
6567                        super->orom->dpa);
6568                 return 0;
6569         }
6570
6571         /* capabilities of OROM tested - copied from validate_geometry_imsm_volume */
6572         if (!is_raid_level_supported(super->orom, level, raiddisks)) {
6573                 pr_vrb("platform does not support raid%d with %d disk%s\n",
6574                         level, raiddisks, raiddisks > 1 ? "s" : "");
6575                 return 0;
6576         }
6577
6578         if (*chunk == 0 || *chunk == UnSet)
6579                 *chunk = imsm_default_chunk(super->orom);
6580
6581         if (super->orom && !imsm_orom_has_chunk(super->orom, *chunk)) {
6582                 pr_vrb("platform does not support a chunk size of: %d\n", *chunk);
6583                 return 0;
6584         }
6585
6586         if (layout != imsm_level_to_layout(level)) {
6587                 if (level == 5)
6588                         pr_vrb("imsm raid 5 only supports the left-asymmetric layout\n");
6589                 else if (level == 10)
6590                         pr_vrb("imsm raid 10 only supports the n2 layout\n");
6591                 else
6592                         pr_vrb("imsm unknown layout %#x for this raid level %d\n",
6593                                 layout, level);
6594                 return 0;
6595         }
6596
6597         if (super->orom && (super->orom->attr & IMSM_OROM_ATTR_2TB) == 0 &&
6598                         (calc_array_size(level, raiddisks, layout, *chunk, size) >> 32) > 0) {
6599                 pr_vrb("platform does not support a volume size over 2TB\n");
6600                 return 0;
6601         }
6602
6603         return 1;
6604 }
6605
6606 /* validate_geometry_imsm_volume - lifted from validate_geometry_ddf_bvd
6607  * FIX ME add ahci details
6608  */
6609 static int validate_geometry_imsm_volume(struct supertype *st, int level,
6610                                          int layout, int raiddisks, int *chunk,
6611                                          unsigned long long size,
6612                                          unsigned long long data_offset,
6613                                          char *dev,
6614                                          unsigned long long *freesize,
6615                                          int verbose)
6616 {
6617         struct stat stb;
6618         struct intel_super *super = st->sb;
6619         struct imsm_super *mpb;
6620         struct dl *dl;
6621         unsigned long long pos = 0;
6622         unsigned long long maxsize;
6623         struct extent *e;
6624         int i;
6625
6626         /* We must have the container info already read in. */
6627         if (!super)
6628                 return 0;
6629
6630         mpb = super->anchor;
6631
6632         if (!validate_geometry_imsm_orom(super, level, layout, raiddisks, chunk, size, verbose)) {
6633                 pr_err("RAID gemetry validation failed. Cannot proceed with the action(s).\n");
6634                 return 0;
6635         }
6636         if (!dev) {
6637                 /* General test:  make sure there is space for
6638                  * 'raiddisks' device extents of size 'size' at a given
6639                  * offset
6640                  */
6641                 unsigned long long minsize = size;
6642                 unsigned long long start_offset = MaxSector;
6643                 int dcnt = 0;
6644                 if (minsize == 0)
6645                         minsize = MPB_SECTOR_CNT + IMSM_RESERVED_SECTORS;
6646                 for (dl = super->disks; dl ; dl = dl->next) {
6647                         int found = 0;
6648
6649                         pos = 0;
6650                         i = 0;
6651                         e = get_extents(super, dl);
6652                         if (!e) continue;
6653                         do {
6654                                 unsigned long long esize;
6655                                 esize = e[i].start - pos;
6656                                 if (esize >= minsize)
6657                                         found = 1;
6658                                 if (found && start_offset == MaxSector) {
6659                                         start_offset = pos;
6660                                         break;
6661                                 } else if (found && pos != start_offset) {
6662                                         found = 0;
6663                                         break;
6664                                 }
6665                                 pos = e[i].start + e[i].size;
6666                                 i++;
6667                         } while (e[i-1].size);
6668                         if (found)
6669                                 dcnt++;
6670                         free(e);
6671                 }
6672                 if (dcnt < raiddisks) {
6673                         if (verbose)
6674                                 pr_err("imsm: Not enough devices with space for this array (%d < %d)\n",
6675                                         dcnt, raiddisks);
6676                         return 0;
6677                 }
6678                 return 1;
6679         }
6680
6681         /* This device must be a member of the set */
6682         if (stat(dev, &stb) < 0)
6683                 return 0;
6684         if ((S_IFMT & stb.st_mode) != S_IFBLK)
6685                 return 0;
6686         for (dl = super->disks ; dl ; dl = dl->next) {
6687                 if (dl->major == (int)major(stb.st_rdev) &&
6688                     dl->minor == (int)minor(stb.st_rdev))
6689                         break;
6690         }
6691         if (!dl) {
6692                 if (verbose)
6693                         pr_err("%s is not in the same imsm set\n", dev);
6694                 return 0;
6695         } else if (super->orom && dl->index < 0 && mpb->num_raid_devs) {
6696                 /* If a volume is present then the current creation attempt
6697                  * cannot incorporate new spares because the orom may not
6698                  * understand this configuration (all member disks must be
6699                  * members of each array in the container).
6700                  */
6701                 pr_err("%s is a spare and a volume is already defined for this container\n", dev);
6702                 pr_err("The option-rom requires all member disks to be a member of all volumes\n");
6703                 return 0;
6704         } else if (super->orom && mpb->num_raid_devs > 0 &&
6705                    mpb->num_disks != raiddisks) {
6706                 pr_err("The option-rom requires all member disks to be a member of all volumes\n");
6707                 return 0;
6708         }
6709
6710         /* retrieve the largest free space block */
6711         e = get_extents(super, dl);
6712         maxsize = 0;
6713         i = 0;
6714         if (e) {
6715                 do {
6716                         unsigned long long esize;
6717
6718                         esize = e[i].start - pos;
6719                         if (esize >= maxsize)
6720                                 maxsize = esize;
6721                         pos = e[i].start + e[i].size;
6722                         i++;
6723                 } while (e[i-1].size);
6724                 dl->e = e;
6725                 dl->extent_cnt = i;
6726         } else {
6727                 if (verbose)
6728                         pr_err("unable to determine free space for: %s\n",
6729                                 dev);
6730                 return 0;
6731         }
6732         if (maxsize < size) {
6733                 if (verbose)
6734                         pr_err("%s not enough space (%llu < %llu)\n",
6735                                 dev, maxsize, size);
6736                 return 0;
6737         }
6738
6739         /* count total number of extents for merge */
6740         i = 0;
6741         for (dl = super->disks; dl; dl = dl->next)
6742                 if (dl->e)
6743                         i += dl->extent_cnt;
6744
6745         maxsize = merge_extents(super, i);
6746
6747         if (!check_env("IMSM_NO_PLATFORM") &&
6748             mpb->num_raid_devs > 0 && size && size != maxsize) {
6749                 pr_err("attempting to create a second volume with size less then remaining space. Aborting...\n");
6750                 return 0;
6751         }
6752
6753         if (maxsize < size || maxsize == 0) {
6754                 if (verbose) {
6755                         if (maxsize == 0)
6756                                 pr_err("no free space left on device. Aborting...\n");
6757                         else
6758                                 pr_err("not enough space to create volume of given size (%llu < %llu). Aborting...\n",
6759                                                 maxsize, size);
6760                 }
6761                 return 0;
6762         }
6763
6764         *freesize = maxsize;
6765
6766         if (super->orom) {
6767                 int count = count_volumes(super->hba,
6768                                       super->orom->dpa, verbose);
6769                 if (super->orom->vphba <= count) {
6770                         pr_vrb("platform does not support more than %d raid volumes.\n",
6771                                super->orom->vphba);
6772                         return 0;
6773                 }
6774         }
6775         return 1;
6776 }
6777
6778 static int imsm_get_free_size(struct supertype *st, int raiddisks,
6779                          unsigned long long size, int chunk,
6780                          unsigned long long *freesize)
6781 {
6782         struct intel_super *super = st->sb;
6783         struct imsm_super *mpb = super->anchor;
6784         struct dl *dl;
6785         int i;
6786         int extent_cnt;
6787         struct extent *e;
6788         unsigned long long maxsize;
6789         unsigned long long minsize;
6790         int cnt;
6791         int used;
6792
6793         /* find the largest common start free region of the possible disks */
6794         used = 0;
6795         extent_cnt = 0;
6796         cnt = 0;
6797         for (dl = super->disks; dl; dl = dl->next) {
6798                 dl->raiddisk = -1;
6799
6800                 if (dl->index >= 0)
6801                         used++;
6802
6803                 /* don't activate new spares if we are orom constrained
6804                  * and there is already a volume active in the container
6805                  */
6806                 if (super->orom && dl->index < 0 && mpb->num_raid_devs)
6807                         continue;
6808
6809                 e = get_extents(super, dl);
6810                 if (!e)
6811                         continue;
6812                 for (i = 1; e[i-1].size; i++)
6813                         ;
6814                 dl->e = e;
6815                 dl->extent_cnt = i;
6816                 extent_cnt += i;
6817                 cnt++;
6818         }
6819
6820         maxsize = merge_extents(super, extent_cnt);
6821         minsize = size;
6822         if (size == 0)
6823                 /* chunk is in K */
6824                 minsize = chunk * 2;
6825
6826         if (cnt < raiddisks ||
6827             (super->orom && used && used != raiddisks) ||
6828             maxsize < minsize ||
6829             maxsize == 0) {
6830                 pr_err("not enough devices with space to create array.\n");
6831                 return 0; /* No enough free spaces large enough */
6832         }
6833
6834         if (size == 0) {
6835                 size = maxsize;
6836                 if (chunk) {
6837                         size /= 2 * chunk;
6838                         size *= 2 * chunk;
6839                 }
6840                 maxsize = size;
6841         }
6842         if (!check_env("IMSM_NO_PLATFORM") &&
6843             mpb->num_raid_devs > 0 && size && size != maxsize) {
6844                 pr_err("attempting to create a second volume with size less then remaining space. Aborting...\n");
6845                 return 0;
6846         }
6847         cnt = 0;
6848         for (dl = super->disks; dl; dl = dl->next)
6849                 if (dl->e)
6850                         dl->raiddisk = cnt++;
6851
6852         *freesize = size;
6853
6854         dprintf("imsm: imsm_get_free_size() returns : %llu\n", size);
6855
6856         return 1;
6857 }
6858
6859 static int reserve_space(struct supertype *st, int raiddisks,
6860                          unsigned long long size, int chunk,
6861                          unsigned long long *freesize)
6862 {
6863         struct intel_super *super = st->sb;
6864         struct dl *dl;
6865         int cnt;
6866         int rv = 0;
6867
6868         rv = imsm_get_free_size(st, raiddisks, size, chunk, freesize);
6869         if (rv) {
6870                 cnt = 0;
6871                 for (dl = super->disks; dl; dl = dl->next)
6872                         if (dl->e)
6873                                 dl->raiddisk = cnt++;
6874                 rv = 1;
6875         }
6876
6877         return rv;
6878 }
6879
6880 static int validate_geometry_imsm(struct supertype *st, int level, int layout,
6881                                   int raiddisks, int *chunk, unsigned long long size,
6882                                   unsigned long long data_offset,
6883                                   char *dev, unsigned long long *freesize,
6884                                   int verbose)
6885 {
6886         int fd, cfd;
6887         struct mdinfo *sra;
6888         int is_member = 0;
6889
6890         /* load capability
6891          * if given unused devices create a container
6892          * if given given devices in a container create a member volume
6893          */
6894         if (level == LEVEL_CONTAINER) {
6895                 /* Must be a fresh device to add to a container */
6896                 return validate_geometry_imsm_container(st, level, layout,
6897                                                         raiddisks,
6898                                                         *chunk,
6899                                                         size, data_offset,
6900                                                         dev, freesize,
6901                                                         verbose);
6902         }
6903
6904         if (!dev) {
6905                 if (st->sb) {
6906                         struct intel_super *super = st->sb;
6907                         if (!validate_geometry_imsm_orom(st->sb, level, layout,
6908                                                          raiddisks, chunk, size,
6909                                                          verbose))
6910                                 return 0;
6911                         /* we are being asked to automatically layout a
6912                          * new volume based on the current contents of
6913                          * the container.  If the the parameters can be
6914                          * satisfied reserve_space will record the disks,
6915                          * start offset, and size of the volume to be
6916                          * created.  add_to_super and getinfo_super
6917                          * detect when autolayout is in progress.
6918                          */
6919                         /* assuming that freesize is always given when array is
6920                            created */
6921                         if (super->orom && freesize) {
6922                                 int count;
6923                                 count = count_volumes(super->hba,
6924                                                       super->orom->dpa, verbose);
6925                                 if (super->orom->vphba <= count) {
6926                                         pr_vrb("platform does not support more than %d raid volumes.\n",
6927                                                super->orom->vphba);
6928                                         return 0;
6929                                 }
6930                         }
6931                         if (freesize)
6932                                 return reserve_space(st, raiddisks, size,
6933                                                      *chunk, freesize);
6934                 }
6935                 return 1;
6936         }
6937         if (st->sb) {
6938                 /* creating in a given container */
6939                 return validate_geometry_imsm_volume(st, level, layout,
6940                                                      raiddisks, chunk, size,
6941                                                      data_offset,
6942                                                      dev, freesize, verbose);
6943         }
6944
6945         /* This device needs to be a device in an 'imsm' container */
6946         fd = open(dev, O_RDONLY|O_EXCL, 0);
6947         if (fd >= 0) {
6948                 if (verbose)
6949                         pr_err("Cannot create this array on device %s\n",
6950                                dev);
6951                 close(fd);
6952                 return 0;
6953         }
6954         if (errno != EBUSY || (fd = open(dev, O_RDONLY, 0)) < 0) {
6955                 if (verbose)
6956                         pr_err("Cannot open %s: %s\n",
6957                                 dev, strerror(errno));
6958                 return 0;
6959         }
6960         /* Well, it is in use by someone, maybe an 'imsm' container. */
6961         cfd = open_container(fd);
6962         close(fd);
6963         if (cfd < 0) {
6964                 if (verbose)
6965                         pr_err("Cannot use %s: It is busy\n",
6966                                 dev);
6967                 return 0;
6968         }
6969         sra = sysfs_read(cfd, NULL, GET_VERSION);
6970         if (sra && sra->array.major_version == -1 &&
6971             strcmp(sra->text_version, "imsm") == 0)
6972                 is_member = 1;
6973         sysfs_free(sra);
6974         if (is_member) {
6975                 /* This is a member of a imsm container.  Load the container
6976                  * and try to create a volume
6977                  */
6978                 struct intel_super *super;
6979
6980                 if (load_super_imsm_all(st, cfd, (void **) &super, NULL, NULL, 1) == 0) {
6981                         st->sb = super;
6982                         strcpy(st->container_devnm, fd2devnm(cfd));
6983                         close(cfd);
6984                         return validate_geometry_imsm_volume(st, level, layout,
6985                                                              raiddisks, chunk,
6986                                                              size, data_offset, dev,
6987                                                              freesize, 1)
6988                                 ? 1 : -1;
6989                 }
6990         }
6991
6992         if (verbose)
6993                 pr_err("failed container membership check\n");
6994
6995         close(cfd);
6996         return 0;
6997 }
6998
6999 static void default_geometry_imsm(struct supertype *st, int *level, int *layout, int *chunk)
7000 {
7001         struct intel_super *super = st->sb;
7002
7003         if (level && *level == UnSet)
7004                 *level = LEVEL_CONTAINER;
7005
7006         if (level && layout && *layout == UnSet)
7007                 *layout = imsm_level_to_layout(*level);
7008
7009         if (chunk && (*chunk == UnSet || *chunk == 0))
7010                 *chunk = imsm_default_chunk(super->orom);
7011 }
7012
7013 static void handle_missing(struct intel_super *super, struct imsm_dev *dev);
7014
7015 static int kill_subarray_imsm(struct supertype *st)
7016 {
7017         /* remove the subarray currently referenced by ->current_vol */
7018         __u8 i;
7019         struct intel_dev **dp;
7020         struct intel_super *super = st->sb;
7021         __u8 current_vol = super->current_vol;
7022         struct imsm_super *mpb = super->anchor;
7023
7024         if (super->current_vol < 0)
7025                 return 2;
7026         super->current_vol = -1; /* invalidate subarray cursor */
7027
7028         /* block deletions that would change the uuid of active subarrays
7029          *
7030          * FIXME when immutable ids are available, but note that we'll
7031          * also need to fixup the invalidated/active subarray indexes in
7032          * mdstat
7033          */
7034         for (i = 0; i < mpb->num_raid_devs; i++) {
7035                 char subarray[4];
7036
7037                 if (i < current_vol)
7038                         continue;
7039                 sprintf(subarray, "%u", i);
7040                 if (is_subarray_active(subarray, st->devnm)) {
7041                         pr_err("deleting subarray-%d would change the UUID of active subarray-%d, aborting\n",
7042                                current_vol, i);
7043
7044                         return 2;
7045                 }
7046         }
7047
7048         if (st->update_tail) {
7049                 struct imsm_update_kill_array *u = xmalloc(sizeof(*u));
7050
7051                 u->type = update_kill_array;
7052                 u->dev_idx = current_vol;
7053                 append_metadata_update(st, u, sizeof(*u));
7054
7055                 return 0;
7056         }
7057
7058         for (dp = &super->devlist; *dp;)
7059                 if ((*dp)->index == current_vol) {
7060                         *dp = (*dp)->next;
7061                 } else {
7062                         handle_missing(super, (*dp)->dev);
7063                         if ((*dp)->index > current_vol)
7064                                 (*dp)->index--;
7065                         dp = &(*dp)->next;
7066                 }
7067
7068         /* no more raid devices, all active components are now spares,
7069          * but of course failed are still failed
7070          */
7071         if (--mpb->num_raid_devs == 0) {
7072                 struct dl *d;
7073
7074                 for (d = super->disks; d; d = d->next)
7075                         if (d->index > -2)
7076                                 mark_spare(d);
7077         }
7078
7079         super->updates_pending++;
7080
7081         return 0;
7082 }
7083
7084 static int update_subarray_imsm(struct supertype *st, char *subarray,
7085                                 char *update, struct mddev_ident *ident)
7086 {
7087         /* update the subarray currently referenced by ->current_vol */
7088         struct intel_super *super = st->sb;
7089         struct imsm_super *mpb = super->anchor;
7090
7091         if (strcmp(update, "name") == 0) {
7092                 char *name = ident->name;
7093                 char *ep;
7094                 int vol;
7095
7096                 if (is_subarray_active(subarray, st->devnm)) {
7097                         pr_err("Unable to update name of active subarray\n");
7098                         return 2;
7099                 }
7100
7101                 if (!check_name(super, name, 0))
7102                         return 2;
7103
7104                 vol = strtoul(subarray, &ep, 10);
7105                 if (*ep != '\0' || vol >= super->anchor->num_raid_devs)
7106                         return 2;
7107
7108                 if (st->update_tail) {
7109                         struct imsm_update_rename_array *u = xmalloc(sizeof(*u));
7110
7111                         u->type = update_rename_array;
7112                         u->dev_idx = vol;
7113                         snprintf((char *) u->name, MAX_RAID_SERIAL_LEN, "%s", name);
7114                         append_metadata_update(st, u, sizeof(*u));
7115                 } else {
7116                         struct imsm_dev *dev;
7117                         int i;
7118
7119                         dev = get_imsm_dev(super, vol);
7120                         snprintf((char *) dev->volume, MAX_RAID_SERIAL_LEN, "%s", name);
7121                         for (i = 0; i < mpb->num_raid_devs; i++) {
7122                                 dev = get_imsm_dev(super, i);
7123                                 handle_missing(super, dev);
7124                         }
7125                         super->updates_pending++;
7126                 }
7127         } else
7128                 return 2;
7129
7130         return 0;
7131 }
7132 #endif /* MDASSEMBLE */
7133
7134 static int is_gen_migration(struct imsm_dev *dev)
7135 {
7136         if (dev == NULL)
7137                 return 0;
7138
7139         if (!dev->vol.migr_state)
7140                 return 0;
7141
7142         if (migr_type(dev) == MIGR_GEN_MIGR)
7143                 return 1;
7144
7145         return 0;
7146 }
7147
7148 static int is_rebuilding(struct imsm_dev *dev)
7149 {
7150         struct imsm_map *migr_map;
7151
7152         if (!dev->vol.migr_state)
7153                 return 0;
7154
7155         if (migr_type(dev) != MIGR_REBUILD)
7156                 return 0;
7157
7158         migr_map = get_imsm_map(dev, MAP_1);
7159
7160         if (migr_map->map_state == IMSM_T_STATE_DEGRADED)
7161                 return 1;
7162         else
7163                 return 0;
7164 }
7165
7166 #ifndef MDASSEMBLE
7167 static int is_initializing(struct imsm_dev *dev)
7168 {
7169         struct imsm_map *migr_map;
7170
7171         if (!dev->vol.migr_state)
7172                 return 0;
7173
7174         if (migr_type(dev) != MIGR_INIT)
7175                 return 0;
7176
7177         migr_map = get_imsm_map(dev, MAP_1);
7178
7179         if (migr_map->map_state == IMSM_T_STATE_UNINITIALIZED)
7180                 return 1;
7181
7182         return 0;
7183 }
7184 #endif
7185
7186 static void update_recovery_start(struct intel_super *super,
7187                                         struct imsm_dev *dev,
7188                                         struct mdinfo *array)
7189 {
7190         struct mdinfo *rebuild = NULL;
7191         struct mdinfo *d;
7192         __u32 units;
7193
7194         if (!is_rebuilding(dev))
7195                 return;
7196
7197         /* Find the rebuild target, but punt on the dual rebuild case */
7198         for (d = array->devs; d; d = d->next)
7199                 if (d->recovery_start == 0) {
7200                         if (rebuild)
7201                                 return;
7202                         rebuild = d;
7203                 }
7204
7205         if (!rebuild) {
7206                 /* (?) none of the disks are marked with
7207                  * IMSM_ORD_REBUILD, so assume they are missing and the
7208                  * disk_ord_tbl was not correctly updated
7209                  */
7210                 dprintf("failed to locate out-of-sync disk\n");
7211                 return;
7212         }
7213
7214         units = __le32_to_cpu(dev->vol.curr_migr_unit);
7215         rebuild->recovery_start = units * blocks_per_migr_unit(super, dev);
7216 }
7217
7218 #ifndef MDASSEMBLE
7219 static int recover_backup_imsm(struct supertype *st, struct mdinfo *info);
7220 #endif
7221
7222 static struct mdinfo *container_content_imsm(struct supertype *st, char *subarray)
7223 {
7224         /* Given a container loaded by load_super_imsm_all,
7225          * extract information about all the arrays into
7226          * an mdinfo tree.
7227          * If 'subarray' is given, just extract info about that array.
7228          *
7229          * For each imsm_dev create an mdinfo, fill it in,
7230          *  then look for matching devices in super->disks
7231          *  and create appropriate device mdinfo.
7232          */
7233         struct intel_super *super = st->sb;
7234         struct imsm_super *mpb = super->anchor;
7235         struct mdinfo *rest = NULL;
7236         unsigned int i;
7237         int sb_errors = 0;
7238         struct dl *d;
7239         int spare_disks = 0;
7240
7241         /* do not assemble arrays when not all attributes are supported */
7242         if (imsm_check_attributes(mpb->attributes) == 0) {
7243                 sb_errors = 1;
7244                 pr_err("Unsupported attributes in IMSM metadata.Arrays activation is blocked.\n");
7245         }
7246
7247         /* count spare devices, not used in maps
7248          */
7249         for (d = super->disks; d; d = d->next)
7250                 if (d->index == -1)
7251                         spare_disks++;
7252
7253         for (i = 0; i < mpb->num_raid_devs; i++) {
7254                 struct imsm_dev *dev;
7255                 struct imsm_map *map;
7256                 struct imsm_map *map2;
7257                 struct mdinfo *this;
7258                 int slot;
7259 #ifndef MDASSEMBLE
7260                 int chunk;
7261 #endif
7262                 char *ep;
7263
7264                 if (subarray &&
7265                     (i != strtoul(subarray, &ep, 10) || *ep != '\0'))
7266                         continue;
7267
7268                 dev = get_imsm_dev(super, i);
7269                 map = get_imsm_map(dev, MAP_0);
7270                 map2 = get_imsm_map(dev, MAP_1);
7271
7272                 /* do not publish arrays that are in the middle of an
7273                  * unsupported migration
7274                  */
7275                 if (dev->vol.migr_state &&
7276                     (migr_type(dev) == MIGR_STATE_CHANGE)) {
7277                         pr_err("cannot assemble volume '%.16s': unsupported migration in progress\n",
7278                                 dev->volume);
7279                         continue;
7280                 }
7281                 /* do not publish arrays that are not support by controller's
7282                  * OROM/EFI
7283                  */
7284
7285                 this = xmalloc(sizeof(*this));
7286
7287                 super->current_vol = i;
7288                 getinfo_super_imsm_volume(st, this, NULL);
7289                 this->next = rest;
7290 #ifndef MDASSEMBLE
7291                 chunk = __le16_to_cpu(map->blocks_per_strip) >> 1;
7292                 /* mdadm does not support all metadata features- set the bit in all arrays state */
7293                 if (!validate_geometry_imsm_orom(super,
7294                                                  get_imsm_raid_level(map), /* RAID level */
7295                                                  imsm_level_to_layout(get_imsm_raid_level(map)),
7296                                                  map->num_members, /* raid disks */
7297                                                  &chunk, join_u32(dev->size_low, dev->size_high),
7298                                                  1 /* verbose */)) {
7299                         pr_err("IMSM RAID geometry validation failed.  Array %s activation is blocked.\n",
7300                                 dev->volume);
7301                         this->array.state |=
7302                           (1<<MD_SB_BLOCK_CONTAINER_RESHAPE) |
7303                           (1<<MD_SB_BLOCK_VOLUME);
7304                 }
7305 #endif
7306
7307                 /* if array has bad blocks, set suitable bit in all arrays state */
7308                 if (sb_errors)
7309                         this->array.state |=
7310                           (1<<MD_SB_BLOCK_CONTAINER_RESHAPE) |
7311                           (1<<MD_SB_BLOCK_VOLUME);
7312
7313                 for (slot = 0 ; slot <  map->num_members; slot++) {
7314                         unsigned long long recovery_start;
7315                         struct mdinfo *info_d;
7316                         struct dl *d;
7317                         int idx;
7318                         int skip;
7319                         __u32 ord;
7320
7321                         skip = 0;
7322                         idx = get_imsm_disk_idx(dev, slot, MAP_0);
7323                         ord = get_imsm_ord_tbl_ent(dev, slot, MAP_X);
7324                         for (d = super->disks; d ; d = d->next)
7325                                 if (d->index == idx)
7326                                         break;
7327
7328                         recovery_start = MaxSector;
7329                         if (d == NULL)
7330                                 skip = 1;
7331                         if (d && is_failed(&d->disk))
7332                                 skip = 1;
7333                         if (ord & IMSM_ORD_REBUILD)
7334                                 recovery_start = 0;
7335
7336                         /*
7337                          * if we skip some disks the array will be assmebled degraded;
7338                          * reset resync start to avoid a dirty-degraded
7339                          * situation when performing the intial sync
7340                          *
7341                          * FIXME handle dirty degraded
7342                          */
7343                         if ((skip || recovery_start == 0) && !dev->vol.dirty)
7344                                 this->resync_start = MaxSector;
7345                         if (skip)
7346                                 continue;
7347
7348                         info_d = xcalloc(1, sizeof(*info_d));
7349                         info_d->next = this->devs;
7350                         this->devs = info_d;
7351
7352                         info_d->disk.number = d->index;
7353                         info_d->disk.major = d->major;
7354                         info_d->disk.minor = d->minor;
7355                         info_d->disk.raid_disk = slot;
7356                         info_d->recovery_start = recovery_start;
7357                         if (map2) {
7358                                 if (slot < map2->num_members)
7359                                         info_d->disk.state = (1 << MD_DISK_ACTIVE);
7360                                 else
7361                                         this->array.spare_disks++;
7362                         } else {
7363                                 if (slot < map->num_members)
7364                                         info_d->disk.state = (1 << MD_DISK_ACTIVE);
7365                                 else
7366                                         this->array.spare_disks++;
7367                         }
7368                         if (info_d->recovery_start == MaxSector)
7369                                 this->array.working_disks++;
7370
7371                         info_d->events = __le32_to_cpu(mpb->generation_num);
7372                         info_d->data_offset = pba_of_lba0(map);
7373
7374                         if (map->raid_level == 5) {
7375                                 info_d->component_size =
7376                                                 num_data_stripes(map) *
7377                                                 map->blocks_per_strip;
7378                         } else {
7379                                 info_d->component_size = blocks_per_member(map);
7380                         }
7381
7382                         info_d->bb.supported = 0;
7383                         get_volume_badblocks(super->bbm_log, ord_to_idx(ord),
7384                                              info_d->data_offset,
7385                                              info_d->component_size,
7386                                              &info_d->bb);
7387                 }
7388                 /* now that the disk list is up-to-date fixup recovery_start */
7389                 update_recovery_start(super, dev, this);
7390                 this->array.spare_disks += spare_disks;
7391
7392 #ifndef MDASSEMBLE
7393                 /* check for reshape */
7394                 if (this->reshape_active == 1)
7395                         recover_backup_imsm(st, this);
7396 #endif
7397                 rest = this;
7398         }
7399
7400         return rest;
7401 }
7402
7403 static __u8 imsm_check_degraded(struct intel_super *super, struct imsm_dev *dev,
7404                                 int failed, int look_in_map)
7405 {
7406         struct imsm_map *map;
7407
7408         map = get_imsm_map(dev, look_in_map);
7409
7410         if (!failed)
7411                 return map->map_state == IMSM_T_STATE_UNINITIALIZED ?
7412                         IMSM_T_STATE_UNINITIALIZED : IMSM_T_STATE_NORMAL;
7413
7414         switch (get_imsm_raid_level(map)) {
7415         case 0:
7416                 return IMSM_T_STATE_FAILED;
7417                 break;
7418         case 1:
7419                 if (failed < map->num_members)
7420                         return IMSM_T_STATE_DEGRADED;
7421                 else
7422                         return IMSM_T_STATE_FAILED;
7423                 break;
7424         case 10:
7425         {
7426                 /**
7427                  * check to see if any mirrors have failed, otherwise we
7428                  * are degraded.  Even numbered slots are mirrored on
7429                  * slot+1
7430                  */
7431                 int i;
7432                 /* gcc -Os complains that this is unused */
7433                 int insync = insync;
7434
7435                 for (i = 0; i < map->num_members; i++) {
7436                         __u32 ord = get_imsm_ord_tbl_ent(dev, i, MAP_X);
7437                         int idx = ord_to_idx(ord);
7438                         struct imsm_disk *disk;
7439
7440                         /* reset the potential in-sync count on even-numbered
7441                          * slots.  num_copies is always 2 for imsm raid10
7442                          */
7443                         if ((i & 1) == 0)
7444                                 insync = 2;
7445
7446                         disk = get_imsm_disk(super, idx);
7447                         if (!disk || is_failed(disk) || ord & IMSM_ORD_REBUILD)
7448                                 insync--;
7449
7450                         /* no in-sync disks left in this mirror the
7451                          * array has failed
7452                          */
7453                         if (insync == 0)
7454                                 return IMSM_T_STATE_FAILED;
7455                 }
7456
7457                 return IMSM_T_STATE_DEGRADED;
7458         }
7459         case 5:
7460                 if (failed < 2)
7461                         return IMSM_T_STATE_DEGRADED;
7462                 else
7463                         return IMSM_T_STATE_FAILED;
7464                 break;
7465         default:
7466                 break;
7467         }
7468
7469         return map->map_state;
7470 }
7471
7472 static int imsm_count_failed(struct intel_super *super, struct imsm_dev *dev,
7473                              int look_in_map)
7474 {
7475         int i;
7476         int failed = 0;
7477         struct imsm_disk *disk;
7478         struct imsm_map *map = get_imsm_map(dev, MAP_0);
7479         struct imsm_map *prev = get_imsm_map(dev, MAP_1);
7480         struct imsm_map *map_for_loop;
7481         __u32 ord;
7482         int idx;
7483         int idx_1;
7484
7485         /* at the beginning of migration we set IMSM_ORD_REBUILD on
7486          * disks that are being rebuilt.  New failures are recorded to
7487          * map[0].  So we look through all the disks we started with and
7488          * see if any failures are still present, or if any new ones
7489          * have arrived
7490          */
7491         map_for_loop = map;
7492         if (prev && (map->num_members < prev->num_members))
7493                 map_for_loop = prev;
7494
7495         for (i = 0; i < map_for_loop->num_members; i++) {
7496                 idx_1 = -255;
7497                 /* when MAP_X is passed both maps failures are counted
7498                  */
7499                 if (prev &&
7500                     (look_in_map == MAP_1 || look_in_map == MAP_X) &&
7501                     i < prev->num_members) {
7502                         ord = __le32_to_cpu(prev->disk_ord_tbl[i]);
7503                         idx_1 = ord_to_idx(ord);
7504
7505                         disk = get_imsm_disk(super, idx_1);
7506                         if (!disk || is_failed(disk) || ord & IMSM_ORD_REBUILD)
7507                                 failed++;
7508                 }
7509                 if ((look_in_map == MAP_0 || look_in_map == MAP_X) &&
7510                     i < map->num_members) {
7511                         ord = __le32_to_cpu(map->disk_ord_tbl[i]);
7512                         idx = ord_to_idx(ord);
7513
7514                         if (idx != idx_1) {
7515                                 disk = get_imsm_disk(super, idx);
7516                                 if (!disk || is_failed(disk) ||
7517                                     ord & IMSM_ORD_REBUILD)
7518                                         failed++;
7519                         }
7520                 }
7521         }
7522
7523         return failed;
7524 }
7525
7526 #ifndef MDASSEMBLE
7527 static int imsm_open_new(struct supertype *c, struct active_array *a,
7528                          char *inst)
7529 {
7530         struct intel_super *super = c->sb;
7531         struct imsm_super *mpb = super->anchor;
7532         struct imsm_update_prealloc_bb_mem u;
7533
7534         if (atoi(inst) >= mpb->num_raid_devs) {
7535                 pr_err("subarry index %d, out of range\n", atoi(inst));
7536                 return -ENODEV;
7537         }
7538
7539         dprintf("imsm: open_new %s\n", inst);
7540         a->info.container_member = atoi(inst);
7541
7542         u.type = update_prealloc_badblocks_mem;
7543         imsm_update_metadata_locally(c, &u, sizeof(u));
7544
7545         return 0;
7546 }
7547
7548 static int is_resyncing(struct imsm_dev *dev)
7549 {
7550         struct imsm_map *migr_map;
7551
7552         if (!dev->vol.migr_state)
7553                 return 0;
7554
7555         if (migr_type(dev) == MIGR_INIT ||
7556             migr_type(dev) == MIGR_REPAIR)
7557                 return 1;
7558
7559         if (migr_type(dev) == MIGR_GEN_MIGR)
7560                 return 0;
7561
7562         migr_map = get_imsm_map(dev, MAP_1);
7563
7564         if (migr_map->map_state == IMSM_T_STATE_NORMAL &&
7565             dev->vol.migr_type != MIGR_GEN_MIGR)
7566                 return 1;
7567         else
7568                 return 0;
7569 }
7570
7571 /* return true if we recorded new information */
7572 static int mark_failure(struct intel_super *super,
7573                         struct imsm_dev *dev, struct imsm_disk *disk, int idx)
7574 {
7575         __u32 ord;
7576         int slot;
7577         struct imsm_map *map;
7578         char buf[MAX_RAID_SERIAL_LEN+3];
7579         unsigned int len, shift = 0;
7580
7581         /* new failures are always set in map[0] */
7582         map = get_imsm_map(dev, MAP_0);
7583
7584         slot = get_imsm_disk_slot(map, idx);
7585         if (slot < 0)
7586                 return 0;
7587
7588         ord = __le32_to_cpu(map->disk_ord_tbl[slot]);
7589         if (is_failed(disk) && (ord & IMSM_ORD_REBUILD))
7590                 return 0;
7591
7592         memcpy(buf, disk->serial, MAX_RAID_SERIAL_LEN);
7593         buf[MAX_RAID_SERIAL_LEN] = '\000';
7594         strcat(buf, ":0");
7595         if ((len = strlen(buf)) >= MAX_RAID_SERIAL_LEN)
7596                 shift = len - MAX_RAID_SERIAL_LEN + 1;
7597         strncpy((char *)disk->serial, &buf[shift], MAX_RAID_SERIAL_LEN);
7598
7599         disk->status |= FAILED_DISK;
7600         set_imsm_ord_tbl_ent(map, slot, idx | IMSM_ORD_REBUILD);
7601         /* mark failures in second map if second map exists and this disk
7602          * in this slot.
7603          * This is valid for migration, initialization and rebuild
7604          */
7605         if (dev->vol.migr_state) {
7606                 struct imsm_map *map2 = get_imsm_map(dev, MAP_1);
7607                 int slot2 = get_imsm_disk_slot(map2, idx);
7608
7609                 if (slot2 < map2->num_members && slot2 >= 0)
7610                         set_imsm_ord_tbl_ent(map2, slot2,
7611                                              idx | IMSM_ORD_REBUILD);
7612         }
7613         if (map->failed_disk_num == 0xff)
7614                 map->failed_disk_num = slot;
7615
7616         clear_disk_badblocks(super->bbm_log, ord_to_idx(ord));
7617
7618         return 1;
7619 }
7620
7621 static void mark_missing(struct intel_super *super,
7622                          struct imsm_dev *dev, struct imsm_disk *disk, int idx)
7623 {
7624         mark_failure(super, dev, disk, idx);
7625
7626         if (disk->scsi_id == __cpu_to_le32(~(__u32)0))
7627                 return;
7628
7629         disk->scsi_id = __cpu_to_le32(~(__u32)0);
7630         memmove(&disk->serial[0], &disk->serial[1], MAX_RAID_SERIAL_LEN - 1);
7631 }
7632
7633 static void handle_missing(struct intel_super *super, struct imsm_dev *dev)
7634 {
7635         struct dl *dl;
7636
7637         if (!super->missing)
7638                 return;
7639
7640         /* When orom adds replacement for missing disk it does
7641          * not remove entry of missing disk, but just updates map with
7642          * new added disk. So it is not enough just to test if there is
7643          * any missing disk, we have to look if there are any failed disks
7644          * in map to stop migration */
7645
7646         dprintf("imsm: mark missing\n");
7647         /* end process for initialization and rebuild only
7648          */
7649         if (is_gen_migration(dev) == 0) {
7650                 __u8 map_state;
7651                 int failed;
7652
7653                 failed = imsm_count_failed(super, dev, MAP_0);
7654                 map_state = imsm_check_degraded(super, dev, failed, MAP_0);
7655
7656                 if (failed)
7657                         end_migration(dev, super, map_state);
7658         }
7659         for (dl = super->missing; dl; dl = dl->next)
7660                 mark_missing(super, dev, &dl->disk, dl->index);
7661         super->updates_pending++;
7662 }
7663
7664 static unsigned long long imsm_set_array_size(struct imsm_dev *dev,
7665                                               long long new_size)
7666 {
7667         int used_disks = imsm_num_data_members(dev, MAP_0);
7668         unsigned long long array_blocks;
7669         struct imsm_map *map;
7670
7671         if (used_disks == 0) {
7672                 /* when problems occures
7673                  * return current array_blocks value
7674                  */
7675                 array_blocks = __le32_to_cpu(dev->size_high);
7676                 array_blocks = array_blocks << 32;
7677                 array_blocks += __le32_to_cpu(dev->size_low);
7678
7679                 return array_blocks;
7680         }
7681
7682         /* set array size in metadata
7683          */
7684         if (new_size <= 0) {
7685                 /* OLCE size change is caused by added disks
7686                  */
7687                 map = get_imsm_map(dev, MAP_0);
7688                 array_blocks = blocks_per_member(map) * used_disks;
7689         } else {
7690                 /* Online Volume Size Change
7691                  * Using  available free space
7692                  */
7693                 array_blocks = new_size;
7694         }
7695
7696         /* round array size down to closest MB
7697          */
7698         array_blocks = (array_blocks >> SECT_PER_MB_SHIFT) << SECT_PER_MB_SHIFT;
7699         dev->size_low = __cpu_to_le32((__u32)array_blocks);
7700         dev->size_high = __cpu_to_le32((__u32)(array_blocks >> 32));
7701
7702         return array_blocks;
7703 }
7704
7705 static void imsm_set_disk(struct active_array *a, int n, int state);
7706
7707 static void imsm_progress_container_reshape(struct intel_super *super)
7708 {
7709         /* if no device has a migr_state, but some device has a
7710          * different number of members than the previous device, start
7711          * changing the number of devices in this device to match
7712          * previous.
7713          */
7714         struct imsm_super *mpb = super->anchor;
7715         int prev_disks = -1;
7716         int i;
7717         int copy_map_size;
7718
7719         for (i = 0; i < mpb->num_raid_devs; i++) {
7720                 struct imsm_dev *dev = get_imsm_dev(super, i);
7721                 struct imsm_map *map = get_imsm_map(dev, MAP_0);
7722                 struct imsm_map *map2;
7723                 int prev_num_members;
7724
7725                 if (dev->vol.migr_state)
7726                         return;
7727
7728                 if (prev_disks == -1)
7729                         prev_disks = map->num_members;
7730                 if (prev_disks == map->num_members)
7731                         continue;
7732
7733                 /* OK, this array needs to enter reshape mode.
7734                  * i.e it needs a migr_state
7735                  */
7736
7737                 copy_map_size = sizeof_imsm_map(map);
7738                 prev_num_members = map->num_members;
7739                 map->num_members = prev_disks;
7740                 dev->vol.migr_state = 1;
7741                 dev->vol.curr_migr_unit = 0;
7742                 set_migr_type(dev, MIGR_GEN_MIGR);
7743                 for (i = prev_num_members;
7744                      i < map->num_members; i++)
7745                         set_imsm_ord_tbl_ent(map, i, i);
7746                 map2 = get_imsm_map(dev, MAP_1);
7747                 /* Copy the current map */
7748                 memcpy(map2, map, copy_map_size);
7749                 map2->num_members = prev_num_members;
7750
7751                 imsm_set_array_size(dev, -1);
7752                 super->clean_migration_record_by_mdmon = 1;
7753                 super->updates_pending++;
7754         }
7755 }
7756
7757 /* Handle dirty -> clean transititions, resync and reshape.  Degraded and rebuild
7758  * states are handled in imsm_set_disk() with one exception, when a
7759  * resync is stopped due to a new failure this routine will set the
7760  * 'degraded' state for the array.
7761  */
7762 static int imsm_set_array_state(struct active_array *a, int consistent)
7763 {
7764         int inst = a->info.container_member;
7765         struct intel_super *super = a->container->sb;
7766         struct imsm_dev *dev = get_imsm_dev(super, inst);
7767         struct imsm_map *map = get_imsm_map(dev, MAP_0);
7768         int failed = imsm_count_failed(super, dev, MAP_0);
7769         __u8 map_state = imsm_check_degraded(super, dev, failed, MAP_0);
7770         __u32 blocks_per_unit;
7771
7772         if (dev->vol.migr_state &&
7773             dev->vol.migr_type  == MIGR_GEN_MIGR) {
7774                 /* array state change is blocked due to reshape action
7775                  * We might need to
7776                  * - abort the reshape (if last_checkpoint is 0 and action!= reshape)
7777                  * - finish the reshape (if last_checkpoint is big and action != reshape)
7778                  * - update curr_migr_unit
7779                  */
7780                 if (a->curr_action == reshape) {
7781                         /* still reshaping, maybe update curr_migr_unit */
7782                         goto mark_checkpoint;
7783                 } else {
7784                         if (a->last_checkpoint == 0 && a->prev_action == reshape) {
7785                                 /* for some reason we aborted the reshape.
7786                                  *
7787                                  * disable automatic metadata rollback
7788                                  * user action is required to recover process
7789                                  */
7790                                 if (0) {
7791                                         struct imsm_map *map2 =
7792                                                 get_imsm_map(dev, MAP_1);
7793                                         dev->vol.migr_state = 0;
7794                                         set_migr_type(dev, 0);
7795                                         dev->vol.curr_migr_unit = 0;
7796                                         memcpy(map, map2,
7797                                                sizeof_imsm_map(map2));
7798                                         super->updates_pending++;
7799                                 }
7800                         }
7801                         if (a->last_checkpoint >= a->info.component_size) {
7802                                 unsigned long long array_blocks;
7803                                 int used_disks;
7804                                 struct mdinfo *mdi;
7805
7806                                 used_disks = imsm_num_data_members(dev, MAP_0);
7807                                 if (used_disks > 0) {
7808                                         array_blocks =
7809                                                 blocks_per_member(map) *
7810                                                 used_disks;
7811                                         /* round array size down to closest MB
7812                                          */
7813                                         array_blocks = (array_blocks
7814                                                         >> SECT_PER_MB_SHIFT)
7815                                                 << SECT_PER_MB_SHIFT;
7816                                         a->info.custom_array_size = array_blocks;
7817                                         /* encourage manager to update array
7818                                          * size
7819                                          */
7820
7821                                         a->check_reshape = 1;
7822                                 }
7823                                 /* finalize online capacity expansion/reshape */
7824                                 for (mdi = a->info.devs; mdi; mdi = mdi->next)
7825                                         imsm_set_disk(a,
7826                                                       mdi->disk.raid_disk,
7827                                                       mdi->curr_state);
7828
7829                                 imsm_progress_container_reshape(super);
7830                         }
7831                 }
7832         }
7833
7834         /* before we activate this array handle any missing disks */
7835         if (consistent == 2)
7836                 handle_missing(super, dev);
7837
7838         if (consistent == 2 &&
7839             (!is_resync_complete(&a->info) ||
7840              map_state != IMSM_T_STATE_NORMAL ||
7841              dev->vol.migr_state))
7842                 consistent = 0;
7843
7844         if (is_resync_complete(&a->info)) {
7845                 /* complete intialization / resync,
7846                  * recovery and interrupted recovery is completed in
7847                  * ->set_disk
7848                  */
7849                 if (is_resyncing(dev)) {
7850                         dprintf("imsm: mark resync done\n");
7851                         end_migration(dev, super, map_state);
7852                         super->updates_pending++;
7853                         a->last_checkpoint = 0;
7854                 }
7855         } else if ((!is_resyncing(dev) && !failed) &&
7856                    (imsm_reshape_blocks_arrays_changes(super) == 0)) {
7857                 /* mark the start of the init process if nothing is failed */
7858                 dprintf("imsm: mark resync start\n");
7859                 if (map->map_state == IMSM_T_STATE_UNINITIALIZED)
7860                         migrate(dev, super, IMSM_T_STATE_NORMAL, MIGR_INIT);
7861                 else
7862                         migrate(dev, super, IMSM_T_STATE_NORMAL, MIGR_REPAIR);
7863                 super->updates_pending++;
7864         }
7865
7866 mark_checkpoint:
7867         /* skip checkpointing for general migration,
7868          * it is controlled in mdadm
7869          */
7870         if (is_gen_migration(dev))
7871                 goto skip_mark_checkpoint;
7872
7873         /* check if we can update curr_migr_unit from resync_start, recovery_start */
7874         blocks_per_unit = blocks_per_migr_unit(super, dev);
7875         if (blocks_per_unit) {
7876                 __u32 units32;
7877                 __u64 units;
7878
7879                 units = a->last_checkpoint / blocks_per_unit;
7880                 units32 = units;
7881
7882                 /* check that we did not overflow 32-bits, and that
7883                  * curr_migr_unit needs updating
7884                  */
7885                 if (units32 == units &&
7886                     units32 != 0 &&
7887                     __le32_to_cpu(dev->vol.curr_migr_unit) != units32) {
7888                         dprintf("imsm: mark checkpoint (%u)\n", units32);
7889                         dev->vol.curr_migr_unit = __cpu_to_le32(units32);
7890                         super->updates_pending++;
7891                 }
7892         }
7893
7894 skip_mark_checkpoint:
7895         /* mark dirty / clean */
7896         if (dev->vol.dirty != !consistent) {
7897                 dprintf("imsm: mark '%s'\n", consistent ? "clean" : "dirty");
7898                 if (consistent)
7899                         dev->vol.dirty = 0;
7900                 else
7901                         dev->vol.dirty = 1;
7902                 super->updates_pending++;
7903         }
7904
7905         return consistent;
7906 }
7907
7908 static int imsm_disk_slot_to_ord(struct active_array *a, int slot)
7909 {
7910         int inst = a->info.container_member;
7911         struct intel_super *super = a->container->sb;
7912         struct imsm_dev *dev = get_imsm_dev(super, inst);
7913         struct imsm_map *map = get_imsm_map(dev, MAP_0);
7914
7915         if (slot > map->num_members) {
7916                 pr_err("imsm: imsm_disk_slot_to_ord %d out of range 0..%d\n",
7917                        slot, map->num_members - 1);
7918                 return -1;
7919         }
7920
7921         if (slot < 0)
7922                 return -1;
7923
7924         return get_imsm_ord_tbl_ent(dev, slot, MAP_0);
7925 }
7926
7927 static void imsm_set_disk(struct active_array *a, int n, int state)
7928 {
7929         int inst = a->info.container_member;
7930         struct intel_super *super = a->container->sb;
7931         struct imsm_dev *dev = get_imsm_dev(super, inst);
7932         struct imsm_map *map = get_imsm_map(dev, MAP_0);
7933         struct imsm_disk *disk;
7934         struct mdinfo *mdi;
7935         int recovery_not_finished = 0;
7936         int failed;
7937         int ord;
7938         __u8 map_state;
7939
7940         ord = imsm_disk_slot_to_ord(a, n);
7941         if (ord < 0)
7942                 return;
7943
7944         dprintf("imsm: set_disk %d:%x\n", n, state);
7945         disk = get_imsm_disk(super, ord_to_idx(ord));
7946
7947         /* check for new failures */
7948         if (state & DS_FAULTY) {
7949                 if (mark_failure(super, dev, disk, ord_to_idx(ord)))
7950                         super->updates_pending++;
7951         }
7952
7953         /* check if in_sync */
7954         if (state & DS_INSYNC && ord & IMSM_ORD_REBUILD && is_rebuilding(dev)) {
7955                 struct imsm_map *migr_map = get_imsm_map(dev, MAP_1);
7956
7957                 set_imsm_ord_tbl_ent(migr_map, n, ord_to_idx(ord));
7958                 super->updates_pending++;
7959         }
7960
7961         failed = imsm_count_failed(super, dev, MAP_0);
7962         map_state = imsm_check_degraded(super, dev, failed, MAP_0);
7963
7964         /* check if recovery complete, newly degraded, or failed */
7965         dprintf("imsm: Detected transition to state ");
7966         switch (map_state) {
7967         case IMSM_T_STATE_NORMAL: /* transition to normal state */
7968                 dprintf("normal: ");
7969                 if (is_rebuilding(dev)) {
7970                         dprintf_cont("while rebuilding");
7971                         /* check if recovery is really finished */
7972                         for (mdi = a->info.devs; mdi ; mdi = mdi->next)
7973                                 if (mdi->recovery_start != MaxSector) {
7974                                         recovery_not_finished = 1;
7975                                         break;
7976                                 }
7977                         if (recovery_not_finished) {
7978                                 dprintf_cont("\n");
7979                                 dprintf("Rebuild has not finished yet, state not changed");
7980                                 if (a->last_checkpoint < mdi->recovery_start) {
7981                                         a->last_checkpoint = mdi->recovery_start;
7982                                         super->updates_pending++;
7983                                 }
7984                                 break;
7985                         }
7986                         end_migration(dev, super, map_state);
7987                         map = get_imsm_map(dev, MAP_0);
7988                         map->failed_disk_num = ~0;
7989                         super->updates_pending++;
7990                         a->last_checkpoint = 0;
7991                         break;
7992                 }
7993                 if (is_gen_migration(dev)) {
7994                         dprintf_cont("while general migration");
7995                         if (a->last_checkpoint >= a->info.component_size)
7996                                 end_migration(dev, super, map_state);
7997                         else
7998                                 map->map_state = map_state;
7999                         map = get_imsm_map(dev, MAP_0);
8000                         map->failed_disk_num = ~0;
8001                         super->updates_pending++;
8002                         break;
8003                 }
8004         break;
8005         case IMSM_T_STATE_DEGRADED: /* transition to degraded state */
8006                 dprintf_cont("degraded: ");
8007                 if (map->map_state != map_state && !dev->vol.migr_state) {
8008                         dprintf_cont("mark degraded");
8009                         map->map_state = map_state;
8010                         super->updates_pending++;
8011                         a->last_checkpoint = 0;
8012                         break;
8013                 }
8014                 if (is_rebuilding(dev)) {
8015                         dprintf_cont("while rebuilding.");
8016                         if (map->map_state != map_state)  {
8017                                 dprintf_cont(" Map state change");
8018                                 end_migration(dev, super, map_state);
8019                                 super->updates_pending++;
8020                         }
8021                         break;
8022                 }
8023                 if (is_gen_migration(dev)) {
8024                         dprintf_cont("while general migration");
8025                         if (a->last_checkpoint >= a->info.component_size)
8026                                 end_migration(dev, super, map_state);
8027                         else {
8028                                 map->map_state = map_state;
8029                                 manage_second_map(super, dev);
8030                         }
8031                         super->updates_pending++;
8032                         break;
8033                 }
8034                 if (is_initializing(dev)) {
8035                         dprintf_cont("while initialization.");
8036                         map->map_state = map_state;
8037                         super->updates_pending++;
8038                         break;
8039                 }
8040         break;
8041         case IMSM_T_STATE_FAILED: /* transition to failed state */
8042                 dprintf_cont("failed: ");
8043                 if (is_gen_migration(dev)) {
8044                         dprintf_cont("while general migration");
8045                         map->map_state = map_state;
8046                         super->updates_pending++;
8047                         break;
8048                 }
8049                 if (map->map_state != map_state) {
8050                         dprintf_cont("mark failed");
8051                         end_migration(dev, super, map_state);
8052                         super->updates_pending++;
8053                         a->last_checkpoint = 0;
8054                         break;
8055                 }
8056         break;
8057         default:
8058                 dprintf_cont("state %i\n", map_state);
8059         }
8060         dprintf_cont("\n");
8061 }
8062
8063 static int store_imsm_mpb(int fd, struct imsm_super *mpb)
8064 {
8065         void *buf = mpb;
8066         __u32 mpb_size = __le32_to_cpu(mpb->mpb_size);
8067         unsigned long long dsize;
8068         unsigned long long sectors;
8069         unsigned int sector_size;
8070
8071         get_dev_sector_size(fd, NULL, &sector_size);
8072         get_dev_size(fd, NULL, &dsize);
8073
8074         if (mpb_size > sector_size) {
8075                 /* -1 to account for anchor */
8076                 sectors = mpb_sectors(mpb, sector_size) - 1;
8077
8078                 /* write the extended mpb to the sectors preceeding the anchor */
8079                 if (lseek64(fd, dsize - (sector_size * (2 + sectors)),
8080                    SEEK_SET) < 0)
8081                         return 1;
8082
8083                 if ((unsigned long long)write(fd, buf + sector_size,
8084                    sector_size * sectors) != sector_size * sectors)
8085                         return 1;
8086         }
8087
8088         /* first block is stored on second to last sector of the disk */
8089         if (lseek64(fd, dsize - (sector_size * 2), SEEK_SET) < 0)
8090                 return 1;
8091
8092         if (write(fd, buf, sector_size) != sector_size)
8093                 return 1;
8094
8095         return 0;
8096 }
8097
8098 static void imsm_sync_metadata(struct supertype *container)
8099 {
8100         struct intel_super *super = container->sb;
8101
8102         dprintf("sync metadata: %d\n", super->updates_pending);
8103         if (!super->updates_pending)
8104                 return;
8105
8106         write_super_imsm(container, 0);
8107
8108         super->updates_pending = 0;
8109 }
8110
8111 static struct dl *imsm_readd(struct intel_super *super, int idx, struct active_array *a)
8112 {
8113         struct imsm_dev *dev = get_imsm_dev(super, a->info.container_member);
8114         int i = get_imsm_disk_idx(dev, idx, MAP_X);
8115         struct dl *dl;
8116
8117         for (dl = super->disks; dl; dl = dl->next)
8118                 if (dl->index == i)
8119                         break;
8120
8121         if (dl && is_failed(&dl->disk))
8122                 dl = NULL;
8123
8124         if (dl)
8125                 dprintf("found %x:%x\n", dl->major, dl->minor);
8126
8127         return dl;
8128 }
8129
8130 static struct dl *imsm_add_spare(struct intel_super *super, int slot,
8131                                  struct active_array *a, int activate_new,
8132                                  struct mdinfo *additional_test_list)
8133 {
8134         struct imsm_dev *dev = get_imsm_dev(super, a->info.container_member);
8135         int idx = get_imsm_disk_idx(dev, slot, MAP_X);
8136         struct imsm_super *mpb = super->anchor;
8137         struct imsm_map *map;
8138         unsigned long long pos;
8139         struct mdinfo *d;
8140         struct extent *ex;
8141         int i, j;
8142         int found;
8143         __u32 array_start = 0;
8144         __u32 array_end = 0;
8145         struct dl *dl;
8146         struct mdinfo *test_list;
8147
8148         for (dl = super->disks; dl; dl = dl->next) {
8149                 /* If in this array, skip */
8150                 for (d = a->info.devs ; d ; d = d->next)
8151                         if (d->state_fd >= 0 &&
8152                             d->disk.major == dl->major &&
8153                             d->disk.minor == dl->minor) {
8154                                 dprintf("%x:%x already in array\n",
8155                                         dl->major, dl->minor);
8156                                 break;
8157                         }
8158                 if (d)
8159                         continue;
8160                 test_list = additional_test_list;
8161                 while (test_list) {
8162                         if (test_list->disk.major == dl->major &&
8163                             test_list->disk.minor == dl->minor) {
8164                                 dprintf("%x:%x already in additional test list\n",
8165                                         dl->major, dl->minor);
8166                                 break;
8167                         }
8168                         test_list = test_list->next;
8169                 }
8170                 if (test_list)
8171                         continue;
8172
8173                 /* skip in use or failed drives */
8174                 if (is_failed(&dl->disk) || idx == dl->index ||
8175                     dl->index == -2) {
8176                         dprintf("%x:%x status (failed: %d index: %d)\n",
8177                                 dl->major, dl->minor, is_failed(&dl->disk), idx);
8178                         continue;
8179                 }
8180
8181                 /* skip pure spares when we are looking for partially
8182                  * assimilated drives
8183                  */
8184                 if (dl->index == -1 && !activate_new)
8185                         continue;
8186
8187                 /* Does this unused device have the requisite free space?
8188                  * It needs to be able to cover all member volumes
8189                  */
8190                 ex = get_extents(super, dl);
8191                 if (!ex) {
8192                         dprintf("cannot get extents\n");
8193                         continue;
8194                 }
8195                 for (i = 0; i < mpb->num_raid_devs; i++) {
8196                         dev = get_imsm_dev(super, i);
8197                         map = get_imsm_map(dev, MAP_0);
8198
8199                         /* check if this disk is already a member of
8200                          * this array
8201                          */
8202                         if (get_imsm_disk_slot(map, dl->index) >= 0)
8203                                 continue;
8204
8205                         found = 0;
8206                         j = 0;
8207                         pos = 0;
8208                         array_start = pba_of_lba0(map);
8209                         array_end = array_start +
8210                                     blocks_per_member(map) - 1;
8211
8212                         do {
8213                                 /* check that we can start at pba_of_lba0 with
8214                                  * blocks_per_member of space
8215                                  */
8216                                 if (array_start >= pos && array_end < ex[j].start) {
8217                                         found = 1;
8218                                         break;
8219                                 }
8220                                 pos = ex[j].start + ex[j].size;
8221                                 j++;
8222                         } while (ex[j-1].size);
8223
8224                         if (!found)
8225                                 break;
8226                 }
8227
8228                 free(ex);
8229                 if (i < mpb->num_raid_devs) {
8230                         dprintf("%x:%x does not have %u to %u available\n",
8231                                 dl->major, dl->minor, array_start, array_end);
8232                         /* No room */
8233                         continue;
8234                 }
8235                 return dl;
8236         }
8237
8238         return dl;
8239 }
8240
8241 static int imsm_rebuild_allowed(struct supertype *cont, int dev_idx, int failed)
8242 {
8243         struct imsm_dev *dev2;
8244         struct imsm_map *map;
8245         struct dl *idisk;
8246         int slot;
8247         int idx;
8248         __u8 state;
8249
8250         dev2 = get_imsm_dev(cont->sb, dev_idx);
8251         if (dev2) {
8252                 state = imsm_check_degraded(cont->sb, dev2, failed, MAP_0);
8253                 if (state == IMSM_T_STATE_FAILED) {
8254                         map = get_imsm_map(dev2, MAP_0);
8255                         if (!map)
8256                                 return 1;
8257                         for (slot = 0; slot < map->num_members; slot++) {
8258                                 /*
8259                                  * Check if failed disks are deleted from intel
8260                                  * disk list or are marked to be deleted
8261                                  */
8262                                 idx = get_imsm_disk_idx(dev2, slot, MAP_X);
8263                                 idisk = get_imsm_dl_disk(cont->sb, idx);
8264                                 /*
8265                                  * Do not rebuild the array if failed disks
8266                                  * from failed sub-array are not removed from
8267                                  * container.
8268                                  */
8269                                 if (idisk &&
8270                                     is_failed(&idisk->disk) &&
8271                                     (idisk->action != DISK_REMOVE))
8272                                         return 0;
8273                         }
8274                 }
8275         }
8276         return 1;
8277 }
8278
8279 static struct mdinfo *imsm_activate_spare(struct active_array *a,
8280                                           struct metadata_update **updates)
8281 {
8282         /**
8283          * Find a device with unused free space and use it to replace a
8284          * failed/vacant region in an array.  We replace failed regions one a
8285          * array at a time.  The result is that a new spare disk will be added
8286          * to the first failed array and after the monitor has finished
8287          * propagating failures the remainder will be consumed.
8288          *
8289          * FIXME add a capability for mdmon to request spares from another
8290          * container.
8291          */
8292
8293         struct intel_super *super = a->container->sb;
8294         int inst = a->info.container_member;
8295         struct imsm_dev *dev = get_imsm_dev(super, inst);
8296         struct imsm_map *map = get_imsm_map(dev, MAP_0);
8297         int failed = a->info.array.raid_disks;
8298         struct mdinfo *rv = NULL;
8299         struct mdinfo *d;
8300         struct mdinfo *di;
8301         struct metadata_update *mu;
8302         struct dl *dl;
8303         struct imsm_update_activate_spare *u;
8304         int num_spares = 0;
8305         int i;
8306         int allowed;
8307
8308         for (d = a->info.devs ; d ; d = d->next) {
8309                 if ((d->curr_state & DS_FAULTY) &&
8310                         d->state_fd >= 0)
8311                         /* wait for Removal to happen */
8312                         return NULL;
8313                 if (d->state_fd >= 0)
8314                         failed--;
8315         }
8316
8317         dprintf("imsm: activate spare: inst=%d failed=%d (%d) level=%d\n",
8318                 inst, failed, a->info.array.raid_disks, a->info.array.level);
8319
8320         if (imsm_reshape_blocks_arrays_changes(super))
8321                         return NULL;
8322
8323         /* Cannot activate another spare if rebuild is in progress already
8324          */
8325         if (is_rebuilding(dev)) {
8326                 dprintf("imsm: No spare activation allowed. Rebuild in progress already.\n");
8327                 return NULL;
8328         }
8329
8330         if (a->info.array.level == 4)
8331                 /* No repair for takeovered array
8332                  * imsm doesn't support raid4
8333                  */
8334                 return NULL;
8335
8336         if (imsm_check_degraded(super, dev, failed, MAP_0) !=
8337                         IMSM_T_STATE_DEGRADED)
8338                 return NULL;
8339
8340         if (get_imsm_map(dev, MAP_0)->map_state == IMSM_T_STATE_UNINITIALIZED) {
8341                 dprintf("imsm: No spare activation allowed. Volume is not initialized.\n");
8342                 return NULL;
8343         }
8344
8345         /*
8346          * If there are any failed disks check state of the other volume.
8347          * Block rebuild if the another one is failed until failed disks
8348          * are removed from container.
8349          */
8350         if (failed) {
8351                 dprintf("found failed disks in %.*s, check if there anotherfailed sub-array.\n",
8352                         MAX_RAID_SERIAL_LEN, dev->volume);
8353                 /* check if states of the other volumes allow for rebuild */
8354                 for (i = 0; i <  super->anchor->num_raid_devs; i++) {
8355                         if (i != inst) {
8356                                 allowed = imsm_rebuild_allowed(a->container,
8357                                                                i, failed);
8358                                 if (!allowed)
8359                                         return NULL;
8360                         }
8361                 }
8362         }
8363
8364         /* For each slot, if it is not working, find a spare */
8365         for (i = 0; i < a->info.array.raid_disks; i++) {
8366                 for (d = a->info.devs ; d ; d = d->next)
8367                         if (d->disk.raid_disk == i)
8368                                 break;
8369                 dprintf("found %d: %p %x\n", i, d, d?d->curr_state:0);
8370                 if (d && (d->state_fd >= 0))
8371                         continue;
8372
8373                 /*
8374                  * OK, this device needs recovery.  Try to re-add the
8375                  * previous occupant of this slot, if this fails see if
8376                  * we can continue the assimilation of a spare that was
8377                  * partially assimilated, finally try to activate a new
8378                  * spare.
8379                  */
8380                 dl = imsm_readd(super, i, a);
8381                 if (!dl)
8382                         dl = imsm_add_spare(super, i, a, 0, rv);
8383                 if (!dl)
8384                         dl = imsm_add_spare(super, i, a, 1, rv);
8385                 if (!dl)
8386                         continue;
8387
8388                 /* found a usable disk with enough space */
8389                 di = xcalloc(1, sizeof(*di));
8390
8391                 /* dl->index will be -1 in the case we are activating a
8392                  * pristine spare.  imsm_process_update() will create a
8393                  * new index in this case.  Once a disk is found to be
8394                  * failed in all member arrays it is kicked from the
8395                  * metadata
8396                  */
8397                 di->disk.number = dl->index;
8398
8399                 /* (ab)use di->devs to store a pointer to the device
8400                  * we chose
8401                  */
8402                 di->devs = (struct mdinfo *) dl;
8403
8404                 di->disk.raid_disk = i;
8405                 di->disk.major = dl->major;
8406                 di->disk.minor = dl->minor;
8407                 di->disk.state = 0;
8408                 di->recovery_start = 0;
8409                 di->data_offset = pba_of_lba0(map);
8410                 di->component_size = a->info.component_size;
8411                 di->container_member = inst;
8412                 di->bb.supported = 0;
8413                 super->random = random32();
8414                 di->next = rv;
8415                 rv = di;
8416                 num_spares++;
8417                 dprintf("%x:%x to be %d at %llu\n", dl->major, dl->minor,
8418                         i, di->data_offset);
8419         }
8420
8421         if (!rv)
8422                 /* No spares found */
8423                 return rv;
8424         /* Now 'rv' has a list of devices to return.
8425          * Create a metadata_update record to update the
8426          * disk_ord_tbl for the array
8427          */
8428         mu = xmalloc(sizeof(*mu));
8429         mu->buf = xcalloc(num_spares,
8430                           sizeof(struct imsm_update_activate_spare));
8431         mu->space = NULL;
8432         mu->space_list = NULL;
8433         mu->len = sizeof(struct imsm_update_activate_spare) * num_spares;
8434         mu->next = *updates;
8435         u = (struct imsm_update_activate_spare *) mu->buf;
8436
8437         for (di = rv ; di ; di = di->next) {
8438                 u->type = update_activate_spare;
8439                 u->dl = (struct dl *) di->devs;
8440                 di->devs = NULL;
8441                 u->slot = di->disk.raid_disk;
8442                 u->array = inst;
8443                 u->next = u + 1;
8444                 u++;
8445         }
8446         (u-1)->next = NULL;
8447         *updates = mu;
8448
8449         return rv;
8450 }
8451
8452 static int disks_overlap(struct intel_super *super, int idx, struct imsm_update_create_array *u)
8453 {
8454         struct imsm_dev *dev = get_imsm_dev(super, idx);
8455         struct imsm_map *map = get_imsm_map(dev, MAP_0);
8456         struct imsm_map *new_map = get_imsm_map(&u->dev, MAP_0);
8457         struct disk_info *inf = get_disk_info(u);
8458         struct imsm_disk *disk;
8459         int i;
8460         int j;
8461
8462         for (i = 0; i < map->num_members; i++) {
8463                 disk = get_imsm_disk(super, get_imsm_disk_idx(dev, i, MAP_X));
8464                 for (j = 0; j < new_map->num_members; j++)
8465                         if (serialcmp(disk->serial, inf[j].serial) == 0)
8466                                 return 1;
8467         }
8468
8469         return 0;
8470 }
8471
8472 static struct dl *get_disk_super(struct intel_super *super, int major, int minor)
8473 {
8474         struct dl *dl;
8475
8476         for (dl = super->disks; dl; dl = dl->next)
8477                 if (dl->major == major &&  dl->minor == minor)
8478                         return dl;
8479         return NULL;
8480 }
8481
8482 static int remove_disk_super(struct intel_super *super, int major, int minor)
8483 {
8484         struct dl *prev;
8485         struct dl *dl;
8486
8487         prev = NULL;
8488         for (dl = super->disks; dl; dl = dl->next) {
8489                 if (dl->major == major && dl->minor == minor) {
8490                         /* remove */
8491                         if (prev)
8492                                 prev->next = dl->next;
8493                         else
8494                                 super->disks = dl->next;
8495                         dl->next = NULL;
8496                         __free_imsm_disk(dl);
8497                         dprintf("removed %x:%x\n", major, minor);
8498                         break;
8499                 }
8500                 prev = dl;
8501         }
8502         return 0;
8503 }
8504
8505 static void imsm_delete(struct intel_super *super, struct dl **dlp, unsigned index);
8506
8507 static int add_remove_disk_update(struct intel_super *super)
8508 {
8509         int check_degraded = 0;
8510         struct dl *disk;
8511
8512         /* add/remove some spares to/from the metadata/contrainer */
8513         while (super->disk_mgmt_list) {
8514                 struct dl *disk_cfg;
8515
8516                 disk_cfg = super->disk_mgmt_list;
8517                 super->disk_mgmt_list = disk_cfg->next;
8518                 disk_cfg->next = NULL;
8519
8520                 if (disk_cfg->action == DISK_ADD) {
8521                         disk_cfg->next = super->disks;
8522                         super->disks = disk_cfg;
8523                         check_degraded = 1;
8524                         dprintf("added %x:%x\n",
8525                                 disk_cfg->major, disk_cfg->minor);
8526                 } else if (disk_cfg->action == DISK_REMOVE) {
8527                         dprintf("Disk remove action processed: %x.%x\n",
8528                                 disk_cfg->major, disk_cfg->minor);
8529                         disk = get_disk_super(super,
8530                                               disk_cfg->major,
8531                                               disk_cfg->minor);
8532                         if (disk) {
8533                                 /* store action status */
8534                                 disk->action = DISK_REMOVE;
8535                                 /* remove spare disks only */
8536                                 if (disk->index == -1) {
8537                                         remove_disk_super(super,
8538                                                           disk_cfg->major,
8539                                                           disk_cfg->minor);
8540                                 }
8541                         }
8542                         /* release allocate disk structure */
8543                         __free_imsm_disk(disk_cfg);
8544                 }
8545         }
8546         return check_degraded;
8547 }
8548
8549 static int apply_reshape_migration_update(struct imsm_update_reshape_migration *u,
8550                                                 struct intel_super *super,
8551                                                 void ***space_list)
8552 {
8553         struct intel_dev *id;
8554         void **tofree = NULL;
8555         int ret_val = 0;
8556
8557         dprintf("(enter)\n");
8558         if (u->subdev < 0 || u->subdev > 1) {
8559                 dprintf("imsm: Error: Wrong subdev: %i\n", u->subdev);
8560                 return ret_val;
8561         }
8562         if (space_list == NULL || *space_list == NULL) {
8563                 dprintf("imsm: Error: Memory is not allocated\n");
8564                 return ret_val;
8565         }
8566
8567         for (id = super->devlist ; id; id = id->next) {
8568                 if (id->index == (unsigned)u->subdev) {
8569                         struct imsm_dev *dev = get_imsm_dev(super, u->subdev);
8570                         struct imsm_map *map;
8571                         struct imsm_dev *new_dev =
8572                                 (struct imsm_dev *)*space_list;
8573                         struct imsm_map *migr_map = get_imsm_map(dev, MAP_1);
8574                         int to_state;
8575                         struct dl *new_disk;
8576
8577                         if (new_dev == NULL)
8578                                 return ret_val;
8579                         *space_list = **space_list;
8580                         memcpy(new_dev, dev, sizeof_imsm_dev(dev, 0));
8581                         map = get_imsm_map(new_dev, MAP_0);
8582                         if (migr_map) {
8583                                 dprintf("imsm: Error: migration in progress");
8584                                 return ret_val;
8585                         }
8586
8587                         to_state = map->map_state;
8588                         if ((u->new_level == 5) && (map->raid_level == 0)) {
8589                                 map->num_members++;
8590                                 /* this should not happen */
8591                                 if (u->new_disks[0] < 0) {
8592                                         map->failed_disk_num =
8593                                                 map->num_members - 1;
8594                                         to_state = IMSM_T_STATE_DEGRADED;
8595                                 } else
8596                                         to_state = IMSM_T_STATE_NORMAL;
8597                         }
8598                         migrate(new_dev, super, to_state, MIGR_GEN_MIGR);
8599                         if (u->new_level > -1)
8600                                 map->raid_level = u->new_level;
8601                         migr_map = get_imsm_map(new_dev, MAP_1);
8602                         if ((u->new_level == 5) &&
8603                             (migr_map->raid_level == 0)) {
8604                                 int ord = map->num_members - 1;
8605                                 migr_map->num_members--;
8606                                 if (u->new_disks[0] < 0)
8607                                         ord |= IMSM_ORD_REBUILD;
8608                                 set_imsm_ord_tbl_ent(map,
8609                                                      map->num_members - 1,
8610                                                      ord);
8611                         }
8612                         id->dev = new_dev;
8613                         tofree = (void **)dev;
8614
8615                         /* update chunk size
8616                          */
8617                         if (u->new_chunksize > 0) {
8618                                 unsigned long long num_data_stripes;
8619                                 int used_disks =
8620                                         imsm_num_data_members(dev, MAP_0);
8621
8622                                 if (used_disks == 0)
8623                                         return ret_val;
8624
8625                                 map->blocks_per_strip =
8626                                         __cpu_to_le16(u->new_chunksize * 2);
8627                                 num_data_stripes =
8628                                         (join_u32(dev->size_low, dev->size_high)
8629                                         / used_disks);
8630                                 num_data_stripes /= map->blocks_per_strip;
8631                                 num_data_stripes /= map->num_domains;
8632                                 set_num_data_stripes(map, num_data_stripes);
8633                         }
8634
8635                         /* add disk
8636                          */
8637                         if (u->new_level != 5 || migr_map->raid_level != 0 ||
8638                             migr_map->raid_level == map->raid_level)
8639                                 goto skip_disk_add;
8640
8641                         if (u->new_disks[0] >= 0) {
8642                                 /* use passes spare
8643                                  */
8644                                 new_disk = get_disk_super(super,
8645                                                         major(u->new_disks[0]),
8646                                                         minor(u->new_disks[0]));
8647                                 dprintf("imsm: new disk for reshape is: %i:%i (%p, index = %i)\n",
8648                                         major(u->new_disks[0]),
8649                                         minor(u->new_disks[0]),
8650                                         new_disk, new_disk->index);
8651                                 if (new_disk == NULL)
8652                                         goto error_disk_add;
8653
8654                                 new_disk->index = map->num_members - 1;
8655                                 /* slot to fill in autolayout
8656                                  */
8657                                 new_disk->raiddisk = new_disk->index;
8658                                 new_disk->disk.status |= CONFIGURED_DISK;
8659                                 new_disk->disk.status &= ~SPARE_DISK;
8660                         } else
8661                                 goto error_disk_add;
8662
8663 skip_disk_add:
8664                         *tofree = *space_list;
8665                         /* calculate new size
8666                          */
8667                         imsm_set_array_size(new_dev, -1);
8668
8669                         ret_val = 1;
8670                 }
8671         }
8672
8673         if (tofree)
8674                 *space_list = tofree;
8675         return ret_val;
8676
8677 error_disk_add:
8678         dprintf("Error: imsm: Cannot find disk.\n");
8679         return ret_val;
8680 }
8681
8682 static int apply_size_change_update(struct imsm_update_size_change *u,
8683                 struct intel_super *super)
8684 {
8685         struct intel_dev *id;
8686         int ret_val = 0;
8687
8688         dprintf("(enter)\n");
8689         if (u->subdev < 0 || u->subdev > 1) {
8690                 dprintf("imsm: Error: Wrong subdev: %i\n", u->subdev);
8691                 return ret_val;
8692         }
8693
8694         for (id = super->devlist ; id; id = id->next) {
8695                 if (id->index == (unsigned)u->subdev) {
8696                         struct imsm_dev *dev = get_imsm_dev(super, u->subdev);
8697                         struct imsm_map *map = get_imsm_map(dev, MAP_0);
8698                         int used_disks = imsm_num_data_members(dev, MAP_0);
8699                         unsigned long long blocks_per_member;
8700                         unsigned long long num_data_stripes;
8701
8702                         /* calculate new size
8703                          */
8704                         blocks_per_member = u->new_size / used_disks;
8705                         num_data_stripes = blocks_per_member /
8706                                            map->blocks_per_strip;
8707                         num_data_stripes /= map->num_domains;
8708                         dprintf("(size: %llu, blocks per member: %llu, num_data_stipes: %llu)\n",
8709                                 u->new_size, blocks_per_member,
8710                                 num_data_stripes);
8711                         set_blocks_per_member(map, blocks_per_member);
8712                         set_num_data_stripes(map, num_data_stripes);
8713                         imsm_set_array_size(dev, u->new_size);
8714
8715                         ret_val = 1;
8716                         break;
8717                 }
8718         }
8719
8720         return ret_val;
8721 }
8722
8723 static int apply_update_activate_spare(struct imsm_update_activate_spare *u,
8724                                        struct intel_super *super,
8725                                        struct active_array *active_array)
8726 {
8727         struct imsm_super *mpb = super->anchor;
8728         struct imsm_dev *dev = get_imsm_dev(super, u->array);
8729         struct imsm_map *map = get_imsm_map(dev, MAP_0);
8730         struct imsm_map *migr_map;
8731         struct active_array *a;
8732         struct imsm_disk *disk;
8733         __u8 to_state;
8734         struct dl *dl;
8735         unsigned int found;
8736         int failed;
8737         int victim;
8738         int i;
8739         int second_map_created = 0;
8740
8741         for (; u; u = u->next) {
8742                 victim = get_imsm_disk_idx(dev, u->slot, MAP_X);
8743
8744                 if (victim < 0)
8745                         return 0;
8746
8747                 for (dl = super->disks; dl; dl = dl->next)
8748                         if (dl == u->dl)
8749                                 break;
8750
8751                 if (!dl) {
8752                         pr_err("error: imsm_activate_spare passed an unknown disk (index: %d)\n",
8753                                 u->dl->index);
8754                         return 0;
8755                 }
8756
8757                 /* count failures (excluding rebuilds and the victim)
8758                  * to determine map[0] state
8759                  */
8760                 failed = 0;
8761                 for (i = 0; i < map->num_members; i++) {
8762                         if (i == u->slot)
8763                                 continue;
8764                         disk = get_imsm_disk(super,
8765                                              get_imsm_disk_idx(dev, i, MAP_X));
8766                         if (!disk || is_failed(disk))
8767                                 failed++;
8768                 }
8769
8770                 /* adding a pristine spare, assign a new index */
8771                 if (dl->index < 0) {
8772                         dl->index = super->anchor->num_disks;
8773                         super->anchor->num_disks++;
8774                 }
8775                 disk = &dl->disk;
8776                 disk->status |= CONFIGURED_DISK;
8777                 disk->status &= ~SPARE_DISK;
8778
8779                 /* mark rebuild */
8780                 to_state = imsm_check_degraded(super, dev, failed, MAP_0);
8781                 if (!second_map_created) {
8782                         second_map_created = 1;
8783                         map->map_state = IMSM_T_STATE_DEGRADED;
8784                         migrate(dev, super, to_state, MIGR_REBUILD);
8785                 } else
8786                         map->map_state = to_state;
8787                 migr_map = get_imsm_map(dev, MAP_1);
8788                 set_imsm_ord_tbl_ent(map, u->slot, dl->index);
8789                 set_imsm_ord_tbl_ent(migr_map, u->slot,
8790                                      dl->index | IMSM_ORD_REBUILD);
8791
8792                 /* update the family_num to mark a new container
8793                  * generation, being careful to record the existing
8794                  * family_num in orig_family_num to clean up after
8795                  * earlier mdadm versions that neglected to set it.
8796                  */
8797                 if (mpb->orig_family_num == 0)
8798                         mpb->orig_family_num = mpb->family_num;
8799                 mpb->family_num += super->random;
8800
8801                 /* count arrays using the victim in the metadata */
8802                 found = 0;
8803                 for (a = active_array; a ; a = a->next) {
8804                         dev = get_imsm_dev(super, a->info.container_member);
8805                         map = get_imsm_map(dev, MAP_0);
8806
8807                         if (get_imsm_disk_slot(map, victim) >= 0)
8808                                 found++;
8809                 }
8810
8811                 /* delete the victim if it is no longer being
8812                  * utilized anywhere
8813                  */
8814                 if (!found) {
8815                         struct dl **dlp;
8816
8817                         /* We know that 'manager' isn't touching anything,
8818                          * so it is safe to delete
8819                          */
8820                         for (dlp = &super->disks; *dlp; dlp = &(*dlp)->next)
8821                                 if ((*dlp)->index == victim)
8822                                         break;
8823
8824                         /* victim may be on the missing list */
8825                         if (!*dlp)
8826                                 for (dlp = &super->missing; *dlp;
8827                                      dlp = &(*dlp)->next)
8828                                         if ((*dlp)->index == victim)
8829                                                 break;
8830                         imsm_delete(super, dlp, victim);
8831                 }
8832         }
8833
8834         return 1;
8835 }
8836
8837 static int apply_reshape_container_disks_update(struct imsm_update_reshape *u,
8838                                                 struct intel_super *super,
8839                                                 void ***space_list)
8840 {
8841         struct dl *new_disk;
8842         struct intel_dev *id;
8843         int i;
8844         int delta_disks = u->new_raid_disks - u->old_raid_disks;
8845         int disk_count = u->old_raid_disks;
8846         void **tofree = NULL;
8847         int devices_to_reshape = 1;
8848         struct imsm_super *mpb = super->anchor;
8849         int ret_val = 0;
8850         unsigned int dev_id;
8851
8852         dprintf("(enter)\n");
8853
8854         /* enable spares to use in array */
8855         for (i = 0; i < delta_disks; i++) {
8856                 new_disk = get_disk_super(super,
8857                                           major(u->new_disks[i]),
8858                                           minor(u->new_disks[i]));
8859                 dprintf("imsm: new disk for reshape is: %i:%i (%p, index = %i)\n",
8860                         major(u->new_disks[i]), minor(u->new_disks[i]),
8861                         new_disk, new_disk->index);
8862                 if (new_disk == NULL ||
8863                     (new_disk->index >= 0 &&
8864                      new_disk->index < u->old_raid_disks))
8865                         goto update_reshape_exit;
8866                 new_disk->index = disk_count++;
8867                 /* slot to fill in autolayout
8868                  */
8869                 new_disk->raiddisk = new_disk->index;
8870                 new_disk->disk.status |=
8871                         CONFIGURED_DISK;
8872                 new_disk->disk.status &= ~SPARE_DISK;
8873         }
8874
8875         dprintf("imsm: volume set mpb->num_raid_devs = %i\n",
8876                 mpb->num_raid_devs);
8877         /* manage changes in volume
8878          */
8879         for (dev_id = 0; dev_id < mpb->num_raid_devs; dev_id++) {
8880                 void **sp = *space_list;
8881                 struct imsm_dev *newdev;
8882                 struct imsm_map *newmap, *oldmap;
8883
8884                 for (id = super->devlist ; id; id = id->next) {
8885                         if (id->index == dev_id)
8886                                 break;
8887                 }
8888                 if (id == NULL)
8889                         break;
8890                 if (!sp)
8891                         continue;
8892                 *space_list = *sp;
8893                 newdev = (void*)sp;
8894                 /* Copy the dev, but not (all of) the map */
8895                 memcpy(newdev, id->dev, sizeof(*newdev));
8896                 oldmap = get_imsm_map(id->dev, MAP_0);
8897                 newmap = get_imsm_map(newdev, MAP_0);
8898                 /* Copy the current map */
8899                 memcpy(newmap, oldmap, sizeof_imsm_map(oldmap));
8900                 /* update one device only
8901                  */
8902                 if (devices_to_reshape) {
8903                         dprintf("imsm: modifying subdev: %i\n",
8904                                 id->index);
8905                         devices_to_reshape--;
8906                         newdev->vol.migr_state = 1;
8907                         newdev->vol.curr_migr_unit = 0;
8908                         set_migr_type(newdev, MIGR_GEN_MIGR);
8909                         newmap->num_members = u->new_raid_disks;
8910                         for (i = 0; i < delta_disks; i++) {
8911                                 set_imsm_ord_tbl_ent(newmap,
8912                                                      u->old_raid_disks + i,
8913                                                      u->old_raid_disks + i);
8914                         }
8915                         /* New map is correct, now need to save old map
8916                          */
8917                         newmap = get_imsm_map(newdev, MAP_1);
8918                         memcpy(newmap, oldmap, sizeof_imsm_map(oldmap));
8919
8920                         imsm_set_array_size(newdev, -1);
8921                 }
8922
8923                 sp = (void **)id->dev;
8924                 id->dev = newdev;
8925                 *sp = tofree;
8926                 tofree = sp;
8927
8928                 /* Clear migration record */
8929                 memset(super->migr_rec, 0, sizeof(struct migr_record));
8930         }
8931         if (tofree)
8932                 *space_list = tofree;
8933         ret_val = 1;
8934
8935 update_reshape_exit:
8936
8937         return ret_val;
8938 }
8939
8940 static int apply_takeover_update(struct imsm_update_takeover *u,
8941                                  struct intel_super *super,
8942                                  void ***space_list)
8943 {
8944         struct imsm_dev *dev = NULL;
8945         struct intel_dev *dv;
8946         struct imsm_dev *dev_new;
8947         struct imsm_map *map;
8948         struct dl *dm, *du;
8949         int i;
8950
8951         for (dv = super->devlist; dv; dv = dv->next)
8952                 if (dv->index == (unsigned int)u->subarray) {
8953                         dev = dv->dev;
8954                         break;
8955                 }
8956
8957         if (dev == NULL)
8958                 return 0;
8959
8960         map = get_imsm_map(dev, MAP_0);
8961
8962         if (u->direction == R10_TO_R0) {
8963                 unsigned long long num_data_stripes;
8964
8965                 map->num_domains = 1;
8966                 num_data_stripes = blocks_per_member(map);
8967                 num_data_stripes /= map->blocks_per_strip;
8968                 num_data_stripes /= map->num_domains;
8969                 set_num_data_stripes(map, num_data_stripes);
8970
8971                 /* Number of failed disks must be half of initial disk number */
8972                 if (imsm_count_failed(super, dev, MAP_0) !=
8973                                 (map->num_members / 2))
8974                         return 0;
8975
8976                 /* iterate through devices to mark removed disks as spare */
8977                 for (dm = super->disks; dm; dm = dm->next) {
8978                         if (dm->disk.status & FAILED_DISK) {
8979                                 int idx = dm->index;
8980                                 /* update indexes on the disk list */
8981 /* FIXME this loop-with-the-loop looks wrong,  I'm not convinced
8982    the index values will end up being correct.... NB */
8983                                 for (du = super->disks; du; du = du->next)
8984                                         if (du->index > idx)
8985                                                 du->index--;
8986                                 /* mark as spare disk */
8987                                 mark_spare(dm);
8988                         }
8989                 }
8990                 /* update map */
8991                 map->num_members = map->num_members / 2;
8992                 map->map_state = IMSM_T_STATE_NORMAL;
8993                 map->num_domains = 1;
8994                 map->raid_level = 0;
8995                 map->failed_disk_num = -1;
8996         }
8997
8998         if (u->direction == R0_TO_R10) {
8999                 void **space;
9000                 /* update slots in current disk list */
9001                 for (dm = super->disks; dm; dm = dm->next) {
9002                         if (dm->index >= 0)
9003                                 dm->index *= 2;
9004                 }
9005                 /* create new *missing* disks */
9006                 for (i = 0; i < map->num_members; i++) {
9007                         space = *space_list;
9008                         if (!space)
9009                                 continue;
9010                         *space_list = *space;
9011                         du = (void *)space;
9012                         memcpy(du, super->disks, sizeof(*du));
9013                         du->fd = -1;
9014                         du->minor = 0;
9015                         du->major = 0;
9016                         du->index = (i * 2) + 1;
9017                         sprintf((char *)du->disk.serial,
9018                                 " MISSING_%d", du->index);
9019                         sprintf((char *)du->serial,
9020                                 "MISSING_%d", du->index);
9021                         du->next = super->missing;
9022                         super->missing = du;
9023                 }
9024                 /* create new dev and map */
9025                 space = *space_list;
9026                 if (!space)
9027                         return 0;
9028                 *space_list = *space;
9029                 dev_new = (void *)space;
9030                 memcpy(dev_new, dev, sizeof(*dev));
9031                 /* update new map */
9032                 map = get_imsm_map(dev_new, MAP_0);
9033                 map->num_members = map->num_members * 2;
9034                 map->map_state = IMSM_T_STATE_DEGRADED;
9035                 map->num_domains = 2;
9036                 map->raid_level = 1;
9037                 /* replace dev<->dev_new */
9038                 dv->dev = dev_new;
9039         }
9040         /* update disk order table */
9041         for (du = super->disks; du; du = du->next)
9042                 if (du->index >= 0)
9043                         set_imsm_ord_tbl_ent(map, du->index, du->index);
9044         for (du = super->missing; du; du = du->next)
9045                 if (du->index >= 0) {
9046                         set_imsm_ord_tbl_ent(map, du->index, du->index);
9047                         mark_missing(super, dv->dev, &du->disk, du->index);
9048                 }
9049
9050         return 1;
9051 }
9052
9053 static void imsm_process_update(struct supertype *st,
9054                                 struct metadata_update *update)
9055 {
9056         /**
9057          * crack open the metadata_update envelope to find the update record
9058          * update can be one of:
9059          *    update_reshape_container_disks - all the arrays in the container
9060          *      are being reshaped to have more devices.  We need to mark
9061          *      the arrays for general migration and convert selected spares
9062          *      into active devices.
9063          *    update_activate_spare - a spare device has replaced a failed
9064          *      device in an array, update the disk_ord_tbl.  If this disk is
9065          *      present in all member arrays then also clear the SPARE_DISK
9066          *      flag
9067          *    update_create_array
9068          *    update_kill_array
9069          *    update_rename_array
9070          *    update_add_remove_disk
9071          */
9072         struct intel_super *super = st->sb;
9073         struct imsm_super *mpb;
9074         enum imsm_update_type type = *(enum imsm_update_type *) update->buf;
9075
9076         /* update requires a larger buf but the allocation failed */
9077         if (super->next_len && !super->next_buf) {
9078                 super->next_len = 0;
9079                 return;
9080         }
9081
9082         if (super->next_buf) {
9083                 memcpy(super->next_buf, super->buf, super->len);
9084                 free(super->buf);
9085                 super->len = super->next_len;
9086                 super->buf = super->next_buf;
9087
9088                 super->next_len = 0;
9089                 super->next_buf = NULL;
9090         }
9091
9092         mpb = super->anchor;
9093
9094         switch (type) {
9095         case update_general_migration_checkpoint: {
9096                 struct intel_dev *id;
9097                 struct imsm_update_general_migration_checkpoint *u =
9098                                                         (void *)update->buf;
9099
9100                 dprintf("called for update_general_migration_checkpoint\n");
9101
9102                 /* find device under general migration */
9103                 for (id = super->devlist ; id; id = id->next) {
9104                         if (is_gen_migration(id->dev)) {
9105                                 id->dev->vol.curr_migr_unit =
9106                                         __cpu_to_le32(u->curr_migr_unit);
9107                                 super->updates_pending++;
9108                         }
9109                 }
9110                 break;
9111         }
9112         case update_takeover: {
9113                 struct imsm_update_takeover *u = (void *)update->buf;
9114                 if (apply_takeover_update(u, super, &update->space_list)) {
9115                         imsm_update_version_info(super);
9116                         super->updates_pending++;
9117                 }
9118                 break;
9119         }
9120
9121         case update_reshape_container_disks: {
9122                 struct imsm_update_reshape *u = (void *)update->buf;
9123                 if (apply_reshape_container_disks_update(
9124                             u, super, &update->space_list))
9125                         super->updates_pending++;
9126                 break;
9127         }
9128         case update_reshape_migration: {
9129                 struct imsm_update_reshape_migration *u = (void *)update->buf;
9130                 if (apply_reshape_migration_update(
9131                             u, super, &update->space_list))
9132                         super->updates_pending++;
9133                 break;
9134         }
9135         case update_size_change: {
9136                 struct imsm_update_size_change *u = (void *)update->buf;
9137                 if (apply_size_change_update(u, super))
9138                         super->updates_pending++;
9139                 break;
9140         }
9141         case update_activate_spare: {
9142                 struct imsm_update_activate_spare *u = (void *) update->buf;
9143                 if (apply_update_activate_spare(u, super, st->arrays))
9144                         super->updates_pending++;
9145                 break;
9146         }
9147         case update_create_array: {
9148                 /* someone wants to create a new array, we need to be aware of
9149                  * a few races/collisions:
9150                  * 1/ 'Create' called by two separate instances of mdadm
9151                  * 2/ 'Create' versus 'activate_spare': mdadm has chosen
9152                  *     devices that have since been assimilated via
9153                  *     activate_spare.
9154                  * In the event this update can not be carried out mdadm will
9155                  * (FIX ME) notice that its update did not take hold.
9156                  */
9157                 struct imsm_update_create_array *u = (void *) update->buf;
9158                 struct intel_dev *dv;
9159                 struct imsm_dev *dev;
9160                 struct imsm_map *map, *new_map;
9161                 unsigned long long start, end;
9162                 unsigned long long new_start, new_end;
9163                 int i;
9164                 struct disk_info *inf;
9165                 struct dl *dl;
9166
9167                 /* handle racing creates: first come first serve */
9168                 if (u->dev_idx < mpb->num_raid_devs) {
9169                         dprintf("subarray %d already defined\n", u->dev_idx);
9170                         goto create_error;
9171                 }
9172
9173                 /* check update is next in sequence */
9174                 if (u->dev_idx != mpb->num_raid_devs) {
9175                         dprintf("can not create array %d expected index %d\n",
9176                                 u->dev_idx, mpb->num_raid_devs);
9177                         goto create_error;
9178                 }
9179
9180                 new_map = get_imsm_map(&u->dev, MAP_0);
9181                 new_start = pba_of_lba0(new_map);
9182                 new_end = new_start + blocks_per_member(new_map);
9183                 inf = get_disk_info(u);
9184
9185                 /* handle activate_spare versus create race:
9186                  * check to make sure that overlapping arrays do not include
9187                  * overalpping disks
9188                  */
9189                 for (i = 0; i < mpb->num_raid_devs; i++) {
9190                         dev = get_imsm_dev(super, i);
9191                         map = get_imsm_map(dev, MAP_0);
9192                         start = pba_of_lba0(map);
9193                         end = start + blocks_per_member(map);
9194                         if ((new_start >= start && new_start <= end) ||
9195                             (start >= new_start && start <= new_end))
9196                                 /* overlap */;
9197                         else
9198                                 continue;
9199
9200                         if (disks_overlap(super, i, u)) {
9201                                 dprintf("arrays overlap\n");
9202                                 goto create_error;
9203                         }
9204                 }
9205
9206                 /* check that prepare update was successful */
9207                 if (!update->space) {
9208                         dprintf("prepare update failed\n");
9209                         goto create_error;
9210                 }
9211
9212                 /* check that all disks are still active before committing
9213                  * changes.  FIXME: could we instead handle this by creating a
9214                  * degraded array?  That's probably not what the user expects,
9215                  * so better to drop this update on the floor.
9216                  */
9217                 for (i = 0; i < new_map->num_members; i++) {
9218                         dl = serial_to_dl(inf[i].serial, super);
9219                         if (!dl) {
9220                                 dprintf("disk disappeared\n");
9221                                 goto create_error;
9222                         }
9223                 }
9224
9225                 super->updates_pending++;
9226
9227                 /* convert spares to members and fixup ord_tbl */
9228                 for (i = 0; i < new_map->num_members; i++) {
9229                         dl = serial_to_dl(inf[i].serial, super);
9230                         if (dl->index == -1) {
9231                                 dl->index = mpb->num_disks;
9232                                 mpb->num_disks++;
9233                                 dl->disk.status |= CONFIGURED_DISK;
9234                                 dl->disk.status &= ~SPARE_DISK;
9235                         }
9236                         set_imsm_ord_tbl_ent(new_map, i, dl->index);
9237                 }
9238
9239                 dv = update->space;
9240                 dev = dv->dev;
9241                 update->space = NULL;
9242                 imsm_copy_dev(dev, &u->dev);
9243                 dv->index = u->dev_idx;
9244                 dv->next = super->devlist;
9245                 super->devlist = dv;
9246                 mpb->num_raid_devs++;
9247
9248                 imsm_update_version_info(super);
9249                 break;
9250  create_error:
9251                 /* mdmon knows how to release update->space, but not
9252                  * ((struct intel_dev *) update->space)->dev
9253                  */
9254                 if (update->space) {
9255                         dv = update->space;
9256                         free(dv->dev);
9257                 }
9258                 break;
9259         }
9260         case update_kill_array: {
9261                 struct imsm_update_kill_array *u = (void *) update->buf;
9262                 int victim = u->dev_idx;
9263                 struct active_array *a;
9264                 struct intel_dev **dp;
9265                 struct imsm_dev *dev;
9266
9267                 /* sanity check that we are not affecting the uuid of
9268                  * active arrays, or deleting an active array
9269                  *
9270                  * FIXME when immutable ids are available, but note that
9271                  * we'll also need to fixup the invalidated/active
9272                  * subarray indexes in mdstat
9273                  */
9274                 for (a = st->arrays; a; a = a->next)
9275                         if (a->info.container_member >= victim)
9276                                 break;
9277                 /* by definition if mdmon is running at least one array
9278                  * is active in the container, so checking
9279                  * mpb->num_raid_devs is just extra paranoia
9280                  */
9281                 dev = get_imsm_dev(super, victim);
9282                 if (a || !dev || mpb->num_raid_devs == 1) {
9283                         dprintf("failed to delete subarray-%d\n", victim);
9284                         break;
9285                 }
9286
9287                 for (dp = &super->devlist; *dp;)
9288                         if ((*dp)->index == (unsigned)super->current_vol) {
9289                                 *dp = (*dp)->next;
9290                         } else {
9291                                 if ((*dp)->index > (unsigned)victim)
9292                                         (*dp)->index--;
9293                                 dp = &(*dp)->next;
9294                         }
9295                 mpb->num_raid_devs--;
9296                 super->updates_pending++;
9297                 break;
9298         }
9299         case update_rename_array: {
9300                 struct imsm_update_rename_array *u = (void *) update->buf;
9301                 char name[MAX_RAID_SERIAL_LEN+1];
9302                 int target = u->dev_idx;
9303                 struct active_array *a;
9304                 struct imsm_dev *dev;
9305
9306                 /* sanity check that we are not affecting the uuid of
9307                  * an active array
9308                  */
9309                 snprintf(name, MAX_RAID_SERIAL_LEN, "%s", (char *) u->name);
9310                 name[MAX_RAID_SERIAL_LEN] = '\0';
9311                 for (a = st->arrays; a; a = a->next)
9312                         if (a->info.container_member == target)
9313                                 break;
9314                 dev = get_imsm_dev(super, u->dev_idx);
9315                 if (a || !dev || !check_name(super, name, 1)) {
9316                         dprintf("failed to rename subarray-%d\n", target);
9317                         break;
9318                 }
9319
9320                 snprintf((char *) dev->volume, MAX_RAID_SERIAL_LEN, "%s", name);
9321                 super->updates_pending++;
9322                 break;
9323         }
9324         case update_add_remove_disk: {
9325                 /* we may be able to repair some arrays if disks are
9326                  * being added, check the status of add_remove_disk
9327                  * if discs has been added.
9328                  */
9329                 if (add_remove_disk_update(super)) {
9330                         struct active_array *a;
9331
9332                         super->updates_pending++;
9333                         for (a = st->arrays; a; a = a->next)
9334                                 a->check_degraded = 1;
9335                 }
9336                 break;
9337         }
9338         case update_prealloc_badblocks_mem:
9339                 break;
9340         default:
9341                 pr_err("error: unsuported process update type:(type: %d)\n",    type);
9342         }
9343 }
9344
9345 static struct mdinfo *get_spares_for_grow(struct supertype *st);
9346
9347 static int imsm_prepare_update(struct supertype *st,
9348                                struct metadata_update *update)
9349 {
9350         /**
9351          * Allocate space to hold new disk entries, raid-device entries or a new
9352          * mpb if necessary.  The manager synchronously waits for updates to
9353          * complete in the monitor, so new mpb buffers allocated here can be
9354          * integrated by the monitor thread without worrying about live pointers
9355          * in the manager thread.
9356          */
9357         enum imsm_update_type type;
9358         struct intel_super *super = st->sb;
9359         unsigned int sector_size = super->sector_size;
9360         struct imsm_super *mpb = super->anchor;
9361         size_t buf_len;
9362         size_t len = 0;
9363
9364         if (update->len < (int)sizeof(type))
9365                 return 0;
9366
9367         type = *(enum imsm_update_type *) update->buf;
9368
9369         switch (type) {
9370         case update_general_migration_checkpoint:
9371                 if (update->len < (int)sizeof(struct imsm_update_general_migration_checkpoint))
9372                         return 0;
9373                 dprintf("called for update_general_migration_checkpoint\n");
9374                 break;
9375         case update_takeover: {
9376                 struct imsm_update_takeover *u = (void *)update->buf;
9377                 if (update->len < (int)sizeof(*u))
9378                         return 0;
9379                 if (u->direction == R0_TO_R10) {
9380                         void **tail = (void **)&update->space_list;
9381                         struct imsm_dev *dev = get_imsm_dev(super, u->subarray);
9382                         struct imsm_map *map = get_imsm_map(dev, MAP_0);
9383                         int num_members = map->num_members;
9384                         void *space;
9385                         int size, i;
9386                         /* allocate memory for added disks */
9387                         for (i = 0; i < num_members; i++) {
9388                                 size = sizeof(struct dl);
9389                                 space = xmalloc(size);
9390                                 *tail = space;
9391                                 tail = space;
9392                                 *tail = NULL;
9393                         }
9394                         /* allocate memory for new device */
9395                         size = sizeof_imsm_dev(super->devlist->dev, 0) +
9396                                 (num_members * sizeof(__u32));
9397                         space = xmalloc(size);
9398                         *tail = space;
9399                         tail = space;
9400                         *tail = NULL;
9401                         len = disks_to_mpb_size(num_members * 2);
9402                 }
9403
9404                 break;
9405         }
9406         case update_reshape_container_disks: {
9407                 /* Every raid device in the container is about to
9408                  * gain some more devices, and we will enter a
9409                  * reconfiguration.
9410                  * So each 'imsm_map' will be bigger, and the imsm_vol
9411                  * will now hold 2 of them.
9412                  * Thus we need new 'struct imsm_dev' allocations sized
9413                  * as sizeof_imsm_dev but with more devices in both maps.
9414                  */
9415                 struct imsm_update_reshape *u = (void *)update->buf;
9416                 struct intel_dev *dl;
9417                 void **space_tail = (void**)&update->space_list;
9418
9419                 if (update->len < (int)sizeof(*u))
9420                         return 0;
9421
9422                 dprintf("for update_reshape\n");
9423
9424                 for (dl = super->devlist; dl; dl = dl->next) {
9425                         int size = sizeof_imsm_dev(dl->dev, 1);
9426                         void *s;
9427                         if (u->new_raid_disks > u->old_raid_disks)
9428                                 size += sizeof(__u32)*2*
9429                                         (u->new_raid_disks - u->old_raid_disks);
9430                         s = xmalloc(size);
9431                         *space_tail = s;
9432                         space_tail = s;
9433                         *space_tail = NULL;
9434                 }
9435
9436                 len = disks_to_mpb_size(u->new_raid_disks);
9437                 dprintf("New anchor length is %llu\n", (unsigned long long)len);
9438                 break;
9439         }
9440         case update_reshape_migration: {
9441                 /* for migration level 0->5 we need to add disks
9442                  * so the same as for container operation we will copy
9443                  * device to the bigger location.
9444                  * in memory prepared device and new disk area are prepared
9445                  * for usage in process update
9446                  */
9447                 struct imsm_update_reshape_migration *u = (void *)update->buf;
9448                 struct intel_dev *id;
9449                 void **space_tail = (void **)&update->space_list;
9450                 int size;
9451                 void *s;
9452                 int current_level = -1;
9453
9454                 if (update->len < (int)sizeof(*u))
9455                         return 0;
9456
9457                 dprintf("for update_reshape\n");
9458
9459                 /* add space for bigger array in update
9460                  */
9461                 for (id = super->devlist; id; id = id->next) {
9462                         if (id->index == (unsigned)u->subdev) {
9463                                 size = sizeof_imsm_dev(id->dev, 1);
9464                                 if (u->new_raid_disks > u->old_raid_disks)
9465                                         size += sizeof(__u32)*2*
9466                                         (u->new_raid_disks - u->old_raid_disks);
9467                                 s = xmalloc(size);
9468                                 *space_tail = s;
9469                                 space_tail = s;
9470                                 *space_tail = NULL;
9471                                 break;
9472                         }
9473                 }
9474                 if (update->space_list == NULL)
9475                         break;
9476
9477                 /* add space for disk in update
9478                  */
9479                 size = sizeof(struct dl);
9480                 s = xmalloc(size);
9481                 *space_tail = s;
9482                 space_tail = s;
9483                 *space_tail = NULL;
9484
9485                 /* add spare device to update
9486                  */
9487                 for (id = super->devlist ; id; id = id->next)
9488                         if (id->index == (unsigned)u->subdev) {
9489                                 struct imsm_dev *dev;
9490                                 struct imsm_map *map;
9491
9492                                 dev = get_imsm_dev(super, u->subdev);
9493                                 map = get_imsm_map(dev, MAP_0);
9494                                 current_level = map->raid_level;
9495                                 break;
9496                         }
9497                 if (u->new_level == 5 && u->new_level != current_level) {
9498                         struct mdinfo *spares;
9499
9500                         spares = get_spares_for_grow(st);
9501                         if (spares) {
9502                                 struct dl *dl;
9503                                 struct mdinfo *dev;
9504
9505                                 dev = spares->devs;
9506                                 if (dev) {
9507                                         u->new_disks[0] =
9508                                                 makedev(dev->disk.major,
9509                                                         dev->disk.minor);
9510                                         dl = get_disk_super(super,
9511                                                             dev->disk.major,
9512                                                             dev->disk.minor);
9513                                         dl->index = u->old_raid_disks;
9514                                         dev = dev->next;
9515                                 }
9516                                 sysfs_free(spares);
9517                         }
9518                 }
9519                 len = disks_to_mpb_size(u->new_raid_disks);
9520                 dprintf("New anchor length is %llu\n", (unsigned long long)len);
9521                 break;
9522         }
9523         case update_size_change: {
9524                 if (update->len < (int)sizeof(struct imsm_update_size_change))
9525                         return 0;
9526                 break;
9527         }
9528         case update_activate_spare: {
9529                 if (update->len < (int)sizeof(struct imsm_update_activate_spare))
9530                         return 0;
9531                 break;
9532         }
9533         case update_create_array: {
9534                 struct imsm_update_create_array *u = (void *) update->buf;
9535                 struct intel_dev *dv;
9536                 struct imsm_dev *dev = &u->dev;
9537                 struct imsm_map *map = get_imsm_map(dev, MAP_0);
9538                 struct dl *dl;
9539                 struct disk_info *inf;
9540                 int i;
9541                 int activate = 0;
9542
9543                 if (update->len < (int)sizeof(*u))
9544                         return 0;
9545
9546                 inf = get_disk_info(u);
9547                 len = sizeof_imsm_dev(dev, 1);
9548                 /* allocate a new super->devlist entry */
9549                 dv = xmalloc(sizeof(*dv));
9550                 dv->dev = xmalloc(len);
9551                 update->space = dv;
9552
9553                 /* count how many spares will be converted to members */
9554                 for (i = 0; i < map->num_members; i++) {
9555                         dl = serial_to_dl(inf[i].serial, super);
9556                         if (!dl) {
9557                                 /* hmm maybe it failed?, nothing we can do about
9558                                  * it here
9559                                  */
9560                                 continue;
9561                         }
9562                         if (count_memberships(dl, super) == 0)
9563                                 activate++;
9564                 }
9565                 len += activate * sizeof(struct imsm_disk);
9566                 break;
9567         }
9568         case update_kill_array: {
9569                 if (update->len < (int)sizeof(struct imsm_update_kill_array))
9570                         return 0;
9571                 break;
9572         }
9573         case update_rename_array: {
9574                 if (update->len < (int)sizeof(struct imsm_update_rename_array))
9575                         return 0;
9576                 break;
9577         }
9578         case update_add_remove_disk:
9579                 /* no update->len needed */
9580                 break;
9581         case update_prealloc_badblocks_mem:
9582                 super->extra_space += sizeof(struct bbm_log) -
9583                         get_imsm_bbm_log_size(super->bbm_log);
9584                 break;
9585         default:
9586                 return 0;
9587         }
9588
9589         /* check if we need a larger metadata buffer */
9590         if (super->next_buf)
9591                 buf_len = super->next_len;
9592         else
9593                 buf_len = super->len;
9594
9595         if (__le32_to_cpu(mpb->mpb_size) + super->extra_space + len > buf_len) {
9596                 /* ok we need a larger buf than what is currently allocated
9597                  * if this allocation fails process_update will notice that
9598                  * ->next_len is set and ->next_buf is NULL
9599                  */
9600                 buf_len = ROUND_UP(__le32_to_cpu(mpb->mpb_size) +
9601                                    super->extra_space + len, sector_size);
9602                 if (super->next_buf)
9603                         free(super->next_buf);
9604
9605                 super->next_len = buf_len;
9606                 if (posix_memalign(&super->next_buf, sector_size, buf_len) == 0)
9607                         memset(super->next_buf, 0, buf_len);
9608                 else
9609                         super->next_buf = NULL;
9610         }
9611         return 1;
9612 }
9613
9614 /* must be called while manager is quiesced */
9615 static void imsm_delete(struct intel_super *super, struct dl **dlp, unsigned index)
9616 {
9617         struct imsm_super *mpb = super->anchor;
9618         struct dl *iter;
9619         struct imsm_dev *dev;
9620         struct imsm_map *map;
9621         unsigned int i, j, num_members;
9622         __u32 ord;
9623         struct bbm_log *log = super->bbm_log;
9624
9625         dprintf("deleting device[%d] from imsm_super\n", index);
9626
9627         /* shift all indexes down one */
9628         for (iter = super->disks; iter; iter = iter->next)
9629                 if (iter->index > (int)index)
9630                         iter->index--;
9631         for (iter = super->missing; iter; iter = iter->next)
9632                 if (iter->index > (int)index)
9633                         iter->index--;
9634
9635         for (i = 0; i < mpb->num_raid_devs; i++) {
9636                 dev = get_imsm_dev(super, i);
9637                 map = get_imsm_map(dev, MAP_0);
9638                 num_members = map->num_members;
9639                 for (j = 0; j < num_members; j++) {
9640                         /* update ord entries being careful not to propagate
9641                          * ord-flags to the first map
9642                          */
9643                         ord = get_imsm_ord_tbl_ent(dev, j, MAP_X);
9644
9645                         if (ord_to_idx(ord) <= index)
9646                                 continue;
9647
9648                         map = get_imsm_map(dev, MAP_0);
9649                         set_imsm_ord_tbl_ent(map, j, ord_to_idx(ord - 1));
9650                         map = get_imsm_map(dev, MAP_1);
9651                         if (map)
9652                                 set_imsm_ord_tbl_ent(map, j, ord - 1);
9653                 }
9654         }
9655
9656         for (i = 0; i < log->entry_count; i++) {
9657                 struct bbm_log_entry *entry = &log->marked_block_entries[i];
9658
9659                 if (entry->disk_ordinal <= index)
9660                         continue;
9661                 entry->disk_ordinal--;
9662         }
9663
9664         mpb->num_disks--;
9665         super->updates_pending++;
9666         if (*dlp) {
9667                 struct dl *dl = *dlp;
9668
9669                 *dlp = (*dlp)->next;
9670                 __free_imsm_disk(dl);
9671         }
9672 }
9673 #endif /* MDASSEMBLE */
9674
9675 static void close_targets(int *targets, int new_disks)
9676 {
9677         int i;
9678
9679         if (!targets)
9680                 return;
9681
9682         for (i = 0; i < new_disks; i++) {
9683                 if (targets[i] >= 0) {
9684                         close(targets[i]);
9685                         targets[i] = -1;
9686                 }
9687         }
9688 }
9689
9690 static int imsm_get_allowed_degradation(int level, int raid_disks,
9691                                         struct intel_super *super,
9692                                         struct imsm_dev *dev)
9693 {
9694         switch (level) {
9695         case 1:
9696         case 10:{
9697                 int ret_val = 0;
9698                 struct imsm_map *map;
9699                 int i;
9700
9701                 ret_val = raid_disks/2;
9702                 /* check map if all disks pairs not failed
9703                  * in both maps
9704                  */
9705                 map = get_imsm_map(dev, MAP_0);
9706                 for (i = 0; i < ret_val; i++) {
9707                         int degradation = 0;
9708                         if (get_imsm_disk(super, i) == NULL)
9709                                 degradation++;
9710                         if (get_imsm_disk(super, i + 1) == NULL)
9711                                 degradation++;
9712                         if (degradation == 2)
9713                                 return 0;
9714                 }
9715                 map = get_imsm_map(dev, MAP_1);
9716                 /* if there is no second map
9717                  * result can be returned
9718                  */
9719                 if (map == NULL)
9720                         return ret_val;
9721                 /* check degradation in second map
9722                  */
9723                 for (i = 0; i < ret_val; i++) {
9724                         int degradation = 0;
9725                 if (get_imsm_disk(super, i) == NULL)
9726                                 degradation++;
9727                         if (get_imsm_disk(super, i + 1) == NULL)
9728                                 degradation++;
9729                         if (degradation == 2)
9730                                 return 0;
9731                 }
9732                 return ret_val;
9733         }
9734         case 5:
9735                 return 1;
9736         case 6:
9737                 return 2;
9738         default:
9739                 return 0;
9740         }
9741 }
9742
9743 /*******************************************************************************
9744  * Function:    open_backup_targets
9745  * Description: Function opens file descriptors for all devices given in
9746  *              info->devs
9747  * Parameters:
9748  *      info            : general array info
9749  *      raid_disks      : number of disks
9750  *      raid_fds        : table of device's file descriptors
9751  *      super           : intel super for raid10 degradation check
9752  *      dev             : intel device for raid10 degradation check
9753  * Returns:
9754  *       0 : success
9755  *      -1 : fail
9756  ******************************************************************************/
9757 int open_backup_targets(struct mdinfo *info, int raid_disks, int *raid_fds,
9758                         struct intel_super *super, struct imsm_dev *dev)
9759 {
9760         struct mdinfo *sd;
9761         int i;
9762         int opened = 0;
9763
9764         for (i = 0; i < raid_disks; i++)
9765                 raid_fds[i] = -1;
9766
9767         for (sd = info->devs ; sd ; sd = sd->next) {
9768                 char *dn;
9769
9770                 if (sd->disk.state & (1<<MD_DISK_FAULTY)) {
9771                         dprintf("disk is faulty!!\n");
9772                         continue;
9773                 }
9774
9775                 if (sd->disk.raid_disk >= raid_disks || sd->disk.raid_disk < 0)
9776                         continue;
9777
9778                 dn = map_dev(sd->disk.major,
9779                              sd->disk.minor, 1);
9780                 raid_fds[sd->disk.raid_disk] = dev_open(dn, O_RDWR);
9781                 if (raid_fds[sd->disk.raid_disk] < 0) {
9782                         pr_err("cannot open component\n");
9783                         continue;
9784                 }
9785                 opened++;
9786         }
9787         /* check if maximum array degradation level is not exceeded
9788         */
9789         if ((raid_disks - opened) >
9790             imsm_get_allowed_degradation(info->new_level, raid_disks,
9791                                          super, dev)) {
9792                 pr_err("Not enough disks can be opened.\n");
9793                 close_targets(raid_fds, raid_disks);
9794                 return -2;
9795         }
9796         return 0;
9797 }
9798
9799 /*******************************************************************************
9800  * Function:    validate_container_imsm
9801  * Description: This routine validates container after assemble,
9802  *              eg. if devices in container are under the same controller.
9803  *
9804  * Parameters:
9805  *      info    : linked list with info about devices used in array
9806  * Returns:
9807  *      1 : HBA mismatch
9808  *      0 : Success
9809  ******************************************************************************/
9810 int validate_container_imsm(struct mdinfo *info)
9811 {
9812         if (check_env("IMSM_NO_PLATFORM"))
9813                 return 0;
9814
9815         struct sys_dev *idev;
9816         struct sys_dev *hba = NULL;
9817         struct sys_dev *intel_devices = find_intel_devices();
9818         char *dev_path = devt_to_devpath(makedev(info->disk.major,
9819                                                                         info->disk.minor));
9820
9821         for (idev = intel_devices; idev; idev = idev->next) {
9822                 if (dev_path && strstr(dev_path, idev->path)) {
9823                         hba = idev;
9824                         break;
9825                 }
9826         }
9827         if (dev_path)
9828                 free(dev_path);
9829
9830         if (!hba) {
9831                 pr_err("WARNING - Cannot detect HBA for device %s!\n",
9832                                 devid2kname(makedev(info->disk.major, info->disk.minor)));
9833                 return 1;
9834         }
9835
9836         const struct imsm_orom *orom = get_orom_by_device_id(hba->dev_id);
9837         struct mdinfo *dev;
9838
9839         for (dev = info->next; dev; dev = dev->next) {
9840                 dev_path = devt_to_devpath(makedev(dev->disk.major, dev->disk.minor));
9841
9842                 struct sys_dev *hba2 = NULL;
9843                 for (idev = intel_devices; idev; idev = idev->next) {
9844                         if (dev_path && strstr(dev_path, idev->path)) {
9845                                 hba2 = idev;
9846                                 break;
9847                         }
9848                 }
9849                 if (dev_path)
9850                         free(dev_path);
9851
9852                 const struct imsm_orom *orom2 = hba2 == NULL ? NULL :
9853                                 get_orom_by_device_id(hba2->dev_id);
9854
9855                 if (hba2 && hba->type != hba2->type) {
9856                         pr_err("WARNING - HBAs of devices do not match %s != %s\n",
9857                                 get_sys_dev_type(hba->type), get_sys_dev_type(hba2->type));
9858                         return 1;
9859                 }
9860
9861                 if (orom != orom2) {
9862                         pr_err("WARNING - IMSM container assembled with disks under different HBAs!\n"
9863                                 "       This operation is not supported and can lead to data loss.\n");
9864                         return 1;
9865                 }
9866
9867                 if (!orom) {
9868                         pr_err("WARNING - IMSM container assembled with disks under HBAs without IMSM platform support!\n"
9869                                 "       This operation is not supported and can lead to data loss.\n");
9870                         return 1;
9871                 }
9872         }
9873
9874         return 0;
9875 }
9876 #ifndef MDASSEMBLE
9877 /*******************************************************************************
9878 * Function:   imsm_record_badblock
9879 * Description: This routine stores new bad block record in BBM log
9880 *
9881 * Parameters:
9882 *     a         : array containing a bad block
9883 *     slot      : disk number containing a bad block
9884 *     sector    : bad block sector
9885 *     length    : bad block sectors range
9886 * Returns:
9887 *     1 : Success
9888 *     0 : Error
9889 ******************************************************************************/
9890 static int imsm_record_badblock(struct active_array *a, int slot,
9891                           unsigned long long sector, int length)
9892 {
9893         struct intel_super *super = a->container->sb;
9894         int ord;
9895         int ret;
9896
9897         ord = imsm_disk_slot_to_ord(a, slot);
9898         if (ord < 0)
9899                 return 0;
9900
9901         ret = record_new_badblock(super->bbm_log, ord_to_idx(ord), sector,
9902                                    length);
9903         if (ret)
9904                 super->updates_pending++;
9905
9906         return ret;
9907 }
9908 /*******************************************************************************
9909 * Function:   imsm_clear_badblock
9910 * Description: This routine clears bad block record from BBM log
9911 *
9912 * Parameters:
9913 *     a         : array containing a bad block
9914 *     slot      : disk number containing a bad block
9915 *     sector    : bad block sector
9916 *     length    : bad block sectors range
9917 * Returns:
9918 *     1 : Success
9919 *     0 : Error
9920 ******************************************************************************/
9921 static int imsm_clear_badblock(struct active_array *a, int slot,
9922                         unsigned long long sector, int length)
9923 {
9924         struct intel_super *super = a->container->sb;
9925         int ord;
9926         int ret;
9927
9928         ord = imsm_disk_slot_to_ord(a, slot);
9929         if (ord < 0)
9930                 return 0;
9931
9932         ret = clear_badblock(super->bbm_log, ord_to_idx(ord), sector, length);
9933         if (ret)
9934                 super->updates_pending++;
9935
9936         return ret;
9937 }
9938 /*******************************************************************************
9939 * Function:   imsm_get_badblocks
9940 * Description: This routine get list of bad blocks for an array
9941 *
9942 * Parameters:
9943 *     a         : array
9944 *     slot      : disk number
9945 * Returns:
9946 *     bb        : structure containing bad blocks
9947 *     NULL      : error
9948 ******************************************************************************/
9949 static struct md_bb *imsm_get_badblocks(struct active_array *a, int slot)
9950 {
9951         int inst = a->info.container_member;
9952         struct intel_super *super = a->container->sb;
9953         struct imsm_dev *dev = get_imsm_dev(super, inst);
9954         struct imsm_map *map = get_imsm_map(dev, MAP_0);
9955         int ord;
9956
9957         ord = imsm_disk_slot_to_ord(a, slot);
9958         if (ord < 0)
9959                 return NULL;
9960
9961         get_volume_badblocks(super->bbm_log, ord_to_idx(ord), pba_of_lba0(map),
9962                              blocks_per_member(map), &super->bb);
9963
9964         return &super->bb;
9965 }
9966 /*******************************************************************************
9967 * Function:   examine_badblocks_imsm
9968 * Description: Prints list of bad blocks on a disk to the standard output
9969 *
9970 * Parameters:
9971 *     st        : metadata handler
9972 *     fd        : open file descriptor for device
9973 *     devname   : device name
9974 * Returns:
9975 *     0 : Success
9976 *     1 : Error
9977 ******************************************************************************/
9978 static int examine_badblocks_imsm(struct supertype *st, int fd, char *devname)
9979 {
9980         struct intel_super *super = st->sb;
9981         struct bbm_log *log = super->bbm_log;
9982         struct dl *d = NULL;
9983         int any = 0;
9984
9985         for (d = super->disks; d ; d = d->next) {
9986                 if (strcmp(d->devname, devname) == 0)
9987                         break;
9988         }
9989
9990         if ((d == NULL) || (d->index < 0)) { /* serial mismatch probably */
9991                 pr_err("%s doesn't appear to be part of a raid array\n",
9992                        devname);
9993                 return 1;
9994         }
9995
9996         if (log != NULL) {
9997                 unsigned int i;
9998                 struct bbm_log_entry *entry = &log->marked_block_entries[0];
9999
10000                 for (i = 0; i < log->entry_count; i++) {
10001                         if (entry[i].disk_ordinal == d->index) {
10002                                 unsigned long long sector = __le48_to_cpu(
10003                                         &entry[i].defective_block_start);
10004                                 int cnt = entry[i].marked_count + 1;
10005
10006                                 if (!any) {
10007                                         printf("Bad-blocks on %s:\n", devname);
10008                                         any = 1;
10009                                 }
10010
10011                                 printf("%20llu for %d sectors\n", sector, cnt);
10012                         }
10013                 }
10014         }
10015
10016         if (!any)
10017                 printf("No bad-blocks list configured on %s\n", devname);
10018
10019         return 0;
10020 }
10021 /*******************************************************************************
10022  * Function:    init_migr_record_imsm
10023  * Description: Function inits imsm migration record
10024  * Parameters:
10025  *      super   : imsm internal array info
10026  *      dev     : device under migration
10027  *      info    : general array info to find the smallest device
10028  * Returns:
10029  *      none
10030  ******************************************************************************/
10031 void init_migr_record_imsm(struct supertype *st, struct imsm_dev *dev,
10032                            struct mdinfo *info)
10033 {
10034         struct intel_super *super = st->sb;
10035         struct migr_record *migr_rec = super->migr_rec;
10036         int new_data_disks;
10037         unsigned long long dsize, dev_sectors;
10038         long long unsigned min_dev_sectors = -1LLU;
10039         struct mdinfo *sd;
10040         char nm[30];
10041         int fd;
10042         struct imsm_map *map_dest = get_imsm_map(dev, MAP_0);
10043         struct imsm_map *map_src = get_imsm_map(dev, MAP_1);
10044         unsigned long long num_migr_units;
10045         unsigned long long array_blocks;
10046
10047         memset(migr_rec, 0, sizeof(struct migr_record));
10048         migr_rec->family_num = __cpu_to_le32(super->anchor->family_num);
10049
10050         /* only ascending reshape supported now */
10051         migr_rec->ascending_migr = __cpu_to_le32(1);
10052
10053         migr_rec->dest_depth_per_unit = GEN_MIGR_AREA_SIZE /
10054                 max(map_dest->blocks_per_strip, map_src->blocks_per_strip);
10055         migr_rec->dest_depth_per_unit *=
10056                 max(map_dest->blocks_per_strip, map_src->blocks_per_strip);
10057         new_data_disks = imsm_num_data_members(dev, MAP_0);
10058         migr_rec->blocks_per_unit =
10059                 __cpu_to_le32(migr_rec->dest_depth_per_unit * new_data_disks);
10060         migr_rec->dest_depth_per_unit =
10061                 __cpu_to_le32(migr_rec->dest_depth_per_unit);
10062         array_blocks = info->component_size * new_data_disks;
10063         num_migr_units =
10064                 array_blocks / __le32_to_cpu(migr_rec->blocks_per_unit);
10065
10066         if (array_blocks % __le32_to_cpu(migr_rec->blocks_per_unit))
10067                 num_migr_units++;
10068         migr_rec->num_migr_units = __cpu_to_le32(num_migr_units);
10069
10070         migr_rec->post_migr_vol_cap =  dev->size_low;
10071         migr_rec->post_migr_vol_cap_hi = dev->size_high;
10072
10073         /* Find the smallest dev */
10074         for (sd = info->devs ; sd ; sd = sd->next) {
10075                 sprintf(nm, "%d:%d", sd->disk.major, sd->disk.minor);
10076                 fd = dev_open(nm, O_RDONLY);
10077                 if (fd < 0)
10078                         continue;
10079                 get_dev_size(fd, NULL, &dsize);
10080                 dev_sectors = dsize / 512;
10081                 if (dev_sectors < min_dev_sectors)
10082                         min_dev_sectors = dev_sectors;
10083                 close(fd);
10084         }
10085         migr_rec->ckpt_area_pba = __cpu_to_le32(min_dev_sectors -
10086                                         RAID_DISK_RESERVED_BLOCKS_IMSM_HI);
10087
10088         write_imsm_migr_rec(st);
10089
10090         return;
10091 }
10092
10093 /*******************************************************************************
10094  * Function:    save_backup_imsm
10095  * Description: Function saves critical data stripes to Migration Copy Area
10096  *              and updates the current migration unit status.
10097  *              Use restore_stripes() to form a destination stripe,
10098  *              and to write it to the Copy Area.
10099  * Parameters:
10100  *      st              : supertype information
10101  *      dev             : imsm device that backup is saved for
10102  *      info            : general array info
10103  *      buf             : input buffer
10104  *      length          : length of data to backup (blocks_per_unit)
10105  * Returns:
10106  *       0 : success
10107  *,     -1 : fail
10108  ******************************************************************************/
10109 int save_backup_imsm(struct supertype *st,
10110                      struct imsm_dev *dev,
10111                      struct mdinfo *info,
10112                      void *buf,
10113                      int length)
10114 {
10115         int rv = -1;
10116         struct intel_super *super = st->sb;
10117         unsigned long long *target_offsets;
10118         int *targets;
10119         int i;
10120         struct imsm_map *map_dest = get_imsm_map(dev, MAP_0);
10121         int new_disks = map_dest->num_members;
10122         int dest_layout = 0;
10123         int dest_chunk;
10124         unsigned long long start;
10125         int data_disks = imsm_num_data_members(dev, MAP_0);
10126
10127         targets = xmalloc(new_disks * sizeof(int));
10128
10129         for (i = 0; i < new_disks; i++)
10130                 targets[i] = -1;
10131
10132         target_offsets = xcalloc(new_disks, sizeof(unsigned long long));
10133
10134         start = info->reshape_progress * 512;
10135         for (i = 0; i < new_disks; i++) {
10136                 target_offsets[i] = (unsigned long long)
10137                   __le32_to_cpu(super->migr_rec->ckpt_area_pba) * 512;
10138                 /* move back copy area adderss, it will be moved forward
10139                  * in restore_stripes() using start input variable
10140                  */
10141                 target_offsets[i] -= start/data_disks;
10142         }
10143
10144         if (open_backup_targets(info, new_disks, targets,
10145                                 super, dev))
10146                 goto abort;
10147
10148         dest_layout = imsm_level_to_layout(map_dest->raid_level);
10149         dest_chunk = __le16_to_cpu(map_dest->blocks_per_strip) * 512;
10150
10151         if (restore_stripes(targets, /* list of dest devices */
10152                             target_offsets, /* migration record offsets */
10153                             new_disks,
10154                             dest_chunk,
10155                             map_dest->raid_level,
10156                             dest_layout,
10157                             -1,    /* source backup file descriptor */
10158                             0,     /* input buf offset
10159                                     * always 0 buf is already offseted */
10160                             start,
10161                             length,
10162                             buf) != 0) {
10163                 pr_err("Error restoring stripes\n");
10164                 goto abort;
10165         }
10166
10167         rv = 0;
10168
10169 abort:
10170         if (targets) {
10171                 close_targets(targets, new_disks);
10172                 free(targets);
10173         }
10174         free(target_offsets);
10175
10176         return rv;
10177 }
10178
10179 /*******************************************************************************
10180  * Function:    save_checkpoint_imsm
10181  * Description: Function called for current unit status update
10182  *              in the migration record. It writes it to disk.
10183  * Parameters:
10184  *      super   : imsm internal array info
10185  *      info    : general array info
10186  * Returns:
10187  *      0: success
10188  *      1: failure
10189  *      2: failure, means no valid migration record
10190  *                 / no general migration in progress /
10191  ******************************************************************************/
10192 int save_checkpoint_imsm(struct supertype *st, struct mdinfo *info, int state)
10193 {
10194         struct intel_super *super = st->sb;
10195         unsigned long long blocks_per_unit;
10196         unsigned long long curr_migr_unit;
10197
10198         if (load_imsm_migr_rec(super, info) != 0) {
10199                 dprintf("imsm: ERROR: Cannot read migration record for checkpoint save.\n");
10200                 return 1;
10201         }
10202
10203         blocks_per_unit = __le32_to_cpu(super->migr_rec->blocks_per_unit);
10204         if (blocks_per_unit == 0) {
10205                 dprintf("imsm: no migration in progress.\n");
10206                 return 2;
10207         }
10208         curr_migr_unit = info->reshape_progress / blocks_per_unit;
10209         /* check if array is alligned to copy area
10210          * if it is not alligned, add one to current migration unit value
10211          * this can happend on array reshape finish only
10212          */
10213         if (info->reshape_progress % blocks_per_unit)
10214                 curr_migr_unit++;
10215
10216         super->migr_rec->curr_migr_unit =
10217                 __cpu_to_le32(curr_migr_unit);
10218         super->migr_rec->rec_status = __cpu_to_le32(state);
10219         super->migr_rec->dest_1st_member_lba =
10220                 __cpu_to_le32(curr_migr_unit *
10221                               __le32_to_cpu(super->migr_rec->dest_depth_per_unit));
10222         if (write_imsm_migr_rec(st) < 0) {
10223                 dprintf("imsm: Cannot write migration record outside backup area\n");
10224                 return 1;
10225         }
10226
10227         return 0;
10228 }
10229
10230 /*******************************************************************************
10231  * Function:    recover_backup_imsm
10232  * Description: Function recovers critical data from the Migration Copy Area
10233  *              while assembling an array.
10234  * Parameters:
10235  *      super   : imsm internal array info
10236  *      info    : general array info
10237  * Returns:
10238  *      0 : success (or there is no data to recover)
10239  *      1 : fail
10240  ******************************************************************************/
10241 int recover_backup_imsm(struct supertype *st, struct mdinfo *info)
10242 {
10243         struct intel_super *super = st->sb;
10244         struct migr_record *migr_rec = super->migr_rec;
10245         struct imsm_map *map_dest;
10246         struct intel_dev *id = NULL;
10247         unsigned long long read_offset;
10248         unsigned long long write_offset;
10249         unsigned unit_len;
10250         int *targets = NULL;
10251         int new_disks, i, err;
10252         char *buf = NULL;
10253         int retval = 1;
10254         unsigned int sector_size = super->sector_size;
10255         unsigned long curr_migr_unit = __le32_to_cpu(migr_rec->curr_migr_unit);
10256         unsigned long num_migr_units = __le32_to_cpu(migr_rec->num_migr_units);
10257         char buffer[20];
10258         int skipped_disks = 0;
10259
10260         err = sysfs_get_str(info, NULL, "array_state", (char *)buffer, 20);
10261         if (err < 1)
10262                 return 1;
10263
10264         /* recover data only during assemblation */
10265         if (strncmp(buffer, "inactive", 8) != 0)
10266                 return 0;
10267         /* no data to recover */
10268         if (__le32_to_cpu(migr_rec->rec_status) == UNIT_SRC_NORMAL)
10269                 return 0;
10270         if (curr_migr_unit >= num_migr_units)
10271                 return 1;
10272
10273         /* find device during reshape */
10274         for (id = super->devlist; id; id = id->next)
10275                 if (is_gen_migration(id->dev))
10276                         break;
10277         if (id == NULL)
10278                 return 1;
10279
10280         map_dest = get_imsm_map(id->dev, MAP_0);
10281         new_disks = map_dest->num_members;
10282
10283         read_offset = (unsigned long long)
10284                         __le32_to_cpu(migr_rec->ckpt_area_pba) * 512;
10285
10286         write_offset = ((unsigned long long)
10287                         __le32_to_cpu(migr_rec->dest_1st_member_lba) +
10288                         pba_of_lba0(map_dest)) * 512;
10289
10290         unit_len = __le32_to_cpu(migr_rec->dest_depth_per_unit) * 512;
10291         if (posix_memalign((void **)&buf, sector_size, unit_len) != 0)
10292                 goto abort;
10293         targets = xcalloc(new_disks, sizeof(int));
10294
10295         if (open_backup_targets(info, new_disks, targets, super, id->dev)) {
10296                 pr_err("Cannot open some devices belonging to array.\n");
10297                 goto abort;
10298         }
10299
10300         for (i = 0; i < new_disks; i++) {
10301                 if (targets[i] < 0) {
10302                         skipped_disks++;
10303                         continue;
10304                 }
10305                 if (lseek64(targets[i], read_offset, SEEK_SET) < 0) {
10306                         pr_err("Cannot seek to block: %s\n",
10307                                strerror(errno));
10308                         skipped_disks++;
10309                         continue;
10310                 }
10311                 if ((unsigned)read(targets[i], buf, unit_len) != unit_len) {
10312                         pr_err("Cannot read copy area block: %s\n",
10313                                strerror(errno));
10314                         skipped_disks++;
10315                         continue;
10316                 }
10317                 if (lseek64(targets[i], write_offset, SEEK_SET) < 0) {
10318                         pr_err("Cannot seek to block: %s\n",
10319                                strerror(errno));
10320                         skipped_disks++;
10321                         continue;
10322                 }
10323                 if ((unsigned)write(targets[i], buf, unit_len) != unit_len) {
10324                         pr_err("Cannot restore block: %s\n",
10325                                strerror(errno));
10326                         skipped_disks++;
10327                         continue;
10328                 }
10329         }
10330
10331         if (skipped_disks > imsm_get_allowed_degradation(info->new_level,
10332                                                          new_disks,
10333                                                          super,
10334                                                          id->dev)) {
10335                 pr_err("Cannot restore data from backup. Too many failed disks\n");
10336                 goto abort;
10337         }
10338
10339         if (save_checkpoint_imsm(st, info, UNIT_SRC_NORMAL)) {
10340                 /* ignore error == 2, this can mean end of reshape here
10341                  */
10342                 dprintf("imsm: Cannot write checkpoint to migration record (UNIT_SRC_NORMAL) during restart\n");
10343         } else
10344                 retval = 0;
10345
10346 abort:
10347         if (targets) {
10348                 for (i = 0; i < new_disks; i++)
10349                         if (targets[i])
10350                                 close(targets[i]);
10351                 free(targets);
10352         }
10353         free(buf);
10354         return retval;
10355 }
10356
10357 static char disk_by_path[] = "/dev/disk/by-path/";
10358
10359 static const char *imsm_get_disk_controller_domain(const char *path)
10360 {
10361         char disk_path[PATH_MAX];
10362         char *drv=NULL;
10363         struct stat st;
10364
10365         strcpy(disk_path, disk_by_path);
10366         strncat(disk_path, path, PATH_MAX - strlen(disk_path) - 1);
10367         if (stat(disk_path, &st) == 0) {
10368                 struct sys_dev* hba;
10369                 char *path;
10370
10371                 path = devt_to_devpath(st.st_rdev);
10372                 if (path == NULL)
10373                         return "unknown";
10374                 hba = find_disk_attached_hba(-1, path);
10375                 if (hba && hba->type == SYS_DEV_SAS)
10376                         drv = "isci";
10377                 else if (hba && hba->type == SYS_DEV_SATA)
10378                         drv = "ahci";
10379                 else
10380                         drv = "unknown";
10381                 dprintf("path: %s hba: %s attached: %s\n",
10382                         path, (hba) ? hba->path : "NULL", drv);
10383                 free(path);
10384         }
10385         return drv;
10386 }
10387
10388 static char *imsm_find_array_devnm_by_subdev(int subdev, char *container)
10389 {
10390         static char devnm[32];
10391         char subdev_name[20];
10392         struct mdstat_ent *mdstat;
10393
10394         sprintf(subdev_name, "%d", subdev);
10395         mdstat = mdstat_by_subdev(subdev_name, container);
10396         if (!mdstat)
10397                 return NULL;
10398
10399         strcpy(devnm, mdstat->devnm);
10400         free_mdstat(mdstat);
10401         return devnm;
10402 }
10403
10404 static int imsm_reshape_is_allowed_on_container(struct supertype *st,
10405                                                 struct geo_params *geo,
10406                                                 int *old_raid_disks,
10407                                                 int direction)
10408 {
10409         /* currently we only support increasing the number of devices
10410          * for a container.  This increases the number of device for each
10411          * member array.  They must all be RAID0 or RAID5.
10412          */
10413         int ret_val = 0;
10414         struct mdinfo *info, *member;
10415         int devices_that_can_grow = 0;
10416
10417         dprintf("imsm: imsm_reshape_is_allowed_on_container(ENTER): st->devnm = (%s)\n", st->devnm);
10418
10419         if (geo->size > 0 ||
10420             geo->level != UnSet ||
10421             geo->layout != UnSet ||
10422             geo->chunksize != 0 ||
10423             geo->raid_disks == UnSet) {
10424                 dprintf("imsm: Container operation is allowed for raid disks number change only.\n");
10425                 return ret_val;
10426         }
10427
10428         if (direction == ROLLBACK_METADATA_CHANGES) {
10429                 dprintf("imsm: Metadata changes rollback is not supported for container operation.\n");
10430                 return ret_val;
10431         }
10432
10433         info = container_content_imsm(st, NULL);
10434         for (member = info; member; member = member->next) {
10435                 char *result;
10436
10437                 dprintf("imsm: checking device_num: %i\n",
10438                         member->container_member);
10439
10440                 if (geo->raid_disks <= member->array.raid_disks) {
10441                         /* we work on container for Online Capacity Expansion
10442                          * only so raid_disks has to grow
10443                          */
10444                         dprintf("imsm: for container operation raid disks increase is required\n");
10445                         break;
10446                 }
10447
10448                 if (info->array.level != 0 && info->array.level != 5) {
10449                         /* we cannot use this container with other raid level
10450                          */
10451                         dprintf("imsm: for container operation wrong raid level (%i) detected\n",
10452                                 info->array.level);
10453                         break;
10454                 } else {
10455                         /* check for platform support
10456                          * for this raid level configuration
10457                          */
10458                         struct intel_super *super = st->sb;
10459                         if (!is_raid_level_supported(super->orom,
10460                                                      member->array.level,
10461                                                      geo->raid_disks)) {
10462                                 dprintf("platform does not support raid%d with %d disk%s\n",
10463                                          info->array.level,
10464                                          geo->raid_disks,
10465                                          geo->raid_disks > 1 ? "s" : "");
10466                                 break;
10467                         }
10468                         /* check if component size is aligned to chunk size
10469                          */
10470                         if (info->component_size %
10471                             (info->array.chunk_size/512)) {
10472                                 dprintf("Component size is not aligned to chunk size\n");
10473                                 break;
10474                         }
10475                 }
10476
10477                 if (*old_raid_disks &&
10478                     info->array.raid_disks != *old_raid_disks)
10479                         break;
10480                 *old_raid_disks = info->array.raid_disks;
10481
10482                 /* All raid5 and raid0 volumes in container
10483                  * have to be ready for Online Capacity Expansion
10484                  * so they need to be assembled.  We have already
10485                  * checked that no recovery etc is happening.
10486                  */
10487                 result = imsm_find_array_devnm_by_subdev(member->container_member,
10488                                                          st->container_devnm);
10489                 if (result == NULL) {
10490                         dprintf("imsm: cannot find array\n");
10491                         break;
10492                 }
10493                 devices_that_can_grow++;
10494         }
10495         sysfs_free(info);
10496         if (!member && devices_that_can_grow)
10497                 ret_val = 1;
10498
10499         if (ret_val)
10500                 dprintf("Container operation allowed\n");
10501         else
10502                 dprintf("Error: %i\n", ret_val);
10503
10504         return ret_val;
10505 }
10506
10507 /* Function: get_spares_for_grow
10508  * Description: Allocates memory and creates list of spare devices
10509  *              avaliable in container. Checks if spare drive size is acceptable.
10510  * Parameters: Pointer to the supertype structure
10511  * Returns: Pointer to the list of spare devices (mdinfo structure) on success,
10512  *              NULL if fail
10513  */
10514 static struct mdinfo *get_spares_for_grow(struct supertype *st)
10515 {
10516         unsigned long long min_size = min_acceptable_spare_size_imsm(st);
10517         return container_choose_spares(st, min_size, NULL, NULL, NULL, 0);
10518 }
10519
10520 /******************************************************************************
10521  * function: imsm_create_metadata_update_for_reshape
10522  * Function creates update for whole IMSM container.
10523  *
10524  ******************************************************************************/
10525 static int imsm_create_metadata_update_for_reshape(
10526         struct supertype *st,
10527         struct geo_params *geo,
10528         int old_raid_disks,
10529         struct imsm_update_reshape **updatep)
10530 {
10531         struct intel_super *super = st->sb;
10532         struct imsm_super *mpb = super->anchor;
10533         int update_memory_size;
10534         struct imsm_update_reshape *u;
10535         struct mdinfo *spares;
10536         int i;
10537         int delta_disks;
10538         struct mdinfo *dev;
10539
10540         dprintf("(enter) raid_disks = %i\n", geo->raid_disks);
10541
10542         delta_disks = geo->raid_disks - old_raid_disks;
10543
10544         /* size of all update data without anchor */
10545         update_memory_size = sizeof(struct imsm_update_reshape);
10546
10547         /* now add space for spare disks that we need to add. */
10548         update_memory_size += sizeof(u->new_disks[0]) * (delta_disks - 1);
10549
10550         u = xcalloc(1, update_memory_size);
10551         u->type = update_reshape_container_disks;
10552         u->old_raid_disks = old_raid_disks;
10553         u->new_raid_disks = geo->raid_disks;
10554
10555         /* now get spare disks list
10556          */
10557         spares = get_spares_for_grow(st);
10558
10559         if (spares == NULL
10560             || delta_disks > spares->array.spare_disks) {
10561                 pr_err("imsm: ERROR: Cannot get spare devices for %s.\n", geo->dev_name);
10562                 i = -1;
10563                 goto abort;
10564         }
10565
10566         /* we have got spares
10567          * update disk list in imsm_disk list table in anchor
10568          */
10569         dprintf("imsm: %i spares are available.\n\n",
10570                 spares->array.spare_disks);
10571
10572         dev = spares->devs;
10573         for (i = 0; i < delta_disks; i++) {
10574                 struct dl *dl;
10575
10576                 if (dev == NULL)
10577                         break;
10578                 u->new_disks[i] = makedev(dev->disk.major,
10579                                           dev->disk.minor);
10580                 dl = get_disk_super(super, dev->disk.major, dev->disk.minor);
10581                 dl->index = mpb->num_disks;
10582                 mpb->num_disks++;
10583                 dev = dev->next;
10584         }
10585
10586 abort:
10587         /* free spares
10588          */
10589         sysfs_free(spares);
10590
10591         dprintf("imsm: reshape update preparation :");
10592         if (i == delta_disks) {
10593                 dprintf_cont(" OK\n");
10594                 *updatep = u;
10595                 return update_memory_size;
10596         }
10597         free(u);
10598         dprintf_cont(" Error\n");
10599
10600         return 0;
10601 }
10602
10603 /******************************************************************************
10604  * function: imsm_create_metadata_update_for_size_change()
10605  *           Creates update for IMSM array for array size change.
10606  *
10607  ******************************************************************************/
10608 static int imsm_create_metadata_update_for_size_change(
10609                                 struct supertype *st,
10610                                 struct geo_params *geo,
10611                                 struct imsm_update_size_change **updatep)
10612 {
10613         struct intel_super *super = st->sb;
10614         int update_memory_size;
10615         struct imsm_update_size_change *u;
10616
10617         dprintf("(enter) New size = %llu\n", geo->size);
10618
10619         /* size of all update data without anchor */
10620         update_memory_size = sizeof(struct imsm_update_size_change);
10621
10622         u = xcalloc(1, update_memory_size);
10623         u->type = update_size_change;
10624         u->subdev = super->current_vol;
10625         u->new_size = geo->size;
10626
10627         dprintf("imsm: reshape update preparation : OK\n");
10628         *updatep = u;
10629
10630         return update_memory_size;
10631 }
10632
10633 /******************************************************************************
10634  * function: imsm_create_metadata_update_for_migration()
10635  *           Creates update for IMSM array.
10636  *
10637  ******************************************************************************/
10638 static int imsm_create_metadata_update_for_migration(
10639                                         struct supertype *st,
10640                                         struct geo_params *geo,
10641                                         struct imsm_update_reshape_migration **updatep)
10642 {
10643         struct intel_super *super = st->sb;
10644         int update_memory_size;
10645         struct imsm_update_reshape_migration *u;
10646         struct imsm_dev *dev;
10647         int previous_level = -1;
10648
10649         dprintf("(enter) New Level = %i\n", geo->level);
10650
10651         /* size of all update data without anchor */
10652         update_memory_size = sizeof(struct imsm_update_reshape_migration);
10653
10654         u = xcalloc(1, update_memory_size);
10655         u->type = update_reshape_migration;
10656         u->subdev = super->current_vol;
10657         u->new_level = geo->level;
10658         u->new_layout = geo->layout;
10659         u->new_raid_disks = u->old_raid_disks = geo->raid_disks;
10660         u->new_disks[0] = -1;
10661         u->new_chunksize = -1;
10662
10663         dev = get_imsm_dev(super, u->subdev);
10664         if (dev) {
10665                 struct imsm_map *map;
10666
10667                 map = get_imsm_map(dev, MAP_0);
10668                 if (map) {
10669                         int current_chunk_size =
10670                                 __le16_to_cpu(map->blocks_per_strip) / 2;
10671
10672                         if (geo->chunksize != current_chunk_size) {
10673                                 u->new_chunksize = geo->chunksize / 1024;
10674                                 dprintf("imsm: chunk size change from %i to %i\n",
10675                                         current_chunk_size, u->new_chunksize);
10676                         }
10677                         previous_level = map->raid_level;
10678                 }
10679         }
10680         if (geo->level == 5 && previous_level == 0) {
10681                 struct mdinfo *spares = NULL;
10682
10683                 u->new_raid_disks++;
10684                 spares = get_spares_for_grow(st);
10685                 if (spares == NULL || spares->array.spare_disks < 1) {
10686                         free(u);
10687                         sysfs_free(spares);
10688                         update_memory_size = 0;
10689                         dprintf("error: cannot get spare device for requested migration");
10690                         return 0;
10691                 }
10692                 sysfs_free(spares);
10693         }
10694         dprintf("imsm: reshape update preparation : OK\n");
10695         *updatep = u;
10696
10697         return update_memory_size;
10698 }
10699
10700 static void imsm_update_metadata_locally(struct supertype *st,
10701                                          void *buf, int len)
10702 {
10703         struct metadata_update mu;
10704
10705         mu.buf = buf;
10706         mu.len = len;
10707         mu.space = NULL;
10708         mu.space_list = NULL;
10709         mu.next = NULL;
10710         if (imsm_prepare_update(st, &mu))
10711                 imsm_process_update(st, &mu);
10712
10713         while (mu.space_list) {
10714                 void **space = mu.space_list;
10715                 mu.space_list = *space;
10716                 free(space);
10717         }
10718 }
10719
10720 /***************************************************************************
10721 * Function:     imsm_analyze_change
10722 * Description:  Function analyze change for single volume
10723 *               and validate if transition is supported
10724 * Parameters:   Geometry parameters, supertype structure,
10725 *               metadata change direction (apply/rollback)
10726 * Returns:      Operation type code on success, -1 if fail
10727 ****************************************************************************/
10728 enum imsm_reshape_type imsm_analyze_change(struct supertype *st,
10729                                            struct geo_params *geo,
10730                                            int direction)
10731 {
10732         struct mdinfo info;
10733         int change = -1;
10734         int check_devs = 0;
10735         int chunk;
10736         /* number of added/removed disks in operation result */
10737         int devNumChange = 0;
10738         /* imsm compatible layout value for array geometry verification */
10739         int imsm_layout = -1;
10740         int data_disks;
10741         struct imsm_dev *dev;
10742         struct intel_super *super;
10743         unsigned long long current_size;
10744         unsigned long long free_size;
10745         unsigned long long max_size;
10746         int rv;
10747
10748         getinfo_super_imsm_volume(st, &info, NULL);
10749         if (geo->level != info.array.level && geo->level >= 0 &&
10750             geo->level != UnSet) {
10751                 switch (info.array.level) {
10752                 case 0:
10753                         if (geo->level == 5) {
10754                                 change = CH_MIGRATION;
10755                                 if (geo->layout != ALGORITHM_LEFT_ASYMMETRIC) {
10756                                         pr_err("Error. Requested Layout not supported (left-asymmetric layout is supported only)!\n");
10757                                         change = -1;
10758                                         goto analyse_change_exit;
10759                                 }
10760                                 imsm_layout =  geo->layout;
10761                                 check_devs = 1;
10762                                 devNumChange = 1; /* parity disk added */
10763                         } else if (geo->level == 10) {
10764                                 change = CH_TAKEOVER;
10765                                 check_devs = 1;
10766                                 devNumChange = 2; /* two mirrors added */
10767                                 imsm_layout = 0x102; /* imsm supported layout */
10768                         }
10769                         break;
10770                 case 1:
10771                 case 10:
10772                         if (geo->level == 0) {
10773                                 change = CH_TAKEOVER;
10774                                 check_devs = 1;
10775                                 devNumChange = -(geo->raid_disks/2);
10776                                 imsm_layout = 0; /* imsm raid0 layout */
10777                         }
10778                         break;
10779                 }
10780                 if (change == -1) {
10781                         pr_err("Error. Level Migration from %d to %d not supported!\n",
10782                                info.array.level, geo->level);
10783                         goto analyse_change_exit;
10784                 }
10785         } else
10786                 geo->level = info.array.level;
10787
10788         if (geo->layout != info.array.layout &&
10789             (geo->layout != UnSet && geo->layout != -1)) {
10790                 change = CH_MIGRATION;
10791                 if (info.array.layout == 0 && info.array.level == 5 &&
10792                     geo->layout == 5) {
10793                         /* reshape 5 -> 4 */
10794                 } else if (info.array.layout == 5 && info.array.level == 5 &&
10795                            geo->layout == 0) {
10796                         /* reshape 4 -> 5 */
10797                         geo->layout = 0;
10798                         geo->level = 5;
10799                 } else {
10800                         pr_err("Error. Layout Migration from %d to %d not supported!\n",
10801                                info.array.layout, geo->layout);
10802                         change = -1;
10803                         goto analyse_change_exit;
10804                 }
10805         } else {
10806                 geo->layout = info.array.layout;
10807                 if (imsm_layout == -1)
10808                         imsm_layout = info.array.layout;
10809         }
10810
10811         if (geo->chunksize > 0 && geo->chunksize != UnSet &&
10812             geo->chunksize != info.array.chunk_size) {
10813                 if (info.array.level == 10) {
10814                         pr_err("Error. Chunk size change for RAID 10 is not supported.\n");
10815                         change = -1;
10816                         goto analyse_change_exit;
10817                 }
10818                 change = CH_MIGRATION;
10819         } else {
10820                 geo->chunksize = info.array.chunk_size;
10821         }
10822
10823         chunk = geo->chunksize / 1024;
10824
10825         super = st->sb;
10826         dev = get_imsm_dev(super, super->current_vol);
10827         data_disks = imsm_num_data_members(dev , MAP_0);
10828         /* compute current size per disk member
10829          */
10830         current_size = info.custom_array_size / data_disks;
10831
10832         if (geo->size > 0 && geo->size != MAX_SIZE) {
10833                 /* align component size
10834                  */
10835                 geo->size = imsm_component_size_aligment_check(
10836                                     get_imsm_raid_level(dev->vol.map),
10837                                     chunk * 1024, super->sector_size,
10838                                     geo->size * 2);
10839                 if (geo->size == 0) {
10840                         pr_err("Error. Size expansion is supported only (current size is %llu, requested size /rounded/ is 0).\n",
10841                                    current_size);
10842                         goto analyse_change_exit;
10843                 }
10844         }
10845
10846         if (current_size != geo->size && geo->size > 0) {
10847                 if (change != -1) {
10848                         pr_err("Error. Size change should be the only one at a time.\n");
10849                         change = -1;
10850                         goto analyse_change_exit;
10851                 }
10852                 if ((super->current_vol + 1) != super->anchor->num_raid_devs) {
10853                         pr_err("Error. The last volume in container can be expanded only (%i/%s).\n",
10854                                super->current_vol, st->devnm);
10855                         goto analyse_change_exit;
10856                 }
10857                 /* check the maximum available size
10858                  */
10859                 rv =  imsm_get_free_size(st, dev->vol.map->num_members,
10860                                          0, chunk, &free_size);
10861                 if (rv == 0)
10862                         /* Cannot find maximum available space
10863                          */
10864                         max_size = 0;
10865                 else {
10866                         max_size = free_size + current_size;
10867                         /* align component size
10868                          */
10869                         max_size = imsm_component_size_aligment_check(
10870                                         get_imsm_raid_level(dev->vol.map),
10871                                         chunk * 1024, super->sector_size,
10872                                         max_size);
10873                 }
10874                 if (geo->size == MAX_SIZE) {
10875                         /* requested size change to the maximum available size
10876                          */
10877                         if (max_size == 0) {
10878                                 pr_err("Error. Cannot find maximum available space.\n");
10879                                 change = -1;
10880                                 goto analyse_change_exit;
10881                         } else
10882                                 geo->size = max_size;
10883                 }
10884
10885                 if (direction == ROLLBACK_METADATA_CHANGES) {
10886                         /* accept size for rollback only
10887                         */
10888                 } else {
10889                         /* round size due to metadata compatibility
10890                         */
10891                         geo->size = (geo->size >> SECT_PER_MB_SHIFT)
10892                                     << SECT_PER_MB_SHIFT;
10893                         dprintf("Prepare update for size change to %llu\n",
10894                                 geo->size );
10895                         if (current_size >= geo->size) {
10896                                 pr_err("Error. Size expansion is supported only (current size is %llu, requested size /rounded/ is %llu).\n",
10897                                        current_size, geo->size);
10898                                 goto analyse_change_exit;
10899                         }
10900                         if (max_size && geo->size > max_size) {
10901                                 pr_err("Error. Requested size is larger than maximum available size (maximum available size is %llu, requested size /rounded/ is %llu).\n",
10902                                        max_size, geo->size);
10903                                 goto analyse_change_exit;
10904                         }
10905                 }
10906                 geo->size *= data_disks;
10907                 geo->raid_disks = dev->vol.map->num_members;
10908                 change = CH_ARRAY_SIZE;
10909         }
10910         if (!validate_geometry_imsm(st,
10911                                     geo->level,
10912                                     imsm_layout,
10913                                     geo->raid_disks + devNumChange,
10914                                     &chunk,
10915                                     geo->size, INVALID_SECTORS,
10916                                     0, 0, 1))
10917                 change = -1;
10918
10919         if (check_devs) {
10920                 struct intel_super *super = st->sb;
10921                 struct imsm_super *mpb = super->anchor;
10922
10923                 if (mpb->num_raid_devs > 1) {
10924                         pr_err("Error. Cannot perform operation on %s- for this operation it MUST be single array in container\n",
10925                                geo->dev_name);
10926                         change = -1;
10927                 }
10928         }
10929
10930 analyse_change_exit:
10931         if (direction == ROLLBACK_METADATA_CHANGES &&
10932             (change == CH_MIGRATION || change == CH_TAKEOVER)) {
10933                 dprintf("imsm: Metadata changes rollback is not supported for migration and takeover operations.\n");
10934                 change = -1;
10935         }
10936         return change;
10937 }
10938
10939 int imsm_takeover(struct supertype *st, struct geo_params *geo)
10940 {
10941         struct intel_super *super = st->sb;
10942         struct imsm_update_takeover *u;
10943
10944         u = xmalloc(sizeof(struct imsm_update_takeover));
10945
10946         u->type = update_takeover;
10947         u->subarray = super->current_vol;
10948
10949         /* 10->0 transition */
10950         if (geo->level == 0)
10951                 u->direction = R10_TO_R0;
10952
10953         /* 0->10 transition */
10954         if (geo->level == 10)
10955                 u->direction = R0_TO_R10;
10956
10957         /* update metadata locally */
10958         imsm_update_metadata_locally(st, u,
10959                                         sizeof(struct imsm_update_takeover));
10960         /* and possibly remotely */
10961         if (st->update_tail)
10962                 append_metadata_update(st, u,
10963                                         sizeof(struct imsm_update_takeover));
10964         else
10965                 free(u);
10966
10967         return 0;
10968 }
10969
10970 static int imsm_reshape_super(struct supertype *st, unsigned long long size,
10971                               int level,
10972                               int layout, int chunksize, int raid_disks,
10973                               int delta_disks, char *backup, char *dev,
10974                               int direction, int verbose)
10975 {
10976         int ret_val = 1;
10977         struct geo_params geo;
10978
10979         dprintf("(enter)\n");
10980
10981         memset(&geo, 0, sizeof(struct geo_params));
10982
10983         geo.dev_name = dev;
10984         strcpy(geo.devnm, st->devnm);
10985         geo.size = size;
10986         geo.level = level;
10987         geo.layout = layout;
10988         geo.chunksize = chunksize;
10989         geo.raid_disks = raid_disks;
10990         if (delta_disks != UnSet)
10991                 geo.raid_disks += delta_disks;
10992
10993         dprintf("for level      : %i\n", geo.level);
10994         dprintf("for raid_disks : %i\n", geo.raid_disks);
10995
10996         if (experimental() == 0)
10997                 return ret_val;
10998
10999         if (strcmp(st->container_devnm, st->devnm) == 0) {
11000                 /* On container level we can only increase number of devices. */
11001                 dprintf("imsm: info: Container operation\n");
11002                 int old_raid_disks = 0;
11003
11004                 if (imsm_reshape_is_allowed_on_container(
11005                             st, &geo, &old_raid_disks, direction)) {
11006                         struct imsm_update_reshape *u = NULL;
11007                         int len;
11008
11009                         len = imsm_create_metadata_update_for_reshape(
11010                                 st, &geo, old_raid_disks, &u);
11011
11012                         if (len <= 0) {
11013                                 dprintf("imsm: Cannot prepare update\n");
11014                                 goto exit_imsm_reshape_super;
11015                         }
11016
11017                         ret_val = 0;
11018                         /* update metadata locally */
11019                         imsm_update_metadata_locally(st, u, len);
11020                         /* and possibly remotely */
11021                         if (st->update_tail)
11022                                 append_metadata_update(st, u, len);
11023                         else
11024                                 free(u);
11025
11026                 } else {
11027                         pr_err("(imsm) Operation is not allowed on this container\n");
11028                 }
11029         } else {
11030                 /* On volume level we support following operations
11031                  * - takeover: raid10 -> raid0; raid0 -> raid10
11032                  * - chunk size migration
11033                  * - migration: raid5 -> raid0; raid0 -> raid5
11034                  */
11035                 struct intel_super *super = st->sb;
11036                 struct intel_dev *dev = super->devlist;
11037                 int change;
11038                 dprintf("imsm: info: Volume operation\n");
11039                 /* find requested device */
11040                 while (dev) {
11041                         char *devnm =
11042                                 imsm_find_array_devnm_by_subdev(
11043                                         dev->index, st->container_devnm);
11044                         if (devnm && strcmp(devnm, geo.devnm) == 0)
11045                                 break;
11046                         dev = dev->next;
11047                 }
11048                 if (dev == NULL) {
11049                         pr_err("Cannot find %s (%s) subarray\n",
11050                                 geo.dev_name, geo.devnm);
11051                         goto exit_imsm_reshape_super;
11052                 }
11053                 super->current_vol = dev->index;
11054                 change = imsm_analyze_change(st, &geo, direction);
11055                 switch (change) {
11056                 case CH_TAKEOVER:
11057                         ret_val = imsm_takeover(st, &geo);
11058                         break;
11059                 case CH_MIGRATION: {
11060                         struct imsm_update_reshape_migration *u = NULL;
11061                         int len =
11062                                 imsm_create_metadata_update_for_migration(
11063                                         st, &geo, &u);
11064                         if (len < 1) {
11065                                 dprintf("imsm: Cannot prepare update\n");
11066                                 break;
11067                         }
11068                         ret_val = 0;
11069                         /* update metadata locally */
11070                         imsm_update_metadata_locally(st, u, len);
11071                         /* and possibly remotely */
11072                         if (st->update_tail)
11073                                 append_metadata_update(st, u, len);
11074                         else
11075                                 free(u);
11076                 }
11077                 break;
11078                 case CH_ARRAY_SIZE: {
11079                         struct imsm_update_size_change *u = NULL;
11080                         int len =
11081                                 imsm_create_metadata_update_for_size_change(
11082                                         st, &geo, &u);
11083                         if (len < 1) {
11084                                 dprintf("imsm: Cannot prepare update\n");
11085                                 break;
11086                         }
11087                         ret_val = 0;
11088                         /* update metadata locally */
11089                         imsm_update_metadata_locally(st, u, len);
11090                         /* and possibly remotely */
11091                         if (st->update_tail)
11092                                 append_metadata_update(st, u, len);
11093                         else
11094                                 free(u);
11095                 }
11096                 break;
11097                 default:
11098                         ret_val = 1;
11099                 }
11100         }
11101
11102 exit_imsm_reshape_super:
11103         dprintf("imsm: reshape_super Exit code = %i\n", ret_val);
11104         return ret_val;
11105 }
11106
11107 #define COMPLETED_OK            0
11108 #define COMPLETED_NONE          1
11109 #define COMPLETED_DELAYED       2
11110
11111 static int read_completed(int fd, unsigned long long *val)
11112 {
11113         int ret;
11114         char buf[50];
11115
11116         ret = sysfs_fd_get_str(fd, buf, 50);
11117         if (ret < 0)
11118                 return ret;
11119
11120         ret = COMPLETED_OK;
11121         if (strncmp(buf, "none", 4) == 0) {
11122                 ret = COMPLETED_NONE;
11123         } else if (strncmp(buf, "delayed", 7) == 0) {
11124                 ret = COMPLETED_DELAYED;
11125         } else {
11126                 char *ep;
11127                 *val = strtoull(buf, &ep, 0);
11128                 if (ep == buf || (*ep != 0 && *ep != '\n' && *ep != ' '))
11129                         ret = -1;
11130         }
11131         return ret;
11132 }
11133
11134 /*******************************************************************************
11135  * Function:    wait_for_reshape_imsm
11136  * Description: Function writes new sync_max value and waits until
11137  *              reshape process reach new position
11138  * Parameters:
11139  *      sra             : general array info
11140  *      ndata           : number of disks in new array's layout
11141  * Returns:
11142  *       0 : success,
11143  *       1 : there is no reshape in progress,
11144  *      -1 : fail
11145  ******************************************************************************/
11146 int wait_for_reshape_imsm(struct mdinfo *sra, int ndata)
11147 {
11148         int fd = sysfs_get_fd(sra, NULL, "sync_completed");
11149         int retry = 3;
11150         unsigned long long completed;
11151         /* to_complete : new sync_max position */
11152         unsigned long long to_complete = sra->reshape_progress;
11153         unsigned long long position_to_set = to_complete / ndata;
11154
11155         if (fd < 0) {
11156                 dprintf("cannot open reshape_position\n");
11157                 return 1;
11158         }
11159
11160         do {
11161                 if (sysfs_fd_get_ll(fd, &completed) < 0) {
11162                         if (!retry) {
11163                                 dprintf("cannot read reshape_position (no reshape in progres)\n");
11164                                 close(fd);
11165                                 return 1;
11166                         }
11167                         usleep(30000);
11168                 } else
11169                         break;
11170         } while (retry--);
11171
11172         if (completed > position_to_set) {
11173                 dprintf("wrong next position to set %llu (%llu)\n",
11174                         to_complete, position_to_set);
11175                 close(fd);
11176                 return -1;
11177         }
11178         dprintf("Position set: %llu\n", position_to_set);
11179         if (sysfs_set_num(sra, NULL, "sync_max",
11180                           position_to_set) != 0) {
11181                 dprintf("cannot set reshape position to %llu\n",
11182                         position_to_set);
11183                 close(fd);
11184                 return -1;
11185         }
11186
11187         do {
11188                 int rc;
11189                 char action[20];
11190                 int timeout = 3000;
11191
11192                 sysfs_wait(fd, &timeout);
11193                 if (sysfs_get_str(sra, NULL, "sync_action",
11194                                   action, 20) > 0 &&
11195                                 strncmp(action, "reshape", 7) != 0) {
11196                         if (strncmp(action, "idle", 4) == 0)
11197                                 break;
11198                         close(fd);
11199                         return -1;
11200                 }
11201
11202                 rc = read_completed(fd, &completed);
11203                 if (rc < 0) {
11204                         dprintf("cannot read reshape_position (in loop)\n");
11205                         close(fd);
11206                         return 1;
11207                 } else if (rc == COMPLETED_NONE)
11208                         break;
11209         } while (completed < position_to_set);
11210
11211         close(fd);
11212         return 0;
11213 }
11214
11215 /*******************************************************************************
11216  * Function:    check_degradation_change
11217  * Description: Check that array hasn't become failed.
11218  * Parameters:
11219  *      info    : for sysfs access
11220  *      sources : source disks descriptors
11221  *      degraded: previous degradation level
11222  * Returns:
11223  *      degradation level
11224  ******************************************************************************/
11225 int check_degradation_change(struct mdinfo *info,
11226                              int *sources,
11227                              int degraded)
11228 {
11229         unsigned long long new_degraded;
11230         int rv;
11231
11232         rv = sysfs_get_ll(info, NULL, "degraded", &new_degraded);
11233         if (rv == -1 || (new_degraded != (unsigned long long)degraded)) {
11234                 /* check each device to ensure it is still working */
11235                 struct mdinfo *sd;
11236                 new_degraded = 0;
11237                 for (sd = info->devs ; sd ; sd = sd->next) {
11238                         if (sd->disk.state & (1<<MD_DISK_FAULTY))
11239                                 continue;
11240                         if (sd->disk.state & (1<<MD_DISK_SYNC)) {
11241                                 char sbuf[100];
11242
11243                                 if (sysfs_get_str(info,
11244                                         sd, "state", sbuf, sizeof(sbuf)) < 0 ||
11245                                         strstr(sbuf, "faulty") ||
11246                                         strstr(sbuf, "in_sync") == NULL) {
11247                                         /* this device is dead */
11248                                         sd->disk.state = (1<<MD_DISK_FAULTY);
11249                                         if (sd->disk.raid_disk >= 0 &&
11250                                             sources[sd->disk.raid_disk] >= 0) {
11251                                                 close(sources[
11252                                                         sd->disk.raid_disk]);
11253                                                 sources[sd->disk.raid_disk] =
11254                                                         -1;
11255                                         }
11256                                         new_degraded++;
11257                                 }
11258                         }
11259                 }
11260         }
11261
11262         return new_degraded;
11263 }
11264
11265 /*******************************************************************************
11266  * Function:    imsm_manage_reshape
11267  * Description: Function finds array under reshape and it manages reshape
11268  *              process. It creates stripes backups (if required) and sets
11269  *              checkpoints.
11270  * Parameters:
11271  *      afd             : Backup handle (nattive) - not used
11272  *      sra             : general array info
11273  *      reshape         : reshape parameters - not used
11274  *      st              : supertype structure
11275  *      blocks          : size of critical section [blocks]
11276  *      fds             : table of source device descriptor
11277  *      offsets         : start of array (offest per devices)
11278  *      dests           : not used
11279  *      destfd          : table of destination device descriptor
11280  *      destoffsets     : table of destination offsets (per device)
11281  * Returns:
11282  *      1 : success, reshape is done
11283  *      0 : fail
11284  ******************************************************************************/
11285 static int imsm_manage_reshape(
11286         int afd, struct mdinfo *sra, struct reshape *reshape,
11287         struct supertype *st, unsigned long backup_blocks,
11288         int *fds, unsigned long long *offsets,
11289         int dests, int *destfd, unsigned long long *destoffsets)
11290 {
11291         int ret_val = 0;
11292         struct intel_super *super = st->sb;
11293         struct intel_dev *dv;
11294         unsigned int sector_size = super->sector_size;
11295         struct imsm_dev *dev = NULL;
11296         struct imsm_map *map_src;
11297         int migr_vol_qan = 0;
11298         int ndata, odata; /* [bytes] */
11299         int chunk; /* [bytes] */
11300         struct migr_record *migr_rec;
11301         char *buf = NULL;
11302         unsigned int buf_size; /* [bytes] */
11303         unsigned long long max_position; /* array size [bytes] */
11304         unsigned long long next_step; /* [blocks]/[bytes] */
11305         unsigned long long old_data_stripe_length;
11306         unsigned long long start_src; /* [bytes] */
11307         unsigned long long start; /* [bytes] */
11308         unsigned long long start_buf_shift; /* [bytes] */
11309         int degraded = 0;
11310         int source_layout = 0;
11311
11312         if (!sra)
11313                 return ret_val;
11314
11315         if (!fds || !offsets)
11316                 goto abort;
11317
11318         /* Find volume during the reshape */
11319         for (dv = super->devlist; dv; dv = dv->next) {
11320                 if (dv->dev->vol.migr_type == MIGR_GEN_MIGR
11321                     && dv->dev->vol.migr_state == 1) {
11322                         dev = dv->dev;
11323                         migr_vol_qan++;
11324                 }
11325         }
11326         /* Only one volume can migrate at the same time */
11327         if (migr_vol_qan != 1) {
11328                 pr_err("%s", migr_vol_qan ?
11329                         "Number of migrating volumes greater than 1\n" :
11330                         "There is no volume during migrationg\n");
11331                 goto abort;
11332         }
11333
11334         map_src = get_imsm_map(dev, MAP_1);
11335         if (map_src == NULL)
11336                 goto abort;
11337
11338         ndata = imsm_num_data_members(dev, MAP_0);
11339         odata = imsm_num_data_members(dev, MAP_1);
11340
11341         chunk = __le16_to_cpu(map_src->blocks_per_strip) * 512;
11342         old_data_stripe_length = odata * chunk;
11343
11344         migr_rec = super->migr_rec;
11345
11346         /* initialize migration record for start condition */
11347         if (sra->reshape_progress == 0)
11348                 init_migr_record_imsm(st, dev, sra);
11349         else {
11350                 if (__le32_to_cpu(migr_rec->rec_status) != UNIT_SRC_NORMAL) {
11351                         dprintf("imsm: cannot restart migration when data are present in copy area.\n");
11352                         goto abort;
11353                 }
11354                 /* Save checkpoint to update migration record for current
11355                  * reshape position (in md). It can be farther than current
11356                  * reshape position in metadata.
11357                  */
11358                 if (save_checkpoint_imsm(st, sra, UNIT_SRC_NORMAL) == 1) {
11359                         /* ignore error == 2, this can mean end of reshape here
11360                          */
11361                         dprintf("imsm: Cannot write checkpoint to migration record (UNIT_SRC_NORMAL, initial save)\n");
11362                         goto abort;
11363                 }
11364         }
11365
11366         /* size for data */
11367         buf_size = __le32_to_cpu(migr_rec->blocks_per_unit) * 512;
11368         /* extend  buffer size for parity disk */
11369         buf_size += __le32_to_cpu(migr_rec->dest_depth_per_unit) * 512;
11370         /* add space for stripe aligment */
11371         buf_size += old_data_stripe_length;
11372         if (posix_memalign((void **)&buf, MAX_SECTOR_SIZE, buf_size)) {
11373                 dprintf("imsm: Cannot allocate checkpoint buffer\n");
11374                 goto abort;
11375         }
11376
11377         max_position = sra->component_size * ndata;
11378         source_layout = imsm_level_to_layout(map_src->raid_level);
11379
11380         while (__le32_to_cpu(migr_rec->curr_migr_unit) <
11381                __le32_to_cpu(migr_rec->num_migr_units)) {
11382                 /* current reshape position [blocks] */
11383                 unsigned long long current_position =
11384                         __le32_to_cpu(migr_rec->blocks_per_unit)
11385                         * __le32_to_cpu(migr_rec->curr_migr_unit);
11386                 unsigned long long border;
11387
11388                 /* Check that array hasn't become failed.
11389                  */
11390                 degraded = check_degradation_change(sra, fds, degraded);
11391                 if (degraded > 1) {
11392                         dprintf("imsm: Abort reshape due to degradation level (%i)\n", degraded);
11393                         goto abort;
11394                 }
11395
11396                 next_step = __le32_to_cpu(migr_rec->blocks_per_unit);
11397
11398                 if ((current_position + next_step) > max_position)
11399                         next_step = max_position - current_position;
11400
11401                 start = current_position * 512;
11402
11403                 /* align reading start to old geometry */
11404                 start_buf_shift = start % old_data_stripe_length;
11405                 start_src = start - start_buf_shift;
11406
11407                 border = (start_src / odata) - (start / ndata);
11408                 border /= 512;
11409                 if (border <= __le32_to_cpu(migr_rec->dest_depth_per_unit)) {
11410                         /* save critical stripes to buf
11411                          * start     - start address of current unit
11412                          *             to backup [bytes]
11413                          * start_src - start address of current unit
11414                          *             to backup alligned to source array
11415                          *             [bytes]
11416                          */
11417                         unsigned long long next_step_filler;
11418                         unsigned long long copy_length = next_step * 512;
11419
11420                         /* allign copy area length to stripe in old geometry */
11421                         next_step_filler = ((copy_length + start_buf_shift)
11422                                             % old_data_stripe_length);
11423                         if (next_step_filler)
11424                                 next_step_filler = (old_data_stripe_length
11425                                                     - next_step_filler);
11426                         dprintf("save_stripes() parameters: start = %llu,\tstart_src = %llu,\tnext_step*512 = %llu,\tstart_in_buf_shift = %llu,\tnext_step_filler = %llu\n",
11427                                 start, start_src, copy_length,
11428                                 start_buf_shift, next_step_filler);
11429
11430                         if (save_stripes(fds, offsets, map_src->num_members,
11431                                          chunk, map_src->raid_level,
11432                                          source_layout, 0, NULL, start_src,
11433                                          copy_length +
11434                                          next_step_filler + start_buf_shift,
11435                                          buf)) {
11436                                 dprintf("imsm: Cannot save stripes to buffer\n");
11437                                 goto abort;
11438                         }
11439                         /* Convert data to destination format and store it
11440                          * in backup general migration area
11441                          */
11442                         if (save_backup_imsm(st, dev, sra,
11443                                 buf + start_buf_shift, copy_length)) {
11444                                 dprintf("imsm: Cannot save stripes to target devices\n");
11445                                 goto abort;
11446                         }
11447                         if (save_checkpoint_imsm(st, sra,
11448                                                  UNIT_SRC_IN_CP_AREA)) {
11449                                 dprintf("imsm: Cannot write checkpoint to migration record (UNIT_SRC_IN_CP_AREA)\n");
11450                                 goto abort;
11451                         }
11452                 } else {
11453                         /* set next step to use whole border area */
11454                         border /= next_step;
11455                         if (border > 1)
11456                                 next_step *= border;
11457                 }
11458                 /* When data backed up, checkpoint stored,
11459                  * kick the kernel to reshape unit of data
11460                  */
11461                 next_step = next_step + sra->reshape_progress;
11462                 /* limit next step to array max position */
11463                 if (next_step > max_position)
11464                         next_step = max_position;
11465                 sysfs_set_num(sra, NULL, "suspend_lo", sra->reshape_progress);
11466                 sysfs_set_num(sra, NULL, "suspend_hi", next_step);
11467                 sra->reshape_progress = next_step;
11468
11469                 /* wait until reshape finish */
11470                 if (wait_for_reshape_imsm(sra, ndata)) {
11471                         dprintf("wait_for_reshape_imsm returned error!\n");
11472                         goto abort;
11473                 }
11474                 if (sigterm)
11475                         goto abort;
11476
11477                 if (save_checkpoint_imsm(st, sra, UNIT_SRC_NORMAL) == 1) {
11478                         /* ignore error == 2, this can mean end of reshape here
11479                          */
11480                         dprintf("imsm: Cannot write checkpoint to migration record (UNIT_SRC_NORMAL)\n");
11481                         goto abort;
11482                 }
11483
11484         }
11485
11486         /* clear migr_rec on disks after successful migration */
11487         struct dl *d;
11488
11489         memset(super->migr_rec_buf, 0, MIGR_REC_BUF_SECTORS*sector_size);
11490         for (d = super->disks; d; d = d->next) {
11491                 if (d->index < 0 || is_failed(&d->disk))
11492                         continue;
11493                 unsigned long long dsize;
11494
11495                 get_dev_size(d->fd, NULL, &dsize);
11496                 if (lseek64(d->fd, dsize - MIGR_REC_SECTOR_POSITION*sector_size,
11497                             SEEK_SET) >= 0) {
11498                         if (write(d->fd, super->migr_rec_buf,
11499                             MIGR_REC_BUF_SECTORS*sector_size) !=
11500                             MIGR_REC_BUF_SECTORS*sector_size)
11501                                 perror("Write migr_rec failed");
11502                 }
11503         }
11504
11505         /* return '1' if done */
11506         ret_val = 1;
11507 abort:
11508         free(buf);
11509         /* See Grow.c: abort_reshape() for further explanation */
11510         sysfs_set_num(sra, NULL, "suspend_lo", 0x7FFFFFFFFFFFFFFFULL);
11511         sysfs_set_num(sra, NULL, "suspend_hi", 0);
11512         sysfs_set_num(sra, NULL, "suspend_lo", 0);
11513
11514         return ret_val;
11515 }
11516
11517 #endif /* MDASSEMBLE */
11518
11519 struct superswitch super_imsm = {
11520 #ifndef MDASSEMBLE
11521         .examine_super  = examine_super_imsm,
11522         .brief_examine_super = brief_examine_super_imsm,
11523         .brief_examine_subarrays = brief_examine_subarrays_imsm,
11524         .export_examine_super = export_examine_super_imsm,
11525         .detail_super   = detail_super_imsm,
11526         .brief_detail_super = brief_detail_super_imsm,
11527         .write_init_super = write_init_super_imsm,
11528         .validate_geometry = validate_geometry_imsm,
11529         .add_to_super   = add_to_super_imsm,
11530         .remove_from_super = remove_from_super_imsm,
11531         .detail_platform = detail_platform_imsm,
11532         .export_detail_platform = export_detail_platform_imsm,
11533         .kill_subarray = kill_subarray_imsm,
11534         .update_subarray = update_subarray_imsm,
11535         .load_container = load_container_imsm,
11536         .default_geometry = default_geometry_imsm,
11537         .get_disk_controller_domain = imsm_get_disk_controller_domain,
11538         .reshape_super  = imsm_reshape_super,
11539         .manage_reshape = imsm_manage_reshape,
11540         .recover_backup = recover_backup_imsm,
11541         .copy_metadata = copy_metadata_imsm,
11542         .examine_badblocks = examine_badblocks_imsm,
11543 #endif
11544         .match_home     = match_home_imsm,
11545         .uuid_from_super= uuid_from_super_imsm,
11546         .getinfo_super  = getinfo_super_imsm,
11547         .getinfo_super_disks = getinfo_super_disks_imsm,
11548         .update_super   = update_super_imsm,
11549
11550         .avail_size     = avail_size_imsm,
11551         .min_acceptable_spare_size = min_acceptable_spare_size_imsm,
11552
11553         .compare_super  = compare_super_imsm,
11554
11555         .load_super     = load_super_imsm,
11556         .init_super     = init_super_imsm,
11557         .store_super    = store_super_imsm,
11558         .free_super     = free_super_imsm,
11559         .match_metadata_desc = match_metadata_desc_imsm,
11560         .container_content = container_content_imsm,
11561         .validate_container = validate_container_imsm,
11562
11563         .external       = 1,
11564         .name = "imsm",
11565
11566 #ifndef MDASSEMBLE
11567 /* for mdmon */
11568         .open_new       = imsm_open_new,
11569         .set_array_state= imsm_set_array_state,
11570         .set_disk       = imsm_set_disk,
11571         .sync_metadata  = imsm_sync_metadata,
11572         .activate_spare = imsm_activate_spare,
11573         .process_update = imsm_process_update,
11574         .prepare_update = imsm_prepare_update,
11575         .record_bad_block = imsm_record_badblock,
11576         .clear_bad_block  = imsm_clear_badblock,
11577         .get_bad_blocks   = imsm_get_badblocks,
11578 #endif /* MDASSEMBLE */
11579 };