]> git.neil.brown.name Git - mdadm.git/blob - super-intel.c
a1114ac41424fd568c21c14c5518a2e6ac218ce1
[mdadm.git] / super-intel.c
1 /*
2  * mdadm - Intel(R) Matrix Storage Manager Support
3  *
4  * Copyright (C) 2002-2008 Intel Corporation
5  *
6  * This program is free software; you can redistribute it and/or modify it
7  * under the terms and conditions of the GNU General Public License,
8  * version 2, as published by the Free Software Foundation.
9  *
10  * This program is distributed in the hope it will be useful, but WITHOUT
11  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
13  * more details.
14  *
15  * You should have received a copy of the GNU General Public License along with
16  * this program; if not, write to the Free Software Foundation, Inc.,
17  * 51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
18  */
19
20 #define HAVE_STDINT_H 1
21 #include "mdadm.h"
22 #include "mdmon.h"
23 #include "sha1.h"
24 #include "platform-intel.h"
25 #include <values.h>
26 #include <scsi/sg.h>
27 #include <ctype.h>
28 #include <dirent.h>
29
30 /* MPB == Metadata Parameter Block */
31 #define MPB_SIGNATURE "Intel Raid ISM Cfg Sig. "
32 #define MPB_SIG_LEN (strlen(MPB_SIGNATURE))
33 #define MPB_VERSION_RAID0 "1.0.00"
34 #define MPB_VERSION_RAID1 "1.1.00"
35 #define MPB_VERSION_MANY_VOLUMES_PER_ARRAY "1.2.00"
36 #define MPB_VERSION_3OR4_DISK_ARRAY "1.2.01"
37 #define MPB_VERSION_RAID5 "1.2.02"
38 #define MPB_VERSION_5OR6_DISK_ARRAY "1.2.04"
39 #define MPB_VERSION_CNG "1.2.06"
40 #define MPB_VERSION_ATTRIBS "1.3.00"
41 #define MAX_SIGNATURE_LENGTH  32
42 #define MAX_RAID_SERIAL_LEN   16
43
44 /* supports RAID0 */
45 #define MPB_ATTRIB_RAID0                __cpu_to_le32(0x00000001)
46 /* supports RAID1 */
47 #define MPB_ATTRIB_RAID1                __cpu_to_le32(0x00000002)
48 /* supports RAID10 */
49 #define MPB_ATTRIB_RAID10               __cpu_to_le32(0x00000004)
50 /* supports RAID1E */
51 #define MPB_ATTRIB_RAID1E               __cpu_to_le32(0x00000008)
52 /* supports RAID5 */
53 #define MPB_ATTRIB_RAID5                __cpu_to_le32(0x00000010)
54 /* supports RAID CNG */
55 #define MPB_ATTRIB_RAIDCNG              __cpu_to_le32(0x00000020)
56 /* supports expanded stripe sizes of  256K, 512K and 1MB */
57 #define MPB_ATTRIB_EXP_STRIPE_SIZE      __cpu_to_le32(0x00000040)
58
59 /* The OROM Support RST Caching of Volumes */
60 #define MPB_ATTRIB_NVM                  __cpu_to_le32(0x02000000)
61 /* The OROM supports creating disks greater than 2TB */
62 #define MPB_ATTRIB_2TB_DISK             __cpu_to_le32(0x04000000)
63 /* The OROM supports Bad Block Management */
64 #define MPB_ATTRIB_BBM                  __cpu_to_le32(0x08000000)
65
66 /* THe OROM Supports NVM Caching of Volumes */
67 #define MPB_ATTRIB_NEVER_USE2           __cpu_to_le32(0x10000000)
68 /* The OROM supports creating volumes greater than 2TB */
69 #define MPB_ATTRIB_2TB                  __cpu_to_le32(0x20000000)
70 /* originally for PMP, now it's wasted b/c. Never use this bit! */
71 #define MPB_ATTRIB_NEVER_USE            __cpu_to_le32(0x40000000)
72 /* Verify MPB contents against checksum after reading MPB */
73 #define MPB_ATTRIB_CHECKSUM_VERIFY      __cpu_to_le32(0x80000000)
74
75 /* Define all supported attributes that have to be accepted by mdadm
76  */
77 #define MPB_ATTRIB_SUPPORTED           (MPB_ATTRIB_CHECKSUM_VERIFY | \
78                                         MPB_ATTRIB_2TB             | \
79                                         MPB_ATTRIB_2TB_DISK        | \
80                                         MPB_ATTRIB_RAID0           | \
81                                         MPB_ATTRIB_RAID1           | \
82                                         MPB_ATTRIB_RAID10          | \
83                                         MPB_ATTRIB_RAID5           | \
84                                         MPB_ATTRIB_EXP_STRIPE_SIZE)
85
86 /* Define attributes that are unused but not harmful */
87 #define MPB_ATTRIB_IGNORED              (MPB_ATTRIB_NEVER_USE)
88
89 #define MPB_SECTOR_CNT 2210
90 #define IMSM_RESERVED_SECTORS 4096
91 #define NUM_BLOCKS_DIRTY_STRIPE_REGION 2056
92 #define SECT_PER_MB_SHIFT 11
93 #define MAX_SECTOR_SIZE 4096
94
95 /* Disk configuration info. */
96 #define IMSM_MAX_DEVICES 255
97 struct imsm_disk {
98         __u8 serial[MAX_RAID_SERIAL_LEN];/* 0xD8 - 0xE7 ascii serial number */
99         __u32 total_blocks_lo;           /* 0xE8 - 0xEB total blocks lo */
100         __u32 scsi_id;                   /* 0xEC - 0xEF scsi ID */
101 #define SPARE_DISK      __cpu_to_le32(0x01)  /* Spare */
102 #define CONFIGURED_DISK __cpu_to_le32(0x02)  /* Member of some RaidDev */
103 #define FAILED_DISK     __cpu_to_le32(0x04)  /* Permanent failure */
104         __u32 status;                    /* 0xF0 - 0xF3 */
105         __u32 owner_cfg_num; /* which config 0,1,2... owns this disk */
106         __u32 total_blocks_hi;           /* 0xF4 - 0xF5 total blocks hi */
107 #define IMSM_DISK_FILLERS       3
108         __u32 filler[IMSM_DISK_FILLERS]; /* 0xF5 - 0x107 MPB_DISK_FILLERS for future expansion */
109 };
110
111 /* map selector for map managment
112  */
113 #define MAP_0           0
114 #define MAP_1           1
115 #define MAP_X           -1
116
117 /* RAID map configuration infos. */
118 struct imsm_map {
119         __u32 pba_of_lba0_lo;   /* start address of partition */
120         __u32 blocks_per_member_lo;/* blocks per member */
121         __u32 num_data_stripes_lo;      /* number of data stripes */
122         __u16 blocks_per_strip;
123         __u8  map_state;        /* Normal, Uninitialized, Degraded, Failed */
124 #define IMSM_T_STATE_NORMAL 0
125 #define IMSM_T_STATE_UNINITIALIZED 1
126 #define IMSM_T_STATE_DEGRADED 2
127 #define IMSM_T_STATE_FAILED 3
128         __u8  raid_level;
129 #define IMSM_T_RAID0 0
130 #define IMSM_T_RAID1 1
131 #define IMSM_T_RAID5 5          /* since metadata version 1.2.02 ? */
132         __u8  num_members;      /* number of member disks */
133         __u8  num_domains;      /* number of parity domains */
134         __u8  failed_disk_num;  /* valid only when state is degraded */
135         __u8  ddf;
136         __u32 pba_of_lba0_hi;
137         __u32 blocks_per_member_hi;
138         __u32 num_data_stripes_hi;
139         __u32 filler[4];        /* expansion area */
140 #define IMSM_ORD_REBUILD (1 << 24)
141         __u32 disk_ord_tbl[1];  /* disk_ord_tbl[num_members],
142                                  * top byte contains some flags
143                                  */
144 } __attribute__ ((packed));
145
146 struct imsm_vol {
147         __u32 curr_migr_unit;
148         __u32 checkpoint_id;    /* id to access curr_migr_unit */
149         __u8  migr_state;       /* Normal or Migrating */
150 #define MIGR_INIT 0
151 #define MIGR_REBUILD 1
152 #define MIGR_VERIFY 2 /* analagous to echo check > sync_action */
153 #define MIGR_GEN_MIGR 3
154 #define MIGR_STATE_CHANGE 4
155 #define MIGR_REPAIR 5
156         __u8  migr_type;        /* Initializing, Rebuilding, ... */
157         __u8  dirty;
158         __u8  fs_state;         /* fast-sync state for CnG (0xff == disabled) */
159         __u16 verify_errors;    /* number of mismatches */
160         __u16 bad_blocks;       /* number of bad blocks during verify */
161         __u32 filler[4];
162         struct imsm_map map[1];
163         /* here comes another one if migr_state */
164 } __attribute__ ((packed));
165
166 struct imsm_dev {
167         __u8  volume[MAX_RAID_SERIAL_LEN];
168         __u32 size_low;
169         __u32 size_high;
170 #define DEV_BOOTABLE            __cpu_to_le32(0x01)
171 #define DEV_BOOT_DEVICE         __cpu_to_le32(0x02)
172 #define DEV_READ_COALESCING     __cpu_to_le32(0x04)
173 #define DEV_WRITE_COALESCING    __cpu_to_le32(0x08)
174 #define DEV_LAST_SHUTDOWN_DIRTY __cpu_to_le32(0x10)
175 #define DEV_HIDDEN_AT_BOOT      __cpu_to_le32(0x20)
176 #define DEV_CURRENTLY_HIDDEN    __cpu_to_le32(0x40)
177 #define DEV_VERIFY_AND_FIX      __cpu_to_le32(0x80)
178 #define DEV_MAP_STATE_UNINIT    __cpu_to_le32(0x100)
179 #define DEV_NO_AUTO_RECOVERY    __cpu_to_le32(0x200)
180 #define DEV_CLONE_N_GO          __cpu_to_le32(0x400)
181 #define DEV_CLONE_MAN_SYNC      __cpu_to_le32(0x800)
182 #define DEV_CNG_MASTER_DISK_NUM __cpu_to_le32(0x1000)
183         __u32 status;   /* Persistent RaidDev status */
184         __u32 reserved_blocks; /* Reserved blocks at beginning of volume */
185         __u8  migr_priority;
186         __u8  num_sub_vols;
187         __u8  tid;
188         __u8  cng_master_disk;
189         __u16 cache_policy;
190         __u8  cng_state;
191         __u8  cng_sub_state;
192 #define IMSM_DEV_FILLERS 10
193         __u32 filler[IMSM_DEV_FILLERS];
194         struct imsm_vol vol;
195 } __attribute__ ((packed));
196
197 struct imsm_super {
198         __u8 sig[MAX_SIGNATURE_LENGTH]; /* 0x00 - 0x1F */
199         __u32 check_sum;                /* 0x20 - 0x23 MPB Checksum */
200         __u32 mpb_size;                 /* 0x24 - 0x27 Size of MPB */
201         __u32 family_num;               /* 0x28 - 0x2B Checksum from first time this config was written */
202         __u32 generation_num;           /* 0x2C - 0x2F Incremented each time this array's MPB is written */
203         __u32 error_log_size;           /* 0x30 - 0x33 in bytes */
204         __u32 attributes;               /* 0x34 - 0x37 */
205         __u8 num_disks;                 /* 0x38 Number of configured disks */
206         __u8 num_raid_devs;             /* 0x39 Number of configured volumes */
207         __u8 error_log_pos;             /* 0x3A  */
208         __u8 fill[1];                   /* 0x3B */
209         __u32 cache_size;               /* 0x3c - 0x40 in mb */
210         __u32 orig_family_num;          /* 0x40 - 0x43 original family num */
211         __u32 pwr_cycle_count;          /* 0x44 - 0x47 simulated power cycle count for array */
212         __u32 bbm_log_size;             /* 0x48 - 0x4B - size of bad Block Mgmt Log in bytes */
213 #define IMSM_FILLERS 35
214         __u32 filler[IMSM_FILLERS];     /* 0x4C - 0xD7 RAID_MPB_FILLERS */
215         struct imsm_disk disk[1];       /* 0xD8 diskTbl[numDisks] */
216         /* here comes imsm_dev[num_raid_devs] */
217         /* here comes BBM logs */
218 } __attribute__ ((packed));
219
220 #define BBM_LOG_MAX_ENTRIES 254
221
222 struct bbm_log_entry {
223         __u64 defective_block_start;
224 #define UNREADABLE 0xFFFFFFFF
225         __u32 spare_block_offset;
226         __u16 remapped_marked_count;
227         __u16 disk_ordinal;
228 } __attribute__ ((__packed__));
229
230 struct bbm_log {
231         __u32 signature; /* 0xABADB10C */
232         __u32 entry_count;
233         __u32 reserved_spare_block_count; /* 0 */
234         __u32 reserved; /* 0xFFFF */
235         __u64 first_spare_lba;
236         struct bbm_log_entry mapped_block_entries[BBM_LOG_MAX_ENTRIES];
237 } __attribute__ ((__packed__));
238
239 #ifndef MDASSEMBLE
240 static char *map_state_str[] = { "normal", "uninitialized", "degraded", "failed" };
241 #endif
242
243 #define RAID_DISK_RESERVED_BLOCKS_IMSM_HI 2209
244
245 #define GEN_MIGR_AREA_SIZE 2048 /* General Migration Copy Area size in blocks */
246
247 #define MIGR_REC_BUF_SIZE 512 /* size of migr_record i/o buffer */
248 #define MIGR_REC_POSITION 512 /* migr_record position offset on disk,
249                                * MIGR_REC_BUF_SIZE <= MIGR_REC_POSITION
250                                */
251
252 #define UNIT_SRC_NORMAL     0   /* Source data for curr_migr_unit must
253                                  *  be recovered using srcMap */
254 #define UNIT_SRC_IN_CP_AREA 1   /* Source data for curr_migr_unit has
255                                  *  already been migrated and must
256                                  *  be recovered from checkpoint area */
257 struct migr_record {
258         __u32 rec_status;           /* Status used to determine how to restart
259                                      * migration in case it aborts
260                                      * in some fashion */
261         __u32 curr_migr_unit;       /* 0..numMigrUnits-1 */
262         __u32 family_num;           /* Family number of MPB
263                                      * containing the RaidDev
264                                      * that is migrating */
265         __u32 ascending_migr;       /* True if migrating in increasing
266                                      * order of lbas */
267         __u32 blocks_per_unit;      /* Num disk blocks per unit of operation */
268         __u32 dest_depth_per_unit;  /* Num member blocks each destMap
269                                      * member disk
270                                      * advances per unit-of-operation */
271         __u32 ckpt_area_pba;        /* Pba of first block of ckpt copy area */
272         __u32 dest_1st_member_lba;  /* First member lba on first
273                                      * stripe of destination */
274         __u32 num_migr_units;       /* Total num migration units-of-op */
275         __u32 post_migr_vol_cap;    /* Size of volume after
276                                      * migration completes */
277         __u32 post_migr_vol_cap_hi; /* Expansion space for LBA64 */
278         __u32 ckpt_read_disk_num;   /* Which member disk in destSubMap[0] the
279                                      * migration ckpt record was read from
280                                      * (for recovered migrations) */
281 } __attribute__ ((__packed__));
282
283 struct md_list {
284         /* usage marker:
285          *  1: load metadata
286          *  2: metadata does not match
287          *  4: already checked
288          */
289         int   used;
290         char  *devname;
291         int   found;
292         int   container;
293         dev_t st_rdev;
294         struct md_list *next;
295 };
296
297 #define pr_vrb(fmt, arg...) (void) (verbose && pr_err(fmt, ##arg))
298
299 static __u8 migr_type(struct imsm_dev *dev)
300 {
301         if (dev->vol.migr_type == MIGR_VERIFY &&
302             dev->status & DEV_VERIFY_AND_FIX)
303                 return MIGR_REPAIR;
304         else
305                 return dev->vol.migr_type;
306 }
307
308 static void set_migr_type(struct imsm_dev *dev, __u8 migr_type)
309 {
310         /* for compatibility with older oroms convert MIGR_REPAIR, into
311          * MIGR_VERIFY w/ DEV_VERIFY_AND_FIX status
312          */
313         if (migr_type == MIGR_REPAIR) {
314                 dev->vol.migr_type = MIGR_VERIFY;
315                 dev->status |= DEV_VERIFY_AND_FIX;
316         } else {
317                 dev->vol.migr_type = migr_type;
318                 dev->status &= ~DEV_VERIFY_AND_FIX;
319         }
320 }
321
322 static unsigned int sector_count(__u32 bytes, unsigned int sector_size)
323 {
324         return ROUND_UP(bytes, sector_size) / sector_size;
325 }
326
327 static unsigned int mpb_sectors(struct imsm_super *mpb,
328                                         unsigned int sector_size)
329 {
330         return sector_count(__le32_to_cpu(mpb->mpb_size), sector_size);
331 }
332
333 struct intel_dev {
334         struct imsm_dev *dev;
335         struct intel_dev *next;
336         unsigned index;
337 };
338
339 struct intel_hba {
340         enum sys_dev_type type;
341         char *path;
342         char *pci_id;
343         struct intel_hba *next;
344 };
345
346 enum action {
347         DISK_REMOVE = 1,
348         DISK_ADD
349 };
350 /* internal representation of IMSM metadata */
351 struct intel_super {
352         union {
353                 void *buf; /* O_DIRECT buffer for reading/writing metadata */
354                 struct imsm_super *anchor; /* immovable parameters */
355         };
356         union {
357                 void *migr_rec_buf; /* buffer for I/O operations */
358                 struct migr_record *migr_rec; /* migration record */
359         };
360         int clean_migration_record_by_mdmon; /* when reshape is switched to next
361                 array, it indicates that mdmon is allowed to clean migration
362                 record */
363         size_t len; /* size of the 'buf' allocation */
364         void *next_buf; /* for realloc'ing buf from the manager */
365         size_t next_len;
366         int updates_pending; /* count of pending updates for mdmon */
367         int current_vol; /* index of raid device undergoing creation */
368         unsigned long long create_offset; /* common start for 'current_vol' */
369         __u32 random; /* random data for seeding new family numbers */
370         struct intel_dev *devlist;
371         unsigned int sector_size; /* sector size of used member drives */
372         struct dl {
373                 struct dl *next;
374                 int index;
375                 __u8 serial[MAX_RAID_SERIAL_LEN];
376                 int major, minor;
377                 char *devname;
378                 struct imsm_disk disk;
379                 int fd;
380                 int extent_cnt;
381                 struct extent *e; /* for determining freespace @ create */
382                 int raiddisk; /* slot to fill in autolayout */
383                 enum action action;
384         } *disks, *current_disk;
385         struct dl *disk_mgmt_list; /* list of disks to add/remove while mdmon
386                                       active */
387         struct dl *missing; /* disks removed while we weren't looking */
388         struct bbm_log *bbm_log;
389         struct intel_hba *hba; /* device path of the raid controller for this metadata */
390         const struct imsm_orom *orom; /* platform firmware support */
391         struct intel_super *next; /* (temp) list for disambiguating family_num */
392 };
393
394 struct intel_disk {
395         struct imsm_disk disk;
396         #define IMSM_UNKNOWN_OWNER (-1)
397         int owner;
398         struct intel_disk *next;
399 };
400
401 struct extent {
402         unsigned long long start, size;
403 };
404
405 /* definitions of reshape process types */
406 enum imsm_reshape_type {
407         CH_TAKEOVER,
408         CH_MIGRATION,
409         CH_ARRAY_SIZE,
410 };
411
412 /* definition of messages passed to imsm_process_update */
413 enum imsm_update_type {
414         update_activate_spare,
415         update_create_array,
416         update_kill_array,
417         update_rename_array,
418         update_add_remove_disk,
419         update_reshape_container_disks,
420         update_reshape_migration,
421         update_takeover,
422         update_general_migration_checkpoint,
423         update_size_change,
424 };
425
426 struct imsm_update_activate_spare {
427         enum imsm_update_type type;
428         struct dl *dl;
429         int slot;
430         int array;
431         struct imsm_update_activate_spare *next;
432 };
433
434 struct geo_params {
435         char devnm[32];
436         char *dev_name;
437         unsigned long long size;
438         int level;
439         int layout;
440         int chunksize;
441         int raid_disks;
442 };
443
444 enum takeover_direction {
445         R10_TO_R0,
446         R0_TO_R10
447 };
448 struct imsm_update_takeover {
449         enum imsm_update_type type;
450         int subarray;
451         enum takeover_direction direction;
452 };
453
454 struct imsm_update_reshape {
455         enum imsm_update_type type;
456         int old_raid_disks;
457         int new_raid_disks;
458
459         int new_disks[1]; /* new_raid_disks - old_raid_disks makedev number */
460 };
461
462 struct imsm_update_reshape_migration {
463         enum imsm_update_type type;
464         int old_raid_disks;
465         int new_raid_disks;
466         /* fields for array migration changes
467          */
468         int subdev;
469         int new_level;
470         int new_layout;
471         int new_chunksize;
472
473         int new_disks[1]; /* new_raid_disks - old_raid_disks makedev number */
474 };
475
476 struct imsm_update_size_change {
477         enum imsm_update_type type;
478         int subdev;
479         long long new_size;
480 };
481
482 struct imsm_update_general_migration_checkpoint {
483         enum imsm_update_type type;
484         __u32 curr_migr_unit;
485 };
486
487 struct disk_info {
488         __u8 serial[MAX_RAID_SERIAL_LEN];
489 };
490
491 struct imsm_update_create_array {
492         enum imsm_update_type type;
493         int dev_idx;
494         struct imsm_dev dev;
495 };
496
497 struct imsm_update_kill_array {
498         enum imsm_update_type type;
499         int dev_idx;
500 };
501
502 struct imsm_update_rename_array {
503         enum imsm_update_type type;
504         __u8 name[MAX_RAID_SERIAL_LEN];
505         int dev_idx;
506 };
507
508 struct imsm_update_add_remove_disk {
509         enum imsm_update_type type;
510 };
511
512 static const char *_sys_dev_type[] = {
513         [SYS_DEV_UNKNOWN] = "Unknown",
514         [SYS_DEV_SAS] = "SAS",
515         [SYS_DEV_SATA] = "SATA",
516         [SYS_DEV_NVME] = "NVMe",
517         [SYS_DEV_VMD] = "VMD"
518 };
519
520 const char *get_sys_dev_type(enum sys_dev_type type)
521 {
522         if (type >= SYS_DEV_MAX)
523                 type = SYS_DEV_UNKNOWN;
524
525         return _sys_dev_type[type];
526 }
527
528 static struct intel_hba * alloc_intel_hba(struct sys_dev *device)
529 {
530         struct intel_hba *result = xmalloc(sizeof(*result));
531
532         result->type = device->type;
533         result->path = xstrdup(device->path);
534         result->next = NULL;
535         if (result->path && (result->pci_id = strrchr(result->path, '/')) != NULL)
536                 result->pci_id++;
537
538         return result;
539 }
540
541 static struct intel_hba * find_intel_hba(struct intel_hba *hba, struct sys_dev *device)
542 {
543         struct intel_hba *result;
544
545         for (result = hba; result; result = result->next) {
546                 if (result->type == device->type && strcmp(result->path, device->path) == 0)
547                         break;
548         }
549         return result;
550 }
551
552 static int attach_hba_to_super(struct intel_super *super, struct sys_dev *device)
553 {
554         struct intel_hba *hba;
555
556         /* check if disk attached to Intel HBA */
557         hba = find_intel_hba(super->hba, device);
558         if (hba != NULL)
559                 return 1;
560         /* Check if HBA is already attached to super */
561         if (super->hba == NULL) {
562                 super->hba = alloc_intel_hba(device);
563                 return 1;
564         }
565
566         hba = super->hba;
567         /* Intel metadata allows for all disks attached to the same type HBA.
568          * Do not support HBA types mixing
569          */
570         if (device->type != hba->type)
571                 return 2;
572
573         /* Multiple same type HBAs can be used if they share the same OROM */
574         const struct imsm_orom *device_orom = get_orom_by_device_id(device->dev_id);
575
576         if (device_orom != super->orom)
577                 return 2;
578
579         while (hba->next)
580                 hba = hba->next;
581
582         hba->next = alloc_intel_hba(device);
583         return 1;
584 }
585
586 static struct sys_dev* find_disk_attached_hba(int fd, const char *devname)
587 {
588         struct sys_dev *list, *elem;
589         char *disk_path;
590
591         if ((list = find_intel_devices()) == NULL)
592                 return 0;
593
594         if (fd < 0)
595                 disk_path  = (char *) devname;
596         else
597                 disk_path = diskfd_to_devpath(fd);
598
599         if (!disk_path)
600                 return 0;
601
602         for (elem = list; elem; elem = elem->next)
603                 if (path_attached_to_hba(disk_path, elem->path))
604                         return elem;
605
606         if (disk_path != devname)
607                 free(disk_path);
608
609         return NULL;
610 }
611
612 static int find_intel_hba_capability(int fd, struct intel_super *super,
613                                      char *devname);
614
615 static struct supertype *match_metadata_desc_imsm(char *arg)
616 {
617         struct supertype *st;
618
619         if (strcmp(arg, "imsm") != 0 &&
620             strcmp(arg, "default") != 0
621                 )
622                 return NULL;
623
624         st = xcalloc(1, sizeof(*st));
625         st->ss = &super_imsm;
626         st->max_devs = IMSM_MAX_DEVICES;
627         st->minor_version = 0;
628         st->sb = NULL;
629         return st;
630 }
631
632 #ifndef MDASSEMBLE
633 static __u8 *get_imsm_version(struct imsm_super *mpb)
634 {
635         return &mpb->sig[MPB_SIG_LEN];
636 }
637 #endif
638
639 /* retrieve a disk directly from the anchor when the anchor is known to be
640  * up-to-date, currently only at load time
641  */
642 static struct imsm_disk *__get_imsm_disk(struct imsm_super *mpb, __u8 index)
643 {
644         if (index >= mpb->num_disks)
645                 return NULL;
646         return &mpb->disk[index];
647 }
648
649 /* retrieve the disk description based on a index of the disk
650  * in the sub-array
651  */
652 static struct dl *get_imsm_dl_disk(struct intel_super *super, __u8 index)
653 {
654         struct dl *d;
655
656         for (d = super->disks; d; d = d->next)
657                 if (d->index == index)
658                         return d;
659
660         return NULL;
661 }
662 /* retrieve a disk from the parsed metadata */
663 static struct imsm_disk *get_imsm_disk(struct intel_super *super, __u8 index)
664 {
665         struct dl *dl;
666
667         dl = get_imsm_dl_disk(super, index);
668         if (dl)
669                 return &dl->disk;
670
671         return NULL;
672 }
673
674 /* generate a checksum directly from the anchor when the anchor is known to be
675  * up-to-date, currently only at load or write_super after coalescing
676  */
677 static __u32 __gen_imsm_checksum(struct imsm_super *mpb)
678 {
679         __u32 end = mpb->mpb_size / sizeof(end);
680         __u32 *p = (__u32 *) mpb;
681         __u32 sum = 0;
682
683         while (end--) {
684                 sum += __le32_to_cpu(*p);
685                 p++;
686         }
687
688         return sum - __le32_to_cpu(mpb->check_sum);
689 }
690
691 static size_t sizeof_imsm_map(struct imsm_map *map)
692 {
693         return sizeof(struct imsm_map) + sizeof(__u32) * (map->num_members - 1);
694 }
695
696 struct imsm_map *get_imsm_map(struct imsm_dev *dev, int second_map)
697 {
698         /* A device can have 2 maps if it is in the middle of a migration.
699          * If second_map is:
700          *    MAP_0 - we return the first map
701          *    MAP_1 - we return the second map if it exists, else NULL
702          *    MAP_X - we return the second map if it exists, else the first
703          */
704         struct imsm_map *map = &dev->vol.map[0];
705         struct imsm_map *map2 = NULL;
706
707         if (dev->vol.migr_state)
708                 map2 = (void *)map + sizeof_imsm_map(map);
709
710         switch (second_map) {
711         case MAP_0:
712                 break;
713         case MAP_1:
714                 map = map2;
715                 break;
716         case MAP_X:
717                 if (map2)
718                         map = map2;
719                 break;
720         default:
721                 map = NULL;
722         }
723         return map;
724
725 }
726
727 /* return the size of the device.
728  * migr_state increases the returned size if map[0] were to be duplicated
729  */
730 static size_t sizeof_imsm_dev(struct imsm_dev *dev, int migr_state)
731 {
732         size_t size = sizeof(*dev) - sizeof(struct imsm_map) +
733                       sizeof_imsm_map(get_imsm_map(dev, MAP_0));
734
735         /* migrating means an additional map */
736         if (dev->vol.migr_state)
737                 size += sizeof_imsm_map(get_imsm_map(dev, MAP_1));
738         else if (migr_state)
739                 size += sizeof_imsm_map(get_imsm_map(dev, MAP_0));
740
741         return size;
742 }
743
744 #ifndef MDASSEMBLE
745 /* retrieve disk serial number list from a metadata update */
746 static struct disk_info *get_disk_info(struct imsm_update_create_array *update)
747 {
748         void *u = update;
749         struct disk_info *inf;
750
751         inf = u + sizeof(*update) - sizeof(struct imsm_dev) +
752               sizeof_imsm_dev(&update->dev, 0);
753
754         return inf;
755 }
756 #endif
757
758 static struct imsm_dev *__get_imsm_dev(struct imsm_super *mpb, __u8 index)
759 {
760         int offset;
761         int i;
762         void *_mpb = mpb;
763
764         if (index >= mpb->num_raid_devs)
765                 return NULL;
766
767         /* devices start after all disks */
768         offset = ((void *) &mpb->disk[mpb->num_disks]) - _mpb;
769
770         for (i = 0; i <= index; i++)
771                 if (i == index)
772                         return _mpb + offset;
773                 else
774                         offset += sizeof_imsm_dev(_mpb + offset, 0);
775
776         return NULL;
777 }
778
779 static struct imsm_dev *get_imsm_dev(struct intel_super *super, __u8 index)
780 {
781         struct intel_dev *dv;
782
783         if (index >= super->anchor->num_raid_devs)
784                 return NULL;
785         for (dv = super->devlist; dv; dv = dv->next)
786                 if (dv->index == index)
787                         return dv->dev;
788         return NULL;
789 }
790
791 /*
792  * for second_map:
793  *  == MAP_0 get first map
794  *  == MAP_1 get second map
795  *  == MAP_X than get map according to the current migr_state
796  */
797 static __u32 get_imsm_ord_tbl_ent(struct imsm_dev *dev,
798                                   int slot,
799                                   int second_map)
800 {
801         struct imsm_map *map;
802
803         map = get_imsm_map(dev, second_map);
804
805         /* top byte identifies disk under rebuild */
806         return __le32_to_cpu(map->disk_ord_tbl[slot]);
807 }
808
809 #define ord_to_idx(ord) (((ord) << 8) >> 8)
810 static __u32 get_imsm_disk_idx(struct imsm_dev *dev, int slot, int second_map)
811 {
812         __u32 ord = get_imsm_ord_tbl_ent(dev, slot, second_map);
813
814         return ord_to_idx(ord);
815 }
816
817 static void set_imsm_ord_tbl_ent(struct imsm_map *map, int slot, __u32 ord)
818 {
819         map->disk_ord_tbl[slot] = __cpu_to_le32(ord);
820 }
821
822 static int get_imsm_disk_slot(struct imsm_map *map, unsigned idx)
823 {
824         int slot;
825         __u32 ord;
826
827         for (slot = 0; slot < map->num_members; slot++) {
828                 ord = __le32_to_cpu(map->disk_ord_tbl[slot]);
829                 if (ord_to_idx(ord) == idx)
830                         return slot;
831         }
832
833         return -1;
834 }
835
836 static int get_imsm_raid_level(struct imsm_map *map)
837 {
838         if (map->raid_level == 1) {
839                 if (map->num_members == 2)
840                         return 1;
841                 else
842                         return 10;
843         }
844
845         return map->raid_level;
846 }
847
848 static int cmp_extent(const void *av, const void *bv)
849 {
850         const struct extent *a = av;
851         const struct extent *b = bv;
852         if (a->start < b->start)
853                 return -1;
854         if (a->start > b->start)
855                 return 1;
856         return 0;
857 }
858
859 static int count_memberships(struct dl *dl, struct intel_super *super)
860 {
861         int memberships = 0;
862         int i;
863
864         for (i = 0; i < super->anchor->num_raid_devs; i++) {
865                 struct imsm_dev *dev = get_imsm_dev(super, i);
866                 struct imsm_map *map = get_imsm_map(dev, MAP_0);
867
868                 if (get_imsm_disk_slot(map, dl->index) >= 0)
869                         memberships++;
870         }
871
872         return memberships;
873 }
874
875 static __u32 imsm_min_reserved_sectors(struct intel_super *super);
876
877 static int split_ull(unsigned long long n, __u32 *lo, __u32 *hi)
878 {
879         if (lo == 0 || hi == 0)
880                 return 1;
881         *lo = __le32_to_cpu((unsigned)n);
882         *hi = __le32_to_cpu((unsigned)(n >> 32));
883         return 0;
884 }
885
886 static unsigned long long join_u32(__u32 lo, __u32 hi)
887 {
888         return (unsigned long long)__le32_to_cpu(lo) |
889                (((unsigned long long)__le32_to_cpu(hi)) << 32);
890 }
891
892 static unsigned long long total_blocks(struct imsm_disk *disk)
893 {
894         if (disk == NULL)
895                 return 0;
896         return join_u32(disk->total_blocks_lo, disk->total_blocks_hi);
897 }
898
899 static unsigned long long pba_of_lba0(struct imsm_map *map)
900 {
901         if (map == NULL)
902                 return 0;
903         return join_u32(map->pba_of_lba0_lo, map->pba_of_lba0_hi);
904 }
905
906 static unsigned long long blocks_per_member(struct imsm_map *map)
907 {
908         if (map == NULL)
909                 return 0;
910         return join_u32(map->blocks_per_member_lo, map->blocks_per_member_hi);
911 }
912
913 #ifndef MDASSEMBLE
914 static unsigned long long num_data_stripes(struct imsm_map *map)
915 {
916         if (map == NULL)
917                 return 0;
918         return join_u32(map->num_data_stripes_lo, map->num_data_stripes_hi);
919 }
920 #endif
921
922 static void set_total_blocks(struct imsm_disk *disk, unsigned long long n)
923 {
924         split_ull(n, &disk->total_blocks_lo, &disk->total_blocks_hi);
925 }
926
927 static void set_pba_of_lba0(struct imsm_map *map, unsigned long long n)
928 {
929         split_ull(n, &map->pba_of_lba0_lo, &map->pba_of_lba0_hi);
930 }
931
932 static void set_blocks_per_member(struct imsm_map *map, unsigned long long n)
933 {
934         split_ull(n, &map->blocks_per_member_lo, &map->blocks_per_member_hi);
935 }
936
937 static void set_num_data_stripes(struct imsm_map *map, unsigned long long n)
938 {
939         split_ull(n, &map->num_data_stripes_lo, &map->num_data_stripes_hi);
940 }
941
942 static struct extent *get_extents(struct intel_super *super, struct dl *dl)
943 {
944         /* find a list of used extents on the given physical device */
945         struct extent *rv, *e;
946         int i;
947         int memberships = count_memberships(dl, super);
948         __u32 reservation;
949
950         /* trim the reserved area for spares, so they can join any array
951          * regardless of whether the OROM has assigned sectors from the
952          * IMSM_RESERVED_SECTORS region
953          */
954         if (dl->index == -1)
955                 reservation = imsm_min_reserved_sectors(super);
956         else
957                 reservation = MPB_SECTOR_CNT + IMSM_RESERVED_SECTORS;
958
959         rv = xcalloc(sizeof(struct extent), (memberships + 1));
960         e = rv;
961
962         for (i = 0; i < super->anchor->num_raid_devs; i++) {
963                 struct imsm_dev *dev = get_imsm_dev(super, i);
964                 struct imsm_map *map = get_imsm_map(dev, MAP_0);
965
966                 if (get_imsm_disk_slot(map, dl->index) >= 0) {
967                         e->start = pba_of_lba0(map);
968                         e->size = blocks_per_member(map);
969                         e++;
970                 }
971         }
972         qsort(rv, memberships, sizeof(*rv), cmp_extent);
973
974         /* determine the start of the metadata
975          * when no raid devices are defined use the default
976          * ...otherwise allow the metadata to truncate the value
977          * as is the case with older versions of imsm
978          */
979         if (memberships) {
980                 struct extent *last = &rv[memberships - 1];
981                 unsigned long long remainder;
982
983                 remainder = total_blocks(&dl->disk) - (last->start + last->size);
984                 /* round down to 1k block to satisfy precision of the kernel
985                  * 'size' interface
986                  */
987                 remainder &= ~1UL;
988                 /* make sure remainder is still sane */
989                 if (remainder < (unsigned)ROUND_UP(super->len, 512) >> 9)
990                         remainder = ROUND_UP(super->len, 512) >> 9;
991                 if (reservation > remainder)
992                         reservation = remainder;
993         }
994         e->start = total_blocks(&dl->disk) - reservation;
995         e->size = 0;
996         return rv;
997 }
998
999 /* try to determine how much space is reserved for metadata from
1000  * the last get_extents() entry, otherwise fallback to the
1001  * default
1002  */
1003 static __u32 imsm_reserved_sectors(struct intel_super *super, struct dl *dl)
1004 {
1005         struct extent *e;
1006         int i;
1007         __u32 rv;
1008
1009         /* for spares just return a minimal reservation which will grow
1010          * once the spare is picked up by an array
1011          */
1012         if (dl->index == -1)
1013                 return MPB_SECTOR_CNT;
1014
1015         e = get_extents(super, dl);
1016         if (!e)
1017                 return MPB_SECTOR_CNT + IMSM_RESERVED_SECTORS;
1018
1019         /* scroll to last entry */
1020         for (i = 0; e[i].size; i++)
1021                 continue;
1022
1023         rv = total_blocks(&dl->disk) - e[i].start;
1024
1025         free(e);
1026
1027         return rv;
1028 }
1029
1030 static int is_spare(struct imsm_disk *disk)
1031 {
1032         return (disk->status & SPARE_DISK) == SPARE_DISK;
1033 }
1034
1035 static int is_configured(struct imsm_disk *disk)
1036 {
1037         return (disk->status & CONFIGURED_DISK) == CONFIGURED_DISK;
1038 }
1039
1040 static int is_failed(struct imsm_disk *disk)
1041 {
1042         return (disk->status & FAILED_DISK) == FAILED_DISK;
1043 }
1044
1045 /* try to determine how much space is reserved for metadata from
1046  * the last get_extents() entry on the smallest active disk,
1047  * otherwise fallback to the default
1048  */
1049 static __u32 imsm_min_reserved_sectors(struct intel_super *super)
1050 {
1051         struct extent *e;
1052         int i;
1053         unsigned long long min_active;
1054         __u32 remainder;
1055         __u32 rv = MPB_SECTOR_CNT + IMSM_RESERVED_SECTORS;
1056         struct dl *dl, *dl_min = NULL;
1057
1058         if (!super)
1059                 return rv;
1060
1061         min_active = 0;
1062         for (dl = super->disks; dl; dl = dl->next) {
1063                 if (dl->index < 0)
1064                         continue;
1065                 unsigned long long blocks = total_blocks(&dl->disk);
1066                 if (blocks < min_active || min_active == 0) {
1067                         dl_min = dl;
1068                         min_active = blocks;
1069                 }
1070         }
1071         if (!dl_min)
1072                 return rv;
1073
1074         /* find last lba used by subarrays on the smallest active disk */
1075         e = get_extents(super, dl_min);
1076         if (!e)
1077                 return rv;
1078         for (i = 0; e[i].size; i++)
1079                 continue;
1080
1081         remainder = min_active - e[i].start;
1082         free(e);
1083
1084         /* to give priority to recovery we should not require full
1085            IMSM_RESERVED_SECTORS from the spare */
1086         rv = MPB_SECTOR_CNT + NUM_BLOCKS_DIRTY_STRIPE_REGION;
1087
1088         /* if real reservation is smaller use that value */
1089         return  (remainder < rv) ? remainder : rv;
1090 }
1091
1092 /* Return minimum size of a spare that can be used in this array*/
1093 static unsigned long long min_acceptable_spare_size_imsm(struct supertype *st)
1094 {
1095         struct intel_super *super = st->sb;
1096         struct dl *dl;
1097         struct extent *e;
1098         int i;
1099         unsigned long long rv = 0;
1100
1101         if (!super)
1102                 return rv;
1103         /* find first active disk in array */
1104         dl = super->disks;
1105         while (dl && (is_failed(&dl->disk) || dl->index == -1))
1106                 dl = dl->next;
1107         if (!dl)
1108                 return rv;
1109         /* find last lba used by subarrays */
1110         e = get_extents(super, dl);
1111         if (!e)
1112                 return rv;
1113         for (i = 0; e[i].size; i++)
1114                 continue;
1115         if (i > 0)
1116                 rv = e[i-1].start + e[i-1].size;
1117         free(e);
1118
1119         /* add the amount of space needed for metadata */
1120         rv = rv + imsm_min_reserved_sectors(super);
1121
1122         return rv * 512;
1123 }
1124
1125 static int is_gen_migration(struct imsm_dev *dev);
1126
1127 #define IMSM_4K_DIV 8
1128
1129 #ifndef MDASSEMBLE
1130 static __u64 blocks_per_migr_unit(struct intel_super *super,
1131                                   struct imsm_dev *dev);
1132
1133 static void print_imsm_dev(struct intel_super *super,
1134                            struct imsm_dev *dev,
1135                            char *uuid,
1136                            int disk_idx)
1137 {
1138         __u64 sz;
1139         int slot, i;
1140         struct imsm_map *map = get_imsm_map(dev, MAP_0);
1141         struct imsm_map *map2 = get_imsm_map(dev, MAP_1);
1142         __u32 ord;
1143
1144         printf("\n");
1145         printf("[%.16s]:\n", dev->volume);
1146         printf("           UUID : %s\n", uuid);
1147         printf("     RAID Level : %d", get_imsm_raid_level(map));
1148         if (map2)
1149                 printf(" <-- %d", get_imsm_raid_level(map2));
1150         printf("\n");
1151         printf("        Members : %d", map->num_members);
1152         if (map2)
1153                 printf(" <-- %d", map2->num_members);
1154         printf("\n");
1155         printf("          Slots : [");
1156         for (i = 0; i < map->num_members; i++) {
1157                 ord = get_imsm_ord_tbl_ent(dev, i, MAP_0);
1158                 printf("%s", ord & IMSM_ORD_REBUILD ? "_" : "U");
1159         }
1160         printf("]");
1161         if (map2) {
1162                 printf(" <-- [");
1163                 for (i = 0; i < map2->num_members; i++) {
1164                         ord = get_imsm_ord_tbl_ent(dev, i, MAP_1);
1165                         printf("%s", ord & IMSM_ORD_REBUILD ? "_" : "U");
1166                 }
1167                 printf("]");
1168         }
1169         printf("\n");
1170         printf("    Failed disk : ");
1171         if (map->failed_disk_num == 0xff)
1172                 printf("none");
1173         else
1174                 printf("%i", map->failed_disk_num);
1175         printf("\n");
1176         slot = get_imsm_disk_slot(map, disk_idx);
1177         if (slot >= 0) {
1178                 ord = get_imsm_ord_tbl_ent(dev, slot, MAP_X);
1179                 printf("      This Slot : %d%s\n", slot,
1180                        ord & IMSM_ORD_REBUILD ? " (out-of-sync)" : "");
1181         } else
1182                 printf("      This Slot : ?\n");
1183         sz = __le32_to_cpu(dev->size_high);
1184         sz <<= 32;
1185         sz += __le32_to_cpu(dev->size_low);
1186         printf("     Array Size : %llu%s\n", (unsigned long long)sz,
1187                human_size(sz * 512));
1188         sz = blocks_per_member(map);
1189         printf("   Per Dev Size : %llu%s\n", (unsigned long long)sz,
1190                human_size(sz * 512));
1191         printf("  Sector Offset : %llu\n",
1192                 pba_of_lba0(map));
1193         printf("    Num Stripes : %llu\n",
1194                 num_data_stripes(map));
1195         printf("     Chunk Size : %u KiB",
1196                 __le16_to_cpu(map->blocks_per_strip) / 2);
1197         if (map2)
1198                 printf(" <-- %u KiB",
1199                         __le16_to_cpu(map2->blocks_per_strip) / 2);
1200         printf("\n");
1201         printf("       Reserved : %d\n", __le32_to_cpu(dev->reserved_blocks));
1202         printf("  Migrate State : ");
1203         if (dev->vol.migr_state) {
1204                 if (migr_type(dev) == MIGR_INIT)
1205                         printf("initialize\n");
1206                 else if (migr_type(dev) == MIGR_REBUILD)
1207                         printf("rebuild\n");
1208                 else if (migr_type(dev) == MIGR_VERIFY)
1209                         printf("check\n");
1210                 else if (migr_type(dev) == MIGR_GEN_MIGR)
1211                         printf("general migration\n");
1212                 else if (migr_type(dev) == MIGR_STATE_CHANGE)
1213                         printf("state change\n");
1214                 else if (migr_type(dev) == MIGR_REPAIR)
1215                         printf("repair\n");
1216                 else
1217                         printf("<unknown:%d>\n", migr_type(dev));
1218         } else
1219                 printf("idle\n");
1220         printf("      Map State : %s", map_state_str[map->map_state]);
1221         if (dev->vol.migr_state) {
1222                 struct imsm_map *map = get_imsm_map(dev, MAP_1);
1223
1224                 printf(" <-- %s", map_state_str[map->map_state]);
1225                 printf("\n     Checkpoint : %u ",
1226                            __le32_to_cpu(dev->vol.curr_migr_unit));
1227                 if (is_gen_migration(dev) && (slot > 1 || slot < 0))
1228                         printf("(N/A)");
1229                 else
1230                         printf("(%llu)", (unsigned long long)
1231                                    blocks_per_migr_unit(super, dev));
1232         }
1233         printf("\n");
1234         printf("    Dirty State : %s\n", dev->vol.dirty ? "dirty" : "clean");
1235 }
1236
1237 static void print_imsm_disk(struct imsm_disk *disk, int index, __u32 reserved)
1238 {
1239         char str[MAX_RAID_SERIAL_LEN + 1];
1240         __u64 sz;
1241
1242         if (index < -1 || !disk)
1243                 return;
1244
1245         printf("\n");
1246         snprintf(str, MAX_RAID_SERIAL_LEN + 1, "%s", disk->serial);
1247         if (index >= 0)
1248                 printf("  Disk%02d Serial : %s\n", index, str);
1249         else
1250                 printf("    Disk Serial : %s\n", str);
1251         printf("          State :%s%s%s\n", is_spare(disk) ? " spare" : "",
1252                                             is_configured(disk) ? " active" : "",
1253                                             is_failed(disk) ? " failed" : "");
1254         printf("             Id : %08x\n", __le32_to_cpu(disk->scsi_id));
1255         sz = total_blocks(disk) - reserved;
1256         printf("    Usable Size : %llu%s\n", (unsigned long long)sz,
1257                human_size(sz * 512));
1258 }
1259
1260 void convert_to_4k_imsm_disk(struct imsm_disk *disk)
1261 {
1262         set_total_blocks(disk, (total_blocks(disk)/IMSM_4K_DIV));
1263 }
1264
1265 void convert_to_4k(struct intel_super *super)
1266 {
1267         struct imsm_super *mpb = super->anchor;
1268         struct imsm_disk *disk;
1269         int i;
1270
1271         for (i = 0; i < mpb->num_disks ; i++) {
1272                 disk = __get_imsm_disk(mpb, i);
1273                 /* disk */
1274                 convert_to_4k_imsm_disk(disk);
1275         }
1276         for (i = 0; i < mpb->num_raid_devs; i++) {
1277                 struct imsm_dev *dev = __get_imsm_dev(mpb, i);
1278                 struct imsm_map *map = get_imsm_map(dev, MAP_0);
1279                 /* dev */
1280                 split_ull((join_u32(dev->size_low, dev->size_high)/IMSM_4K_DIV),
1281                                  &dev->size_low, &dev->size_high);
1282                 dev->vol.curr_migr_unit /= IMSM_4K_DIV;
1283
1284                 /* map0 */
1285                 set_blocks_per_member(map, blocks_per_member(map)/IMSM_4K_DIV);
1286                 map->blocks_per_strip /= IMSM_4K_DIV;
1287                 set_pba_of_lba0(map, pba_of_lba0(map)/IMSM_4K_DIV);
1288
1289                 if (dev->vol.migr_state) {
1290                         /* map1 */
1291                         map = get_imsm_map(dev, MAP_1);
1292                         set_blocks_per_member(map,
1293                             blocks_per_member(map)/IMSM_4K_DIV);
1294                         map->blocks_per_strip /= IMSM_4K_DIV;
1295                         set_pba_of_lba0(map, pba_of_lba0(map)/IMSM_4K_DIV);
1296                 }
1297         }
1298
1299         mpb->check_sum = __gen_imsm_checksum(mpb);
1300 }
1301
1302 void examine_migr_rec_imsm(struct intel_super *super)
1303 {
1304         struct migr_record *migr_rec = super->migr_rec;
1305         struct imsm_super *mpb = super->anchor;
1306         int i;
1307
1308         for (i = 0; i < mpb->num_raid_devs; i++) {
1309                 struct imsm_dev *dev = __get_imsm_dev(mpb, i);
1310                 struct imsm_map *map;
1311                 int slot = -1;
1312
1313                 if (is_gen_migration(dev) == 0)
1314                                 continue;
1315
1316                 printf("\nMigration Record Information:");
1317
1318                 /* first map under migration */
1319                 map = get_imsm_map(dev, MAP_0);
1320                 if (map)
1321                         slot = get_imsm_disk_slot(map, super->disks->index);
1322                 if (map == NULL || slot > 1 || slot < 0) {
1323                         printf(" Empty\n                              ");
1324                         printf("Examine one of first two disks in array\n");
1325                         break;
1326                 }
1327                 printf("\n                     Status : ");
1328                 if (__le32_to_cpu(migr_rec->rec_status) == UNIT_SRC_NORMAL)
1329                         printf("Normal\n");
1330                 else
1331                         printf("Contains Data\n");
1332                 printf("               Current Unit : %u\n",
1333                        __le32_to_cpu(migr_rec->curr_migr_unit));
1334                 printf("                     Family : %u\n",
1335                        __le32_to_cpu(migr_rec->family_num));
1336                 printf("                  Ascending : %u\n",
1337                        __le32_to_cpu(migr_rec->ascending_migr));
1338                 printf("            Blocks Per Unit : %u\n",
1339                        __le32_to_cpu(migr_rec->blocks_per_unit));
1340                 printf("       Dest. Depth Per Unit : %u\n",
1341                        __le32_to_cpu(migr_rec->dest_depth_per_unit));
1342                 printf("        Checkpoint Area pba : %u\n",
1343                        __le32_to_cpu(migr_rec->ckpt_area_pba));
1344                 printf("           First member lba : %u\n",
1345                        __le32_to_cpu(migr_rec->dest_1st_member_lba));
1346                 printf("      Total Number of Units : %u\n",
1347                        __le32_to_cpu(migr_rec->num_migr_units));
1348                 printf("             Size of volume : %u\n",
1349                        __le32_to_cpu(migr_rec->post_migr_vol_cap));
1350                 printf("  Expansion space for LBA64 : %u\n",
1351                        __le32_to_cpu(migr_rec->post_migr_vol_cap_hi));
1352                 printf("       Record was read from : %u\n",
1353                        __le32_to_cpu(migr_rec->ckpt_read_disk_num));
1354
1355                 break;
1356         }
1357 }
1358 #endif /* MDASSEMBLE */
1359
1360 void convert_from_4k(struct intel_super *super)
1361 {
1362         struct imsm_super *mpb = super->anchor;
1363         struct imsm_disk *disk;
1364         int i;
1365
1366         for (i = 0; i < mpb->num_disks ; i++) {
1367                 disk = __get_imsm_disk(mpb, i);
1368                 /* disk */
1369                 set_total_blocks(disk, (total_blocks(disk)*IMSM_4K_DIV));
1370         }
1371
1372         for (i = 0; i < mpb->num_raid_devs; i++) {
1373                 struct imsm_dev *dev = __get_imsm_dev(mpb, i);
1374                 struct imsm_map *map = get_imsm_map(dev, MAP_0);
1375                 /* dev */
1376                 split_ull((join_u32(dev->size_low, dev->size_high)*IMSM_4K_DIV),
1377                                  &dev->size_low, &dev->size_high);
1378                 dev->vol.curr_migr_unit *= IMSM_4K_DIV;
1379
1380                 /* map0 */
1381                 set_blocks_per_member(map, blocks_per_member(map)*IMSM_4K_DIV);
1382                 map->blocks_per_strip *= IMSM_4K_DIV;
1383                 set_pba_of_lba0(map, pba_of_lba0(map)*IMSM_4K_DIV);
1384
1385                 if (dev->vol.migr_state) {
1386                         /* map1 */
1387                         map = get_imsm_map(dev, MAP_1);
1388                         set_blocks_per_member(map,
1389                             blocks_per_member(map)*IMSM_4K_DIV);
1390                         map->blocks_per_strip *= IMSM_4K_DIV;
1391                         set_pba_of_lba0(map, pba_of_lba0(map)*IMSM_4K_DIV);
1392                 }
1393         }
1394
1395         mpb->check_sum = __gen_imsm_checksum(mpb);
1396 }
1397
1398 /*******************************************************************************
1399  * function: imsm_check_attributes
1400  * Description: Function checks if features represented by attributes flags
1401  *              are supported by mdadm.
1402  * Parameters:
1403  *              attributes - Attributes read from metadata
1404  * Returns:
1405  *              0 - passed attributes contains unsupported features flags
1406  *              1 - all features are supported
1407  ******************************************************************************/
1408 static int imsm_check_attributes(__u32 attributes)
1409 {
1410         int ret_val = 1;
1411         __u32 not_supported = MPB_ATTRIB_SUPPORTED^0xffffffff;
1412
1413         not_supported &= ~MPB_ATTRIB_IGNORED;
1414
1415         not_supported &= attributes;
1416         if (not_supported) {
1417                 pr_err("(IMSM): Unsupported attributes : %x\n",
1418                         (unsigned)__le32_to_cpu(not_supported));
1419                 if (not_supported & MPB_ATTRIB_CHECKSUM_VERIFY) {
1420                         dprintf("\t\tMPB_ATTRIB_CHECKSUM_VERIFY \n");
1421                         not_supported ^= MPB_ATTRIB_CHECKSUM_VERIFY;
1422                 }
1423                 if (not_supported & MPB_ATTRIB_2TB) {
1424                         dprintf("\t\tMPB_ATTRIB_2TB\n");
1425                         not_supported ^= MPB_ATTRIB_2TB;
1426                 }
1427                 if (not_supported & MPB_ATTRIB_RAID0) {
1428                         dprintf("\t\tMPB_ATTRIB_RAID0\n");
1429                         not_supported ^= MPB_ATTRIB_RAID0;
1430                 }
1431                 if (not_supported & MPB_ATTRIB_RAID1) {
1432                         dprintf("\t\tMPB_ATTRIB_RAID1\n");
1433                         not_supported ^= MPB_ATTRIB_RAID1;
1434                 }
1435                 if (not_supported & MPB_ATTRIB_RAID10) {
1436                         dprintf("\t\tMPB_ATTRIB_RAID10\n");
1437                         not_supported ^= MPB_ATTRIB_RAID10;
1438                 }
1439                 if (not_supported & MPB_ATTRIB_RAID1E) {
1440                         dprintf("\t\tMPB_ATTRIB_RAID1E\n");
1441                         not_supported ^= MPB_ATTRIB_RAID1E;
1442                 }
1443                 if (not_supported & MPB_ATTRIB_RAID5) {
1444                 dprintf("\t\tMPB_ATTRIB_RAID5\n");
1445                         not_supported ^= MPB_ATTRIB_RAID5;
1446                 }
1447                 if (not_supported & MPB_ATTRIB_RAIDCNG) {
1448                         dprintf("\t\tMPB_ATTRIB_RAIDCNG\n");
1449                         not_supported ^= MPB_ATTRIB_RAIDCNG;
1450                 }
1451                 if (not_supported & MPB_ATTRIB_BBM) {
1452                         dprintf("\t\tMPB_ATTRIB_BBM\n");
1453                 not_supported ^= MPB_ATTRIB_BBM;
1454                 }
1455                 if (not_supported & MPB_ATTRIB_CHECKSUM_VERIFY) {
1456                         dprintf("\t\tMPB_ATTRIB_CHECKSUM_VERIFY (== MPB_ATTRIB_LEGACY)\n");
1457                         not_supported ^= MPB_ATTRIB_CHECKSUM_VERIFY;
1458                 }
1459                 if (not_supported & MPB_ATTRIB_EXP_STRIPE_SIZE) {
1460                         dprintf("\t\tMPB_ATTRIB_EXP_STRIP_SIZE\n");
1461                         not_supported ^= MPB_ATTRIB_EXP_STRIPE_SIZE;
1462                 }
1463                 if (not_supported & MPB_ATTRIB_2TB_DISK) {
1464                         dprintf("\t\tMPB_ATTRIB_2TB_DISK\n");
1465                         not_supported ^= MPB_ATTRIB_2TB_DISK;
1466                 }
1467                 if (not_supported & MPB_ATTRIB_NEVER_USE2) {
1468                         dprintf("\t\tMPB_ATTRIB_NEVER_USE2\n");
1469                         not_supported ^= MPB_ATTRIB_NEVER_USE2;
1470                 }
1471                 if (not_supported & MPB_ATTRIB_NEVER_USE) {
1472                         dprintf("\t\tMPB_ATTRIB_NEVER_USE\n");
1473                         not_supported ^= MPB_ATTRIB_NEVER_USE;
1474                 }
1475
1476                 if (not_supported)
1477                         dprintf("(IMSM): Unknown attributes : %x\n", not_supported);
1478
1479                 ret_val = 0;
1480         }
1481
1482         return ret_val;
1483 }
1484
1485 #ifndef MDASSEMBLE
1486 static void getinfo_super_imsm(struct supertype *st, struct mdinfo *info, char *map);
1487
1488 static void examine_super_imsm(struct supertype *st, char *homehost)
1489 {
1490         struct intel_super *super = st->sb;
1491         struct imsm_super *mpb = super->anchor;
1492         char str[MAX_SIGNATURE_LENGTH];
1493         int i;
1494         struct mdinfo info;
1495         char nbuf[64];
1496         __u32 sum;
1497         __u32 reserved = imsm_reserved_sectors(super, super->disks);
1498         struct dl *dl;
1499
1500         snprintf(str, MPB_SIG_LEN, "%s", mpb->sig);
1501         printf("          Magic : %s\n", str);
1502         snprintf(str, strlen(MPB_VERSION_RAID0), "%s", get_imsm_version(mpb));
1503         printf("        Version : %s\n", get_imsm_version(mpb));
1504         printf("    Orig Family : %08x\n", __le32_to_cpu(mpb->orig_family_num));
1505         printf("         Family : %08x\n", __le32_to_cpu(mpb->family_num));
1506         printf("     Generation : %08x\n", __le32_to_cpu(mpb->generation_num));
1507         printf("     Attributes : ");
1508         if (imsm_check_attributes(mpb->attributes))
1509                 printf("All supported\n");
1510         else
1511                 printf("not supported\n");
1512         getinfo_super_imsm(st, &info, NULL);
1513         fname_from_uuid(st, &info, nbuf, ':');
1514         printf("           UUID : %s\n", nbuf + 5);
1515         sum = __le32_to_cpu(mpb->check_sum);
1516         printf("       Checksum : %08x %s\n", sum,
1517                 __gen_imsm_checksum(mpb) == sum ? "correct" : "incorrect");
1518         printf("    MPB Sectors : %d\n", mpb_sectors(mpb, super->sector_size));
1519         printf("          Disks : %d\n", mpb->num_disks);
1520         printf("   RAID Devices : %d\n", mpb->num_raid_devs);
1521         print_imsm_disk(__get_imsm_disk(mpb, super->disks->index), super->disks->index, reserved);
1522         if (super->bbm_log) {
1523                 struct bbm_log *log = super->bbm_log;
1524
1525                 printf("\n");
1526                 printf("Bad Block Management Log:\n");
1527                 printf("       Log Size : %d\n", __le32_to_cpu(mpb->bbm_log_size));
1528                 printf("      Signature : %x\n", __le32_to_cpu(log->signature));
1529                 printf("    Entry Count : %d\n", __le32_to_cpu(log->entry_count));
1530                 printf("   Spare Blocks : %d\n",  __le32_to_cpu(log->reserved_spare_block_count));
1531                 printf("    First Spare : %llx\n",
1532                        (unsigned long long) __le64_to_cpu(log->first_spare_lba));
1533         }
1534         for (i = 0; i < mpb->num_raid_devs; i++) {
1535                 struct mdinfo info;
1536                 struct imsm_dev *dev = __get_imsm_dev(mpb, i);
1537
1538                 super->current_vol = i;
1539                 getinfo_super_imsm(st, &info, NULL);
1540                 fname_from_uuid(st, &info, nbuf, ':');
1541                 print_imsm_dev(super, dev, nbuf + 5, super->disks->index);
1542         }
1543         for (i = 0; i < mpb->num_disks; i++) {
1544                 if (i == super->disks->index)
1545                         continue;
1546                 print_imsm_disk(__get_imsm_disk(mpb, i), i, reserved);
1547         }
1548
1549         for (dl = super->disks; dl; dl = dl->next)
1550                 if (dl->index == -1)
1551                         print_imsm_disk(&dl->disk, -1, reserved);
1552
1553         examine_migr_rec_imsm(super);
1554 }
1555
1556 static void brief_examine_super_imsm(struct supertype *st, int verbose)
1557 {
1558         /* We just write a generic IMSM ARRAY entry */
1559         struct mdinfo info;
1560         char nbuf[64];
1561         struct intel_super *super = st->sb;
1562
1563         if (!super->anchor->num_raid_devs) {
1564                 printf("ARRAY metadata=imsm\n");
1565                 return;
1566         }
1567
1568         getinfo_super_imsm(st, &info, NULL);
1569         fname_from_uuid(st, &info, nbuf, ':');
1570         printf("ARRAY metadata=imsm UUID=%s\n", nbuf + 5);
1571 }
1572
1573 static void brief_examine_subarrays_imsm(struct supertype *st, int verbose)
1574 {
1575         /* We just write a generic IMSM ARRAY entry */
1576         struct mdinfo info;
1577         char nbuf[64];
1578         char nbuf1[64];
1579         struct intel_super *super = st->sb;
1580         int i;
1581
1582         if (!super->anchor->num_raid_devs)
1583                 return;
1584
1585         getinfo_super_imsm(st, &info, NULL);
1586         fname_from_uuid(st, &info, nbuf, ':');
1587         for (i = 0; i < super->anchor->num_raid_devs; i++) {
1588                 struct imsm_dev *dev = get_imsm_dev(super, i);
1589
1590                 super->current_vol = i;
1591                 getinfo_super_imsm(st, &info, NULL);
1592                 fname_from_uuid(st, &info, nbuf1, ':');
1593                 printf("ARRAY /dev/md/%.16s container=%s member=%d UUID=%s\n",
1594                        dev->volume, nbuf + 5, i, nbuf1 + 5);
1595         }
1596 }
1597
1598 static void export_examine_super_imsm(struct supertype *st)
1599 {
1600         struct intel_super *super = st->sb;
1601         struct imsm_super *mpb = super->anchor;
1602         struct mdinfo info;
1603         char nbuf[64];
1604
1605         getinfo_super_imsm(st, &info, NULL);
1606         fname_from_uuid(st, &info, nbuf, ':');
1607         printf("MD_METADATA=imsm\n");
1608         printf("MD_LEVEL=container\n");
1609         printf("MD_UUID=%s\n", nbuf+5);
1610         printf("MD_DEVICES=%u\n", mpb->num_disks);
1611 }
1612
1613 static int copy_metadata_imsm(struct supertype *st, int from, int to)
1614 {
1615         /* The second last sector of the device contains
1616          * the "struct imsm_super" metadata.
1617          * This contains mpb_size which is the size in bytes of the
1618          * extended metadata.  This is located immediately before
1619          * the imsm_super.
1620          * We want to read all that, plus the last sector which
1621          * may contain a migration record, and write it all
1622          * to the target.
1623          */
1624         void *buf;
1625         unsigned long long dsize, offset;
1626         int sectors;
1627         struct imsm_super *sb;
1628         struct intel_super *super = st->sb;
1629         unsigned int sector_size = super->sector_size;
1630         unsigned int written = 0;
1631
1632         if (posix_memalign(&buf, 4096, 4096) != 0)
1633                 return 1;
1634
1635         if (!get_dev_size(from, NULL, &dsize))
1636                 goto err;
1637
1638         if (lseek64(from, dsize-(2*sector_size), 0) < 0)
1639                 goto err;
1640         if (read(from, buf, sector_size) != sector_size)
1641                 goto err;
1642         sb = buf;
1643         if (strncmp((char*)sb->sig, MPB_SIGNATURE, MPB_SIG_LEN) != 0)
1644                 goto err;
1645
1646         sectors = mpb_sectors(sb, sector_size) + 2;
1647         offset = dsize - sectors * sector_size;
1648         if (lseek64(from, offset, 0) < 0 ||
1649             lseek64(to, offset, 0) < 0)
1650                 goto err;
1651         while (written < sectors * sector_size) {
1652                 int n = sectors*sector_size - written;
1653                 if (n > 4096)
1654                         n = 4096;
1655                 if (read(from, buf, n) != n)
1656                         goto err;
1657                 if (write(to, buf, n) != n)
1658                         goto err;
1659                 written += n;
1660         }
1661         free(buf);
1662         return 0;
1663 err:
1664         free(buf);
1665         return 1;
1666 }
1667
1668 static void detail_super_imsm(struct supertype *st, char *homehost)
1669 {
1670         struct mdinfo info;
1671         char nbuf[64];
1672
1673         getinfo_super_imsm(st, &info, NULL);
1674         fname_from_uuid(st, &info, nbuf, ':');
1675         printf("\n           UUID : %s\n", nbuf + 5);
1676 }
1677
1678 static void brief_detail_super_imsm(struct supertype *st)
1679 {
1680         struct mdinfo info;
1681         char nbuf[64];
1682         getinfo_super_imsm(st, &info, NULL);
1683         fname_from_uuid(st, &info, nbuf, ':');
1684         printf(" UUID=%s", nbuf + 5);
1685 }
1686
1687 static int imsm_read_serial(int fd, char *devname, __u8 *serial);
1688 static void fd2devname(int fd, char *name);
1689
1690 static int ahci_enumerate_ports(const char *hba_path, int port_count, int host_base, int verbose)
1691 {
1692         /* dump an unsorted list of devices attached to AHCI Intel storage
1693          * controller, as well as non-connected ports
1694          */
1695         int hba_len = strlen(hba_path) + 1;
1696         struct dirent *ent;
1697         DIR *dir;
1698         char *path = NULL;
1699         int err = 0;
1700         unsigned long port_mask = (1 << port_count) - 1;
1701
1702         if (port_count > (int)sizeof(port_mask) * 8) {
1703                 if (verbose > 0)
1704                         pr_err("port_count %d out of range\n", port_count);
1705                 return 2;
1706         }
1707
1708         /* scroll through /sys/dev/block looking for devices attached to
1709          * this hba
1710          */
1711         dir = opendir("/sys/dev/block");
1712         if (!dir)
1713                 return 1;
1714
1715         for (ent = readdir(dir); ent; ent = readdir(dir)) {
1716                 int fd;
1717                 char model[64];
1718                 char vendor[64];
1719                 char buf[1024];
1720                 int major, minor;
1721                 char *device;
1722                 char *c;
1723                 int port;
1724                 int type;
1725
1726                 if (sscanf(ent->d_name, "%d:%d", &major, &minor) != 2)
1727                         continue;
1728                 path = devt_to_devpath(makedev(major, minor));
1729                 if (!path)
1730                         continue;
1731                 if (!path_attached_to_hba(path, hba_path)) {
1732                         free(path);
1733                         path = NULL;
1734                         continue;
1735                 }
1736
1737                 /* retrieve the scsi device type */
1738                 if (asprintf(&device, "/sys/dev/block/%d:%d/device/xxxxxxx", major, minor) < 0) {
1739                         if (verbose > 0)
1740                                 pr_err("failed to allocate 'device'\n");
1741                         err = 2;
1742                         break;
1743                 }
1744                 sprintf(device, "/sys/dev/block/%d:%d/device/type", major, minor);
1745                 if (load_sys(device, buf, sizeof(buf)) != 0) {
1746                         if (verbose > 0)
1747                                 pr_err("failed to read device type for %s\n",
1748                                         path);
1749                         err = 2;
1750                         free(device);
1751                         break;
1752                 }
1753                 type = strtoul(buf, NULL, 10);
1754
1755                 /* if it's not a disk print the vendor and model */
1756                 if (!(type == 0 || type == 7 || type == 14)) {
1757                         vendor[0] = '\0';
1758                         model[0] = '\0';
1759                         sprintf(device, "/sys/dev/block/%d:%d/device/vendor", major, minor);
1760                         if (load_sys(device, buf, sizeof(buf)) == 0) {
1761                                 strncpy(vendor, buf, sizeof(vendor));
1762                                 vendor[sizeof(vendor) - 1] = '\0';
1763                                 c = (char *) &vendor[sizeof(vendor) - 1];
1764                                 while (isspace(*c) || *c == '\0')
1765                                         *c-- = '\0';
1766
1767                         }
1768                         sprintf(device, "/sys/dev/block/%d:%d/device/model", major, minor);
1769                         if (load_sys(device, buf, sizeof(buf)) == 0) {
1770                                 strncpy(model, buf, sizeof(model));
1771                                 model[sizeof(model) - 1] = '\0';
1772                                 c = (char *) &model[sizeof(model) - 1];
1773                                 while (isspace(*c) || *c == '\0')
1774                                         *c-- = '\0';
1775                         }
1776
1777                         if (vendor[0] && model[0])
1778                                 sprintf(buf, "%.64s %.64s", vendor, model);
1779                         else
1780                                 switch (type) { /* numbers from hald/linux/device.c */
1781                                 case 1: sprintf(buf, "tape"); break;
1782                                 case 2: sprintf(buf, "printer"); break;
1783                                 case 3: sprintf(buf, "processor"); break;
1784                                 case 4:
1785                                 case 5: sprintf(buf, "cdrom"); break;
1786                                 case 6: sprintf(buf, "scanner"); break;
1787                                 case 8: sprintf(buf, "media_changer"); break;
1788                                 case 9: sprintf(buf, "comm"); break;
1789                                 case 12: sprintf(buf, "raid"); break;
1790                                 default: sprintf(buf, "unknown");
1791                                 }
1792                 } else
1793                         buf[0] = '\0';
1794                 free(device);
1795
1796                 /* chop device path to 'host%d' and calculate the port number */
1797                 c = strchr(&path[hba_len], '/');
1798                 if (!c) {
1799                         if (verbose > 0)
1800                                 pr_err("%s - invalid path name\n", path + hba_len);
1801                         err = 2;
1802                         break;
1803                 }
1804                 *c = '\0';
1805                 if ((sscanf(&path[hba_len], "ata%d", &port) == 1) ||
1806                    ((sscanf(&path[hba_len], "host%d", &port) == 1)))
1807                         port -= host_base;
1808                 else {
1809                         if (verbose > 0) {
1810                                 *c = '/'; /* repair the full string */
1811                                 pr_err("failed to determine port number for %s\n",
1812                                         path);
1813                         }
1814                         err = 2;
1815                         break;
1816                 }
1817
1818                 /* mark this port as used */
1819                 port_mask &= ~(1 << port);
1820
1821                 /* print out the device information */
1822                 if (buf[0]) {
1823                         printf("          Port%d : - non-disk device (%s) -\n", port, buf);
1824                         continue;
1825                 }
1826
1827                 fd = dev_open(ent->d_name, O_RDONLY);
1828                 if (fd < 0)
1829                         printf("          Port%d : - disk info unavailable -\n", port);
1830                 else {
1831                         fd2devname(fd, buf);
1832                         printf("          Port%d : %s", port, buf);
1833                         if (imsm_read_serial(fd, NULL, (__u8 *) buf) == 0)
1834                                 printf(" (%.*s)\n", MAX_RAID_SERIAL_LEN, buf);
1835                         else
1836                                 printf(" ()\n");
1837                         close(fd);
1838                 }
1839                 free(path);
1840                 path = NULL;
1841         }
1842         if (path)
1843                 free(path);
1844         if (dir)
1845                 closedir(dir);
1846         if (err == 0) {
1847                 int i;
1848
1849                 for (i = 0; i < port_count; i++)
1850                         if (port_mask & (1 << i))
1851                                 printf("          Port%d : - no device attached -\n", i);
1852         }
1853
1854         return err;
1855 }
1856
1857 static int print_vmd_attached_devs(struct sys_dev *hba)
1858 {
1859         struct dirent *ent;
1860         DIR *dir;
1861         char path[292];
1862         char link[256];
1863         char *c, *rp;
1864
1865         if (hba->type != SYS_DEV_VMD)
1866                 return 1;
1867
1868         /* scroll through /sys/dev/block looking for devices attached to
1869          * this hba
1870          */
1871         dir = opendir("/sys/bus/pci/drivers/nvme");
1872         if (!dir)
1873                 return 1;
1874
1875         for (ent = readdir(dir); ent; ent = readdir(dir)) {
1876                 int n;
1877
1878                 /* is 'ent' a device? check that the 'subsystem' link exists and
1879                  * that its target matches 'bus'
1880                  */
1881                 sprintf(path, "/sys/bus/pci/drivers/nvme/%s/subsystem",
1882                         ent->d_name);
1883                 n = readlink(path, link, sizeof(link));
1884                 if (n < 0 || n >= (int)sizeof(link))
1885                         continue;
1886                 link[n] = '\0';
1887                 c = strrchr(link, '/');
1888                 if (!c)
1889                         continue;
1890                 if (strncmp("pci", c+1, strlen("pci")) != 0)
1891                         continue;
1892
1893                 sprintf(path, "/sys/bus/pci/drivers/nvme/%s", ent->d_name);
1894                 /* if not a intel NVMe - skip it*/
1895                 if (devpath_to_vendor(path) != 0x8086)
1896                         continue;
1897
1898                 rp = realpath(path, NULL);
1899                 if (!rp)
1900                         continue;
1901
1902                 if (path_attached_to_hba(rp, hba->path)) {
1903                         printf(" NVMe under VMD : %s\n", rp);
1904                 }
1905                 free(rp);
1906         }
1907
1908         closedir(dir);
1909         return 0;
1910 }
1911
1912 static void print_found_intel_controllers(struct sys_dev *elem)
1913 {
1914         for (; elem; elem = elem->next) {
1915                 pr_err("found Intel(R) ");
1916                 if (elem->type == SYS_DEV_SATA)
1917                         fprintf(stderr, "SATA ");
1918                 else if (elem->type == SYS_DEV_SAS)
1919                         fprintf(stderr, "SAS ");
1920                 else if (elem->type == SYS_DEV_NVME)
1921                         fprintf(stderr, "NVMe ");
1922
1923                 if (elem->type == SYS_DEV_VMD)
1924                         fprintf(stderr, "VMD domain");
1925                 else
1926                         fprintf(stderr, "RAID controller");
1927
1928                 if (elem->pci_id)
1929                         fprintf(stderr, " at %s", elem->pci_id);
1930                 fprintf(stderr, ".\n");
1931         }
1932         fflush(stderr);
1933 }
1934
1935 static int ahci_get_port_count(const char *hba_path, int *port_count)
1936 {
1937         struct dirent *ent;
1938         DIR *dir;
1939         int host_base = -1;
1940
1941         *port_count = 0;
1942         if ((dir = opendir(hba_path)) == NULL)
1943                 return -1;
1944
1945         for (ent = readdir(dir); ent; ent = readdir(dir)) {
1946                 int host;
1947
1948                 if ((sscanf(ent->d_name, "ata%d", &host) != 1) &&
1949                    ((sscanf(ent->d_name, "host%d", &host) != 1)))
1950                         continue;
1951                 if (*port_count == 0)
1952                         host_base = host;
1953                 else if (host < host_base)
1954                         host_base = host;
1955
1956                 if (host + 1 > *port_count + host_base)
1957                         *port_count = host + 1 - host_base;
1958         }
1959         closedir(dir);
1960         return host_base;
1961 }
1962
1963 static void print_imsm_capability(const struct imsm_orom *orom)
1964 {
1965         printf("       Platform : Intel(R) ");
1966         if (orom->capabilities == 0 && orom->driver_features == 0)
1967                 printf("Matrix Storage Manager\n");
1968         else
1969                 printf("Rapid Storage Technology%s\n",
1970                         imsm_orom_is_enterprise(orom) ? " enterprise" : "");
1971         if (orom->major_ver || orom->minor_ver || orom->hotfix_ver || orom->build)
1972                 printf("        Version : %d.%d.%d.%d\n", orom->major_ver,
1973                                 orom->minor_ver, orom->hotfix_ver, orom->build);
1974         printf("    RAID Levels :%s%s%s%s%s\n",
1975                imsm_orom_has_raid0(orom) ? " raid0" : "",
1976                imsm_orom_has_raid1(orom) ? " raid1" : "",
1977                imsm_orom_has_raid1e(orom) ? " raid1e" : "",
1978                imsm_orom_has_raid10(orom) ? " raid10" : "",
1979                imsm_orom_has_raid5(orom) ? " raid5" : "");
1980         printf("    Chunk Sizes :%s%s%s%s%s%s%s%s%s%s%s%s%s%s%s%s\n",
1981                imsm_orom_has_chunk(orom, 2) ? " 2k" : "",
1982                imsm_orom_has_chunk(orom, 4) ? " 4k" : "",
1983                imsm_orom_has_chunk(orom, 8) ? " 8k" : "",
1984                imsm_orom_has_chunk(orom, 16) ? " 16k" : "",
1985                imsm_orom_has_chunk(orom, 32) ? " 32k" : "",
1986                imsm_orom_has_chunk(orom, 64) ? " 64k" : "",
1987                imsm_orom_has_chunk(orom, 128) ? " 128k" : "",
1988                imsm_orom_has_chunk(orom, 256) ? " 256k" : "",
1989                imsm_orom_has_chunk(orom, 512) ? " 512k" : "",
1990                imsm_orom_has_chunk(orom, 1024*1) ? " 1M" : "",
1991                imsm_orom_has_chunk(orom, 1024*2) ? " 2M" : "",
1992                imsm_orom_has_chunk(orom, 1024*4) ? " 4M" : "",
1993                imsm_orom_has_chunk(orom, 1024*8) ? " 8M" : "",
1994                imsm_orom_has_chunk(orom, 1024*16) ? " 16M" : "",
1995                imsm_orom_has_chunk(orom, 1024*32) ? " 32M" : "",
1996                imsm_orom_has_chunk(orom, 1024*64) ? " 64M" : "");
1997         printf("    2TB volumes :%s supported\n",
1998                (orom->attr & IMSM_OROM_ATTR_2TB)?"":" not");
1999         printf("      2TB disks :%s supported\n",
2000                (orom->attr & IMSM_OROM_ATTR_2TB_DISK)?"":" not");
2001         printf("      Max Disks : %d\n", orom->tds);
2002         printf("    Max Volumes : %d per array, %d per %s\n",
2003                orom->vpa, orom->vphba,
2004                imsm_orom_is_nvme(orom) ? "platform" : "controller");
2005         return;
2006 }
2007
2008 static void print_imsm_capability_export(const struct imsm_orom *orom)
2009 {
2010         printf("MD_FIRMWARE_TYPE=imsm\n");
2011         if (orom->major_ver || orom->minor_ver || orom->hotfix_ver || orom->build)
2012                 printf("IMSM_VERSION=%d.%d.%d.%d\n", orom->major_ver, orom->minor_ver,
2013                                 orom->hotfix_ver, orom->build);
2014         printf("IMSM_SUPPORTED_RAID_LEVELS=%s%s%s%s%s\n",
2015                         imsm_orom_has_raid0(orom) ? "raid0 " : "",
2016                         imsm_orom_has_raid1(orom) ? "raid1 " : "",
2017                         imsm_orom_has_raid1e(orom) ? "raid1e " : "",
2018                         imsm_orom_has_raid5(orom) ? "raid10 " : "",
2019                         imsm_orom_has_raid10(orom) ? "raid5 " : "");
2020         printf("IMSM_SUPPORTED_CHUNK_SIZES=%s%s%s%s%s%s%s%s%s%s%s%s%s%s%s%s\n",
2021                         imsm_orom_has_chunk(orom, 2) ? "2k " : "",
2022                         imsm_orom_has_chunk(orom, 4) ? "4k " : "",
2023                         imsm_orom_has_chunk(orom, 8) ? "8k " : "",
2024                         imsm_orom_has_chunk(orom, 16) ? "16k " : "",
2025                         imsm_orom_has_chunk(orom, 32) ? "32k " : "",
2026                         imsm_orom_has_chunk(orom, 64) ? "64k " : "",
2027                         imsm_orom_has_chunk(orom, 128) ? "128k " : "",
2028                         imsm_orom_has_chunk(orom, 256) ? "256k " : "",
2029                         imsm_orom_has_chunk(orom, 512) ? "512k " : "",
2030                         imsm_orom_has_chunk(orom, 1024*1) ? "1M " : "",
2031                         imsm_orom_has_chunk(orom, 1024*2) ? "2M " : "",
2032                         imsm_orom_has_chunk(orom, 1024*4) ? "4M " : "",
2033                         imsm_orom_has_chunk(orom, 1024*8) ? "8M " : "",
2034                         imsm_orom_has_chunk(orom, 1024*16) ? "16M " : "",
2035                         imsm_orom_has_chunk(orom, 1024*32) ? "32M " : "",
2036                         imsm_orom_has_chunk(orom, 1024*64) ? "64M " : "");
2037         printf("IMSM_2TB_VOLUMES=%s\n",(orom->attr & IMSM_OROM_ATTR_2TB) ? "yes" : "no");
2038         printf("IMSM_2TB_DISKS=%s\n",(orom->attr & IMSM_OROM_ATTR_2TB_DISK) ? "yes" : "no");
2039         printf("IMSM_MAX_DISKS=%d\n",orom->tds);
2040         printf("IMSM_MAX_VOLUMES_PER_ARRAY=%d\n",orom->vpa);
2041         printf("IMSM_MAX_VOLUMES_PER_CONTROLLER=%d\n",orom->vphba);
2042 }
2043
2044 static int detail_platform_imsm(int verbose, int enumerate_only, char *controller_path)
2045 {
2046         /* There are two components to imsm platform support, the ahci SATA
2047          * controller and the option-rom.  To find the SATA controller we
2048          * simply look in /sys/bus/pci/drivers/ahci to see if an ahci
2049          * controller with the Intel vendor id is present.  This approach
2050          * allows mdadm to leverage the kernel's ahci detection logic, with the
2051          * caveat that if ahci.ko is not loaded mdadm will not be able to
2052          * detect platform raid capabilities.  The option-rom resides in a
2053          * platform "Adapter ROM".  We scan for its signature to retrieve the
2054          * platform capabilities.  If raid support is disabled in the BIOS the
2055          * option-rom capability structure will not be available.
2056          */
2057         struct sys_dev *list, *hba;
2058         int host_base = 0;
2059         int port_count = 0;
2060         int result=1;
2061
2062         if (enumerate_only) {
2063                 if (check_env("IMSM_NO_PLATFORM"))
2064                         return 0;
2065                 list = find_intel_devices();
2066                 if (!list)
2067                         return 2;
2068                 for (hba = list; hba; hba = hba->next) {
2069                         if (find_imsm_capability(hba)) {
2070                                 result = 0;
2071                                 break;
2072                         }
2073                         else
2074                                 result = 2;
2075                 }
2076                 return result;
2077         }
2078
2079         list = find_intel_devices();
2080         if (!list) {
2081                 if (verbose > 0)
2082                         pr_err("no active Intel(R) RAID controller found.\n");
2083                 return 2;
2084         } else if (verbose > 0)
2085                 print_found_intel_controllers(list);
2086
2087         for (hba = list; hba; hba = hba->next) {
2088                 if (controller_path && (compare_paths(hba->path, controller_path) != 0))
2089                         continue;
2090                 if (!find_imsm_capability(hba)) {
2091                         char buf[PATH_MAX];
2092                         pr_err("imsm capabilities not found for controller: %s (type %s)\n",
2093                                   hba->type == SYS_DEV_VMD ? vmd_domain_to_controller(hba, buf) : hba->path,
2094                                   get_sys_dev_type(hba->type));
2095                         continue;
2096                 }
2097                 result = 0;
2098         }
2099
2100         if (controller_path && result == 1) {
2101                 pr_err("no active Intel(R) RAID controller found under %s\n",
2102                                 controller_path);
2103                 return result;
2104         }
2105
2106         const struct orom_entry *entry;
2107
2108         for (entry = orom_entries; entry; entry = entry->next) {
2109                 if (entry->type == SYS_DEV_VMD) {
2110                         print_imsm_capability(&entry->orom);
2111                         for (hba = list; hba; hba = hba->next) {
2112                                 if (hba->type == SYS_DEV_VMD) {
2113                                         char buf[PATH_MAX];
2114                                         printf(" I/O Controller : %s (%s)\n",
2115                                                 vmd_domain_to_controller(hba, buf), get_sys_dev_type(hba->type));
2116                                         if (print_vmd_attached_devs(hba)) {
2117                                                 if (verbose > 0)
2118                                                         pr_err("failed to get devices attached to VMD domain.\n");
2119                                                 result |= 2;
2120                                         }
2121                                 }
2122                         }
2123                         printf("\n");
2124                         continue;
2125                 }
2126
2127                 print_imsm_capability(&entry->orom);
2128                 if (entry->type == SYS_DEV_NVME) {
2129                         for (hba = list; hba; hba = hba->next) {
2130                                 if (hba->type == SYS_DEV_NVME)
2131                                         printf("    NVMe Device : %s\n", hba->path);
2132                         }
2133                         printf("\n");
2134                         continue;
2135                 }
2136
2137                 struct devid_list *devid;
2138                 for (devid = entry->devid_list; devid; devid = devid->next) {
2139                         hba = device_by_id(devid->devid);
2140                         if (!hba)
2141                                 continue;
2142
2143                         printf(" I/O Controller : %s (%s)\n",
2144                                 hba->path, get_sys_dev_type(hba->type));
2145                         if (hba->type == SYS_DEV_SATA) {
2146                                 host_base = ahci_get_port_count(hba->path, &port_count);
2147                                 if (ahci_enumerate_ports(hba->path, port_count, host_base, verbose)) {
2148                                         if (verbose > 0)
2149                                                 pr_err("failed to enumerate ports on SATA controller at %s.\n", hba->pci_id);
2150                                         result |= 2;
2151                                 }
2152                         }
2153                 }
2154                 printf("\n");
2155         }
2156
2157         return result;
2158 }
2159
2160 static int export_detail_platform_imsm(int verbose, char *controller_path)
2161 {
2162         struct sys_dev *list, *hba;
2163         int result=1;
2164
2165         list = find_intel_devices();
2166         if (!list) {
2167                 if (verbose > 0)
2168                         pr_err("IMSM_DETAIL_PLATFORM_ERROR=NO_INTEL_DEVICES\n");
2169                 result = 2;
2170                 return result;
2171         }
2172
2173         for (hba = list; hba; hba = hba->next) {
2174                 if (controller_path && (compare_paths(hba->path,controller_path) != 0))
2175                         continue;
2176                 if (!find_imsm_capability(hba) && verbose > 0) {
2177                         char buf[PATH_MAX];
2178                         pr_err("IMSM_DETAIL_PLATFORM_ERROR=NO_IMSM_CAPABLE_DEVICE_UNDER_%s\n",
2179                         hba->type == SYS_DEV_VMD ? vmd_domain_to_controller(hba, buf) : hba->path);
2180                 }
2181                 else
2182                         result = 0;
2183         }
2184
2185         const struct orom_entry *entry;
2186
2187         for (entry = orom_entries; entry; entry = entry->next) {
2188                 if (entry->type == SYS_DEV_VMD) {
2189                         for (hba = list; hba; hba = hba->next)
2190                                 print_imsm_capability_export(&entry->orom);
2191                         continue;
2192                 }
2193                 print_imsm_capability_export(&entry->orom);
2194         }
2195
2196         return result;
2197 }
2198
2199 #endif
2200
2201 static int match_home_imsm(struct supertype *st, char *homehost)
2202 {
2203         /* the imsm metadata format does not specify any host
2204          * identification information.  We return -1 since we can never
2205          * confirm nor deny whether a given array is "meant" for this
2206          * host.  We rely on compare_super and the 'family_num' fields to
2207          * exclude member disks that do not belong, and we rely on
2208          * mdadm.conf to specify the arrays that should be assembled.
2209          * Auto-assembly may still pick up "foreign" arrays.
2210          */
2211
2212         return -1;
2213 }
2214
2215 static void uuid_from_super_imsm(struct supertype *st, int uuid[4])
2216 {
2217         /* The uuid returned here is used for:
2218          *  uuid to put into bitmap file (Create, Grow)
2219          *  uuid for backup header when saving critical section (Grow)
2220          *  comparing uuids when re-adding a device into an array
2221          *    In these cases the uuid required is that of the data-array,
2222          *    not the device-set.
2223          *  uuid to recognise same set when adding a missing device back
2224          *    to an array.   This is a uuid for the device-set.
2225          *
2226          * For each of these we can make do with a truncated
2227          * or hashed uuid rather than the original, as long as
2228          * everyone agrees.
2229          * In each case the uuid required is that of the data-array,
2230          * not the device-set.
2231          */
2232         /* imsm does not track uuid's so we synthesis one using sha1 on
2233          * - The signature (Which is constant for all imsm array, but no matter)
2234          * - the orig_family_num of the container
2235          * - the index number of the volume
2236          * - the 'serial' number of the volume.
2237          * Hopefully these are all constant.
2238          */
2239         struct intel_super *super = st->sb;
2240
2241         char buf[20];
2242         struct sha1_ctx ctx;
2243         struct imsm_dev *dev = NULL;
2244         __u32 family_num;
2245
2246         /* some mdadm versions failed to set ->orig_family_num, in which
2247          * case fall back to ->family_num.  orig_family_num will be
2248          * fixed up with the first metadata update.
2249          */
2250         family_num = super->anchor->orig_family_num;
2251         if (family_num == 0)
2252                 family_num = super->anchor->family_num;
2253         sha1_init_ctx(&ctx);
2254         sha1_process_bytes(super->anchor->sig, MPB_SIG_LEN, &ctx);
2255         sha1_process_bytes(&family_num, sizeof(__u32), &ctx);
2256         if (super->current_vol >= 0)
2257                 dev = get_imsm_dev(super, super->current_vol);
2258         if (dev) {
2259                 __u32 vol = super->current_vol;
2260                 sha1_process_bytes(&vol, sizeof(vol), &ctx);
2261                 sha1_process_bytes(dev->volume, MAX_RAID_SERIAL_LEN, &ctx);
2262         }
2263         sha1_finish_ctx(&ctx, buf);
2264         memcpy(uuid, buf, 4*4);
2265 }
2266
2267 #if 0
2268 static void
2269 get_imsm_numerical_version(struct imsm_super *mpb, int *m, int *p)
2270 {
2271         __u8 *v = get_imsm_version(mpb);
2272         __u8 *end = mpb->sig + MAX_SIGNATURE_LENGTH;
2273         char major[] = { 0, 0, 0 };
2274         char minor[] = { 0 ,0, 0 };
2275         char patch[] = { 0, 0, 0 };
2276         char *ver_parse[] = { major, minor, patch };
2277         int i, j;
2278
2279         i = j = 0;
2280         while (*v != '\0' && v < end) {
2281                 if (*v != '.' && j < 2)
2282                         ver_parse[i][j++] = *v;
2283                 else {
2284                         i++;
2285                         j = 0;
2286                 }
2287                 v++;
2288         }
2289
2290         *m = strtol(minor, NULL, 0);
2291         *p = strtol(patch, NULL, 0);
2292 }
2293 #endif
2294
2295 static __u32 migr_strip_blocks_resync(struct imsm_dev *dev)
2296 {
2297         /* migr_strip_size when repairing or initializing parity */
2298         struct imsm_map *map = get_imsm_map(dev, MAP_0);
2299         __u32 chunk = __le32_to_cpu(map->blocks_per_strip);
2300
2301         switch (get_imsm_raid_level(map)) {
2302         case 5:
2303         case 10:
2304                 return chunk;
2305         default:
2306                 return 128*1024 >> 9;
2307         }
2308 }
2309
2310 static __u32 migr_strip_blocks_rebuild(struct imsm_dev *dev)
2311 {
2312         /* migr_strip_size when rebuilding a degraded disk, no idea why
2313          * this is different than migr_strip_size_resync(), but it's good
2314          * to be compatible
2315          */
2316         struct imsm_map *map = get_imsm_map(dev, MAP_1);
2317         __u32 chunk = __le32_to_cpu(map->blocks_per_strip);
2318
2319         switch (get_imsm_raid_level(map)) {
2320         case 1:
2321         case 10:
2322                 if (map->num_members % map->num_domains == 0)
2323                         return 128*1024 >> 9;
2324                 else
2325                         return chunk;
2326         case 5:
2327                 return max((__u32) 64*1024 >> 9, chunk);
2328         default:
2329                 return 128*1024 >> 9;
2330         }
2331 }
2332
2333 static __u32 num_stripes_per_unit_resync(struct imsm_dev *dev)
2334 {
2335         struct imsm_map *lo = get_imsm_map(dev, MAP_0);
2336         struct imsm_map *hi = get_imsm_map(dev, MAP_1);
2337         __u32 lo_chunk = __le32_to_cpu(lo->blocks_per_strip);
2338         __u32 hi_chunk = __le32_to_cpu(hi->blocks_per_strip);
2339
2340         return max((__u32) 1, hi_chunk / lo_chunk);
2341 }
2342
2343 static __u32 num_stripes_per_unit_rebuild(struct imsm_dev *dev)
2344 {
2345         struct imsm_map *lo = get_imsm_map(dev, MAP_0);
2346         int level = get_imsm_raid_level(lo);
2347
2348         if (level == 1 || level == 10) {
2349                 struct imsm_map *hi = get_imsm_map(dev, MAP_1);
2350
2351                 return hi->num_domains;
2352         } else
2353                 return num_stripes_per_unit_resync(dev);
2354 }
2355
2356 static __u8 imsm_num_data_members(struct imsm_dev *dev, int second_map)
2357 {
2358         /* named 'imsm_' because raid0, raid1 and raid10
2359          * counter-intuitively have the same number of data disks
2360          */
2361         struct imsm_map *map = get_imsm_map(dev, second_map);
2362
2363         switch (get_imsm_raid_level(map)) {
2364         case 0:
2365                 return map->num_members;
2366                 break;
2367         case 1:
2368         case 10:
2369                 return map->num_members/2;
2370         case 5:
2371                 return map->num_members - 1;
2372         default:
2373                 dprintf("unsupported raid level\n");
2374                 return 0;
2375         }
2376 }
2377
2378 static __u32 parity_segment_depth(struct imsm_dev *dev)
2379 {
2380         struct imsm_map *map = get_imsm_map(dev, MAP_0);
2381         __u32 chunk =  __le32_to_cpu(map->blocks_per_strip);
2382
2383         switch(get_imsm_raid_level(map)) {
2384         case 1:
2385         case 10:
2386                 return chunk * map->num_domains;
2387         case 5:
2388                 return chunk * map->num_members;
2389         default:
2390                 return chunk;
2391         }
2392 }
2393
2394 static __u32 map_migr_block(struct imsm_dev *dev, __u32 block)
2395 {
2396         struct imsm_map *map = get_imsm_map(dev, MAP_1);
2397         __u32 chunk = __le32_to_cpu(map->blocks_per_strip);
2398         __u32 strip = block / chunk;
2399
2400         switch (get_imsm_raid_level(map)) {
2401         case 1:
2402         case 10: {
2403                 __u32 vol_strip = (strip * map->num_domains) + 1;
2404                 __u32 vol_stripe = vol_strip / map->num_members;
2405
2406                 return vol_stripe * chunk + block % chunk;
2407         } case 5: {
2408                 __u32 stripe = strip / (map->num_members - 1);
2409
2410                 return stripe * chunk + block % chunk;
2411         }
2412         default:
2413                 return 0;
2414         }
2415 }
2416
2417 static __u64 blocks_per_migr_unit(struct intel_super *super,
2418                                   struct imsm_dev *dev)
2419 {
2420         /* calculate the conversion factor between per member 'blocks'
2421          * (md/{resync,rebuild}_start) and imsm migration units, return
2422          * 0 for the 'not migrating' and 'unsupported migration' cases
2423          */
2424         if (!dev->vol.migr_state)
2425                 return 0;
2426
2427         switch (migr_type(dev)) {
2428         case MIGR_GEN_MIGR: {
2429                 struct migr_record *migr_rec = super->migr_rec;
2430                 return __le32_to_cpu(migr_rec->blocks_per_unit);
2431         }
2432         case MIGR_VERIFY:
2433         case MIGR_REPAIR:
2434         case MIGR_INIT: {
2435                 struct imsm_map *map = get_imsm_map(dev, MAP_0);
2436                 __u32 stripes_per_unit;
2437                 __u32 blocks_per_unit;
2438                 __u32 parity_depth;
2439                 __u32 migr_chunk;
2440                 __u32 block_map;
2441                 __u32 block_rel;
2442                 __u32 segment;
2443                 __u32 stripe;
2444                 __u8  disks;
2445
2446                 /* yes, this is really the translation of migr_units to
2447                  * per-member blocks in the 'resync' case
2448                  */
2449                 stripes_per_unit = num_stripes_per_unit_resync(dev);
2450                 migr_chunk = migr_strip_blocks_resync(dev);
2451                 disks = imsm_num_data_members(dev, MAP_0);
2452                 blocks_per_unit = stripes_per_unit * migr_chunk * disks;
2453                 stripe = __le16_to_cpu(map->blocks_per_strip) * disks;
2454                 segment = blocks_per_unit / stripe;
2455                 block_rel = blocks_per_unit - segment * stripe;
2456                 parity_depth = parity_segment_depth(dev);
2457                 block_map = map_migr_block(dev, block_rel);
2458                 return block_map + parity_depth * segment;
2459         }
2460         case MIGR_REBUILD: {
2461                 __u32 stripes_per_unit;
2462                 __u32 migr_chunk;
2463
2464                 stripes_per_unit = num_stripes_per_unit_rebuild(dev);
2465                 migr_chunk = migr_strip_blocks_rebuild(dev);
2466                 return migr_chunk * stripes_per_unit;
2467         }
2468         case MIGR_STATE_CHANGE:
2469         default:
2470                 return 0;
2471         }
2472 }
2473
2474 static int imsm_level_to_layout(int level)
2475 {
2476         switch (level) {
2477         case 0:
2478         case 1:
2479                 return 0;
2480         case 5:
2481         case 6:
2482                 return ALGORITHM_LEFT_ASYMMETRIC;
2483         case 10:
2484                 return 0x102;
2485         }
2486         return UnSet;
2487 }
2488
2489 /*******************************************************************************
2490  * Function:    read_imsm_migr_rec
2491  * Description: Function reads imsm migration record from last sector of disk
2492  * Parameters:
2493  *      fd      : disk descriptor
2494  *      super   : metadata info
2495  * Returns:
2496  *       0 : success,
2497  *      -1 : fail
2498  ******************************************************************************/
2499 static int read_imsm_migr_rec(int fd, struct intel_super *super)
2500 {
2501         int ret_val = -1;
2502         unsigned long long dsize;
2503
2504         get_dev_size(fd, NULL, &dsize);
2505         if (lseek64(fd, dsize - MIGR_REC_POSITION, SEEK_SET) < 0) {
2506                 pr_err("Cannot seek to anchor block: %s\n",
2507                        strerror(errno));
2508                 goto out;
2509         }
2510         if (read(fd, super->migr_rec_buf, MIGR_REC_BUF_SIZE) !=
2511                                                             MIGR_REC_BUF_SIZE) {
2512                 pr_err("Cannot read migr record block: %s\n",
2513                        strerror(errno));
2514                 goto out;
2515         }
2516         ret_val = 0;
2517
2518 out:
2519         return ret_val;
2520 }
2521
2522 static struct imsm_dev *imsm_get_device_during_migration(
2523         struct intel_super *super)
2524 {
2525
2526         struct intel_dev *dv;
2527
2528         for (dv = super->devlist; dv; dv = dv->next) {
2529                 if (is_gen_migration(dv->dev))
2530                         return dv->dev;
2531         }
2532         return NULL;
2533 }
2534
2535 /*******************************************************************************
2536  * Function:    load_imsm_migr_rec
2537  * Description: Function reads imsm migration record (it is stored at the last
2538  *              sector of disk)
2539  * Parameters:
2540  *      super   : imsm internal array info
2541  *      info    : general array info
2542  * Returns:
2543  *       0 : success
2544  *      -1 : fail
2545  *      -2 : no migration in progress
2546  ******************************************************************************/
2547 static int load_imsm_migr_rec(struct intel_super *super, struct mdinfo *info)
2548 {
2549         struct mdinfo *sd;
2550         struct dl *dl;
2551         char nm[30];
2552         int retval = -1;
2553         int fd = -1;
2554         struct imsm_dev *dev;
2555         struct imsm_map *map;
2556         int slot = -1;
2557
2558         /* find map under migration */
2559         dev = imsm_get_device_during_migration(super);
2560         /* nothing to load,no migration in progress?
2561         */
2562         if (dev == NULL)
2563                 return -2;
2564
2565         if (info) {
2566                 for (sd = info->devs ; sd ; sd = sd->next) {
2567                         /* read only from one of the first two slots */
2568                         if ((sd->disk.raid_disk < 0) ||
2569                             (sd->disk.raid_disk > 1))
2570                                 continue;
2571
2572                         sprintf(nm, "%d:%d", sd->disk.major, sd->disk.minor);
2573                         fd = dev_open(nm, O_RDONLY);
2574                         if (fd >= 0)
2575                                 break;
2576                 }
2577         }
2578         if (fd < 0) {
2579                 map = get_imsm_map(dev, MAP_0);
2580                 for (dl = super->disks; dl; dl = dl->next) {
2581                         /* skip spare and failed disks
2582                         */
2583                         if (dl->index < 0)
2584                                 continue;
2585                         /* read only from one of the first two slots */
2586                         if (map)
2587                                 slot = get_imsm_disk_slot(map, dl->index);
2588                         if (map == NULL || slot > 1 || slot < 0)
2589                                 continue;
2590                         sprintf(nm, "%d:%d", dl->major, dl->minor);
2591                         fd = dev_open(nm, O_RDONLY);
2592                         if (fd >= 0)
2593                                 break;
2594                 }
2595         }
2596         if (fd < 0)
2597                 goto out;
2598         retval = read_imsm_migr_rec(fd, super);
2599
2600 out:
2601         if (fd >= 0)
2602                 close(fd);
2603         return retval;
2604 }
2605
2606 #ifndef MDASSEMBLE
2607 /*******************************************************************************
2608  * function: imsm_create_metadata_checkpoint_update
2609  * Description: It creates update for checkpoint change.
2610  * Parameters:
2611  *      super   : imsm internal array info
2612  *      u       : pointer to prepared update
2613  * Returns:
2614  *      Uptate length.
2615  *      If length is equal to 0, input pointer u contains no update
2616  ******************************************************************************/
2617 static int imsm_create_metadata_checkpoint_update(
2618         struct intel_super *super,
2619         struct imsm_update_general_migration_checkpoint **u)
2620 {
2621
2622         int update_memory_size = 0;
2623
2624         dprintf("(enter)\n");
2625
2626         if (u == NULL)
2627                 return 0;
2628         *u = NULL;
2629
2630         /* size of all update data without anchor */
2631         update_memory_size =
2632                 sizeof(struct imsm_update_general_migration_checkpoint);
2633
2634         *u = xcalloc(1, update_memory_size);
2635         if (*u == NULL) {
2636                 dprintf("error: cannot get memory\n");
2637                 return 0;
2638         }
2639         (*u)->type = update_general_migration_checkpoint;
2640         (*u)->curr_migr_unit = __le32_to_cpu(super->migr_rec->curr_migr_unit);
2641         dprintf("prepared for %u\n", (*u)->curr_migr_unit);
2642
2643         return update_memory_size;
2644 }
2645
2646 static void imsm_update_metadata_locally(struct supertype *st,
2647                                          void *buf, int len);
2648
2649 /*******************************************************************************
2650  * Function:    write_imsm_migr_rec
2651  * Description: Function writes imsm migration record
2652  *              (at the last sector of disk)
2653  * Parameters:
2654  *      super   : imsm internal array info
2655  * Returns:
2656  *       0 : success
2657  *      -1 : if fail
2658  ******************************************************************************/
2659 static int write_imsm_migr_rec(struct supertype *st)
2660 {
2661         struct intel_super *super = st->sb;
2662         unsigned long long dsize;
2663         char nm[30];
2664         int fd = -1;
2665         int retval = -1;
2666         struct dl *sd;
2667         int len;
2668         struct imsm_update_general_migration_checkpoint *u;
2669         struct imsm_dev *dev;
2670         struct imsm_map *map;
2671
2672         /* find map under migration */
2673         dev = imsm_get_device_during_migration(super);
2674         /* if no migration, write buffer anyway to clear migr_record
2675          * on disk based on first available device
2676         */
2677         if (dev == NULL)
2678                 dev = get_imsm_dev(super, super->current_vol < 0 ? 0 :
2679                                           super->current_vol);
2680
2681         map = get_imsm_map(dev, MAP_0);
2682
2683         for (sd = super->disks ; sd ; sd = sd->next) {
2684                 int slot = -1;
2685
2686                 /* skip failed and spare devices */
2687                 if (sd->index < 0)
2688                         continue;
2689                 /* write to 2 first slots only */
2690                 if (map)
2691                         slot = get_imsm_disk_slot(map, sd->index);
2692                 if (map == NULL || slot > 1 || slot < 0)
2693                         continue;
2694
2695                 sprintf(nm, "%d:%d", sd->major, sd->minor);
2696                 fd = dev_open(nm, O_RDWR);
2697                 if (fd < 0)
2698                         continue;
2699                 get_dev_size(fd, NULL, &dsize);
2700                 if (lseek64(fd, dsize - MIGR_REC_POSITION, SEEK_SET) < 0) {
2701                         pr_err("Cannot seek to anchor block: %s\n",
2702                                strerror(errno));
2703                         goto out;
2704                 }
2705                 if (write(fd, super->migr_rec_buf, MIGR_REC_BUF_SIZE) !=
2706                                                             MIGR_REC_BUF_SIZE) {
2707                         pr_err("Cannot write migr record block: %s\n",
2708                                strerror(errno));
2709                         goto out;
2710                 }
2711                 close(fd);
2712                 fd = -1;
2713         }
2714         /* update checkpoint information in metadata */
2715         len = imsm_create_metadata_checkpoint_update(super, &u);
2716
2717         if (len <= 0) {
2718                 dprintf("imsm: Cannot prepare update\n");
2719                 goto out;
2720         }
2721         /* update metadata locally */
2722         imsm_update_metadata_locally(st, u, len);
2723         /* and possibly remotely */
2724         if (st->update_tail) {
2725                 append_metadata_update(st, u, len);
2726                 /* during reshape we do all work inside metadata handler
2727                  * manage_reshape(), so metadata update has to be triggered
2728                  * insida it
2729                  */
2730                 flush_metadata_updates(st);
2731                 st->update_tail = &st->updates;
2732         } else
2733                 free(u);
2734
2735         retval = 0;
2736  out:
2737         if (fd >= 0)
2738                 close(fd);
2739         return retval;
2740 }
2741 #endif /* MDASSEMBLE */
2742
2743 /* spare/missing disks activations are not allowe when
2744  * array/container performs reshape operation, because
2745  * all arrays in container works on the same disks set
2746  */
2747 int imsm_reshape_blocks_arrays_changes(struct intel_super *super)
2748 {
2749         int rv = 0;
2750         struct intel_dev *i_dev;
2751         struct imsm_dev *dev;
2752
2753         /* check whole container
2754          */
2755         for (i_dev = super->devlist; i_dev; i_dev = i_dev->next) {
2756                 dev = i_dev->dev;
2757                 if (is_gen_migration(dev)) {
2758                         /* No repair during any migration in container
2759                          */
2760                         rv = 1;
2761                         break;
2762                 }
2763         }
2764         return rv;
2765 }
2766 static unsigned long long imsm_component_size_aligment_check(int level,
2767                                               int chunk_size,
2768                                               unsigned int sector_size,
2769                                               unsigned long long component_size)
2770 {
2771         unsigned int component_size_alligment;
2772
2773         /* check component size aligment
2774         */
2775         component_size_alligment = component_size % (chunk_size/sector_size);
2776
2777         dprintf("(Level: %i, chunk_size = %i, component_size = %llu), component_size_alligment = %u\n",
2778                 level, chunk_size, component_size,
2779                 component_size_alligment);
2780
2781         if (component_size_alligment && (level != 1) && (level != UnSet)) {
2782                 dprintf("imsm: reported component size alligned from %llu ",
2783                         component_size);
2784                 component_size -= component_size_alligment;
2785                 dprintf_cont("to %llu (%i).\n",
2786                         component_size, component_size_alligment);
2787         }
2788
2789         return component_size;
2790 }
2791
2792 static void getinfo_super_imsm_volume(struct supertype *st, struct mdinfo *info, char *dmap)
2793 {
2794         struct intel_super *super = st->sb;
2795         struct migr_record *migr_rec = super->migr_rec;
2796         struct imsm_dev *dev = get_imsm_dev(super, super->current_vol);
2797         struct imsm_map *map = get_imsm_map(dev, MAP_0);
2798         struct imsm_map *prev_map = get_imsm_map(dev, MAP_1);
2799         struct imsm_map *map_to_analyse = map;
2800         struct dl *dl;
2801         int map_disks = info->array.raid_disks;
2802
2803         memset(info, 0, sizeof(*info));
2804         if (prev_map)
2805                 map_to_analyse = prev_map;
2806
2807         dl = super->current_disk;
2808
2809         info->container_member    = super->current_vol;
2810         info->array.raid_disks    = map->num_members;
2811         info->array.level         = get_imsm_raid_level(map_to_analyse);
2812         info->array.layout        = imsm_level_to_layout(info->array.level);
2813         info->array.md_minor      = -1;
2814         info->array.ctime         = 0;
2815         info->array.utime         = 0;
2816         info->array.chunk_size    =
2817                 __le16_to_cpu(map_to_analyse->blocks_per_strip) << 9;
2818         info->array.state         = !dev->vol.dirty;
2819         info->custom_array_size   = __le32_to_cpu(dev->size_high);
2820         info->custom_array_size   <<= 32;
2821         info->custom_array_size   |= __le32_to_cpu(dev->size_low);
2822         info->recovery_blocked = imsm_reshape_blocks_arrays_changes(st->sb);
2823
2824         if (is_gen_migration(dev)) {
2825                 info->reshape_active = 1;
2826                 info->new_level = get_imsm_raid_level(map);
2827                 info->new_layout = imsm_level_to_layout(info->new_level);
2828                 info->new_chunk = __le16_to_cpu(map->blocks_per_strip) << 9;
2829                 info->delta_disks = map->num_members - prev_map->num_members;
2830                 if (info->delta_disks) {
2831                         /* this needs to be applied to every array
2832                          * in the container.
2833                          */
2834                         info->reshape_active = CONTAINER_RESHAPE;
2835                 }
2836                 /* We shape information that we give to md might have to be
2837                  * modify to cope with md's requirement for reshaping arrays.
2838                  * For example, when reshaping a RAID0, md requires it to be
2839                  * presented as a degraded RAID4.
2840                  * Also if a RAID0 is migrating to a RAID5 we need to specify
2841                  * the array as already being RAID5, but the 'before' layout
2842                  * is a RAID4-like layout.
2843                  */
2844                 switch (info->array.level) {
2845                 case 0:
2846                         switch(info->new_level) {
2847                         case 0:
2848                                 /* conversion is happening as RAID4 */
2849                                 info->array.level = 4;
2850                                 info->array.raid_disks += 1;
2851                                 break;
2852                         case 5:
2853                                 /* conversion is happening as RAID5 */
2854                                 info->array.level = 5;
2855                                 info->array.layout = ALGORITHM_PARITY_N;
2856                                 info->delta_disks -= 1;
2857                                 break;
2858                         default:
2859                                 /* FIXME error message */
2860                                 info->array.level = UnSet;
2861                                 break;
2862                         }
2863                         break;
2864                 }
2865         } else {
2866                 info->new_level = UnSet;
2867                 info->new_layout = UnSet;
2868                 info->new_chunk = info->array.chunk_size;
2869                 info->delta_disks = 0;
2870         }
2871
2872         if (dl) {
2873                 info->disk.major = dl->major;
2874                 info->disk.minor = dl->minor;
2875                 info->disk.number = dl->index;
2876                 info->disk.raid_disk = get_imsm_disk_slot(map_to_analyse,
2877                                                           dl->index);
2878         }
2879
2880         info->data_offset         = pba_of_lba0(map_to_analyse);
2881         info->component_size      = blocks_per_member(map_to_analyse);
2882
2883         info->component_size = imsm_component_size_aligment_check(
2884                                                         info->array.level,
2885                                                         info->array.chunk_size,
2886                                                         super->sector_size,
2887                                                         info->component_size);
2888
2889         memset(info->uuid, 0, sizeof(info->uuid));
2890         info->recovery_start = MaxSector;
2891
2892         info->reshape_progress = 0;
2893         info->resync_start = MaxSector;
2894         if ((map_to_analyse->map_state == IMSM_T_STATE_UNINITIALIZED ||
2895             dev->vol.dirty) &&
2896             imsm_reshape_blocks_arrays_changes(super) == 0) {
2897                 info->resync_start = 0;
2898         }
2899         if (dev->vol.migr_state) {
2900                 switch (migr_type(dev)) {
2901                 case MIGR_REPAIR:
2902                 case MIGR_INIT: {
2903                         __u64 blocks_per_unit = blocks_per_migr_unit(super,
2904                                                                      dev);
2905                         __u64 units = __le32_to_cpu(dev->vol.curr_migr_unit);
2906
2907                         info->resync_start = blocks_per_unit * units;
2908                         break;
2909                 }
2910                 case MIGR_GEN_MIGR: {
2911                         __u64 blocks_per_unit = blocks_per_migr_unit(super,
2912                                                                      dev);
2913                         __u64 units = __le32_to_cpu(migr_rec->curr_migr_unit);
2914                         unsigned long long array_blocks;
2915                         int used_disks;
2916
2917                         if (__le32_to_cpu(migr_rec->ascending_migr) &&
2918                             (units <
2919                                 (__le32_to_cpu(migr_rec->num_migr_units)-1)) &&
2920                             (super->migr_rec->rec_status ==
2921                                         __cpu_to_le32(UNIT_SRC_IN_CP_AREA)))
2922                                 units++;
2923
2924                         info->reshape_progress = blocks_per_unit * units;
2925
2926                         dprintf("IMSM: General Migration checkpoint : %llu (%llu) -> read reshape progress : %llu\n",
2927                                 (unsigned long long)units,
2928                                 (unsigned long long)blocks_per_unit,
2929                                 info->reshape_progress);
2930
2931                         used_disks = imsm_num_data_members(dev, MAP_1);
2932                         if (used_disks > 0) {
2933                                 array_blocks = blocks_per_member(map) *
2934                                         used_disks;
2935                                 /* round array size down to closest MB
2936                                  */
2937                                 info->custom_array_size = (array_blocks
2938                                                 >> SECT_PER_MB_SHIFT)
2939                                                 << SECT_PER_MB_SHIFT;
2940                         }
2941                 }
2942                 case MIGR_VERIFY:
2943                         /* we could emulate the checkpointing of
2944                          * 'sync_action=check' migrations, but for now
2945                          * we just immediately complete them
2946                          */
2947                 case MIGR_REBUILD:
2948                         /* this is handled by container_content_imsm() */
2949                 case MIGR_STATE_CHANGE:
2950                         /* FIXME handle other migrations */
2951                 default:
2952                         /* we are not dirty, so... */
2953                         info->resync_start = MaxSector;
2954                 }
2955         }
2956
2957         strncpy(info->name, (char *) dev->volume, MAX_RAID_SERIAL_LEN);
2958         info->name[MAX_RAID_SERIAL_LEN] = 0;
2959
2960         info->array.major_version = -1;
2961         info->array.minor_version = -2;
2962         sprintf(info->text_version, "/%s/%d", st->container_devnm, info->container_member);
2963         info->safe_mode_delay = 4000;  /* 4 secs like the Matrix driver */
2964         uuid_from_super_imsm(st, info->uuid);
2965
2966         if (dmap) {
2967                 int i, j;
2968                 for (i=0; i<map_disks; i++) {
2969                         dmap[i] = 0;
2970                         if (i < info->array.raid_disks) {
2971                                 struct imsm_disk *dsk;
2972                                 j = get_imsm_disk_idx(dev, i, MAP_X);
2973                                 dsk = get_imsm_disk(super, j);
2974                                 if (dsk && (dsk->status & CONFIGURED_DISK))
2975                                         dmap[i] = 1;
2976                         }
2977                 }
2978         }
2979 }
2980
2981 static __u8 imsm_check_degraded(struct intel_super *super, struct imsm_dev *dev,
2982                                 int failed, int look_in_map);
2983
2984 static int imsm_count_failed(struct intel_super *super, struct imsm_dev *dev,
2985                              int look_in_map);
2986
2987 #ifndef MDASSEMBLE
2988 static void manage_second_map(struct intel_super *super, struct imsm_dev *dev)
2989 {
2990         if (is_gen_migration(dev)) {
2991                 int failed;
2992                 __u8 map_state;
2993                 struct imsm_map *map2 = get_imsm_map(dev, MAP_1);
2994
2995                 failed = imsm_count_failed(super, dev, MAP_1);
2996                 map_state = imsm_check_degraded(super, dev, failed, MAP_1);
2997                 if (map2->map_state != map_state) {
2998                         map2->map_state = map_state;
2999                         super->updates_pending++;
3000                 }
3001         }
3002 }
3003 #endif
3004
3005 static struct imsm_disk *get_imsm_missing(struct intel_super *super, __u8 index)
3006 {
3007         struct dl *d;
3008
3009         for (d = super->missing; d; d = d->next)
3010                 if (d->index == index)
3011                         return &d->disk;
3012         return NULL;
3013 }
3014
3015 static void getinfo_super_imsm(struct supertype *st, struct mdinfo *info, char *map)
3016 {
3017         struct intel_super *super = st->sb;
3018         struct imsm_disk *disk;
3019         int map_disks = info->array.raid_disks;
3020         int max_enough = -1;
3021         int i;
3022         struct imsm_super *mpb;
3023
3024         if (super->current_vol >= 0) {
3025                 getinfo_super_imsm_volume(st, info, map);
3026                 return;
3027         }
3028         memset(info, 0, sizeof(*info));
3029
3030         /* Set raid_disks to zero so that Assemble will always pull in valid
3031          * spares
3032          */
3033         info->array.raid_disks    = 0;
3034         info->array.level         = LEVEL_CONTAINER;
3035         info->array.layout        = 0;
3036         info->array.md_minor      = -1;
3037         info->array.ctime         = 0; /* N/A for imsm */
3038         info->array.utime         = 0;
3039         info->array.chunk_size    = 0;
3040
3041         info->disk.major = 0;
3042         info->disk.minor = 0;
3043         info->disk.raid_disk = -1;
3044         info->reshape_active = 0;
3045         info->array.major_version = -1;
3046         info->array.minor_version = -2;
3047         strcpy(info->text_version, "imsm");
3048         info->safe_mode_delay = 0;
3049         info->disk.number = -1;
3050         info->disk.state = 0;
3051         info->name[0] = 0;
3052         info->recovery_start = MaxSector;
3053         info->recovery_blocked = imsm_reshape_blocks_arrays_changes(st->sb);
3054
3055         /* do we have the all the insync disks that we expect? */
3056         mpb = super->anchor;
3057
3058         for (i = 0; i < mpb->num_raid_devs; i++) {
3059                 struct imsm_dev *dev = get_imsm_dev(super, i);
3060                 int failed, enough, j, missing = 0;
3061                 struct imsm_map *map;
3062                 __u8 state;
3063
3064                 failed = imsm_count_failed(super, dev, MAP_0);
3065                 state = imsm_check_degraded(super, dev, failed, MAP_0);
3066                 map = get_imsm_map(dev, MAP_0);
3067
3068                 /* any newly missing disks?
3069                  * (catches single-degraded vs double-degraded)
3070                  */
3071                 for (j = 0; j < map->num_members; j++) {
3072                         __u32 ord = get_imsm_ord_tbl_ent(dev, j, MAP_0);
3073                         __u32 idx = ord_to_idx(ord);
3074
3075                         if (!(ord & IMSM_ORD_REBUILD) &&
3076                             get_imsm_missing(super, idx)) {
3077                                 missing = 1;
3078                                 break;
3079                         }
3080                 }
3081
3082                 if (state == IMSM_T_STATE_FAILED)
3083                         enough = -1;
3084                 else if (state == IMSM_T_STATE_DEGRADED &&
3085                          (state != map->map_state || missing))
3086                         enough = 0;
3087                 else /* we're normal, or already degraded */
3088                         enough = 1;
3089                 if (is_gen_migration(dev) && missing) {
3090                         /* during general migration we need all disks
3091                          * that process is running on.
3092                          * No new missing disk is allowed.
3093                          */
3094                         max_enough = -1;
3095                         enough = -1;
3096                         /* no more checks necessary
3097                          */
3098                         break;
3099                 }
3100                 /* in the missing/failed disk case check to see
3101                  * if at least one array is runnable
3102                  */
3103                 max_enough = max(max_enough, enough);
3104         }
3105         dprintf("enough: %d\n", max_enough);
3106         info->container_enough = max_enough;
3107
3108         if (super->disks) {
3109                 __u32 reserved = imsm_reserved_sectors(super, super->disks);
3110
3111                 disk = &super->disks->disk;
3112                 info->data_offset = total_blocks(&super->disks->disk) - reserved;
3113                 info->component_size = reserved;
3114                 info->disk.state  = is_configured(disk) ? (1 << MD_DISK_ACTIVE) : 0;
3115                 /* we don't change info->disk.raid_disk here because
3116                  * this state will be finalized in mdmon after we have
3117                  * found the 'most fresh' version of the metadata
3118                  */
3119                 info->disk.state |= is_failed(disk) ? (1 << MD_DISK_FAULTY) : 0;
3120                 info->disk.state |= is_spare(disk) ? 0 : (1 << MD_DISK_SYNC);
3121         }
3122
3123         /* only call uuid_from_super_imsm when this disk is part of a populated container,
3124          * ->compare_super may have updated the 'num_raid_devs' field for spares
3125          */
3126         if (info->disk.state & (1 << MD_DISK_SYNC) || super->anchor->num_raid_devs)
3127                 uuid_from_super_imsm(st, info->uuid);
3128         else
3129                 memcpy(info->uuid, uuid_zero, sizeof(uuid_zero));
3130
3131         /* I don't know how to compute 'map' on imsm, so use safe default */
3132         if (map) {
3133                 int i;
3134                 for (i = 0; i < map_disks; i++)
3135                         map[i] = 1;
3136         }
3137
3138 }
3139
3140 /* allocates memory and fills disk in mdinfo structure
3141  * for each disk in array */
3142 struct mdinfo *getinfo_super_disks_imsm(struct supertype *st)
3143 {
3144         struct mdinfo *mddev;
3145         struct intel_super *super = st->sb;
3146         struct imsm_disk *disk;
3147         int count = 0;
3148         struct dl *dl;
3149         if (!super || !super->disks)
3150                 return NULL;
3151         dl = super->disks;
3152         mddev = xcalloc(1, sizeof(*mddev));
3153         while (dl) {
3154                 struct mdinfo *tmp;
3155                 disk = &dl->disk;
3156                 tmp = xcalloc(1, sizeof(*tmp));
3157                 if (mddev->devs)
3158                         tmp->next = mddev->devs;
3159                 mddev->devs = tmp;
3160                 tmp->disk.number = count++;
3161                 tmp->disk.major = dl->major;
3162                 tmp->disk.minor = dl->minor;
3163                 tmp->disk.state = is_configured(disk) ?
3164                                   (1 << MD_DISK_ACTIVE) : 0;
3165                 tmp->disk.state |= is_failed(disk) ? (1 << MD_DISK_FAULTY) : 0;
3166                 tmp->disk.state |= is_spare(disk) ? 0 : (1 << MD_DISK_SYNC);
3167                 tmp->disk.raid_disk = -1;
3168                 dl = dl->next;
3169         }
3170         return mddev;
3171 }
3172
3173 static int update_super_imsm(struct supertype *st, struct mdinfo *info,
3174                              char *update, char *devname, int verbose,
3175                              int uuid_set, char *homehost)
3176 {
3177         /* For 'assemble' and 'force' we need to return non-zero if any
3178          * change was made.  For others, the return value is ignored.
3179          * Update options are:
3180          *  force-one : This device looks a bit old but needs to be included,
3181          *        update age info appropriately.
3182          *  assemble: clear any 'faulty' flag to allow this device to
3183          *              be assembled.
3184          *  force-array: Array is degraded but being forced, mark it clean
3185          *         if that will be needed to assemble it.
3186          *
3187          *  newdev:  not used ????
3188          *  grow:  Array has gained a new device - this is currently for
3189          *              linear only
3190          *  resync: mark as dirty so a resync will happen.
3191          *  name:  update the name - preserving the homehost
3192          *  uuid:  Change the uuid of the array to match watch is given
3193          *
3194          * Following are not relevant for this imsm:
3195          *  sparc2.2 : update from old dodgey metadata
3196          *  super-minor: change the preferred_minor number
3197          *  summaries:  update redundant counters.
3198          *  homehost:  update the recorded homehost
3199          *  _reshape_progress: record new reshape_progress position.
3200          */
3201         int rv = 1;
3202         struct intel_super *super = st->sb;
3203         struct imsm_super *mpb;
3204
3205         /* we can only update container info */
3206         if (!super || super->current_vol >= 0 || !super->anchor)
3207                 return 1;
3208
3209         mpb = super->anchor;
3210
3211         if (strcmp(update, "uuid") == 0) {
3212                 /* We take this to mean that the family_num should be updated.
3213                  * However that is much smaller than the uuid so we cannot really
3214                  * allow an explicit uuid to be given.  And it is hard to reliably
3215                  * know if one was.
3216                  * So if !uuid_set we know the current uuid is random and just used
3217                  * the first 'int' and copy it to the other 3 positions.
3218                  * Otherwise we require the 4 'int's to be the same as would be the
3219                  * case if we are using a random uuid.  So an explicit uuid will be
3220                  * accepted as long as all for ints are the same... which shouldn't hurt
3221                  */
3222                 if (!uuid_set) {
3223                         info->uuid[1] = info->uuid[2] = info->uuid[3] = info->uuid[0];
3224                         rv = 0;
3225                 } else {
3226                         if (info->uuid[0] != info->uuid[1] ||
3227                             info->uuid[1] != info->uuid[2] ||
3228                             info->uuid[2] != info->uuid[3])
3229                                 rv = -1;
3230                         else
3231                                 rv = 0;
3232                 }
3233                 if (rv == 0)
3234                         mpb->orig_family_num = info->uuid[0];
3235         } else if (strcmp(update, "assemble") == 0)
3236                 rv = 0;
3237         else
3238                 rv = -1;
3239
3240         /* successful update? recompute checksum */
3241         if (rv == 0)
3242                 mpb->check_sum = __le32_to_cpu(__gen_imsm_checksum(mpb));
3243
3244         return rv;
3245 }
3246
3247 static size_t disks_to_mpb_size(int disks)
3248 {
3249         size_t size;
3250
3251         size = sizeof(struct imsm_super);
3252         size += (disks - 1) * sizeof(struct imsm_disk);
3253         size += 2 * sizeof(struct imsm_dev);
3254         /* up to 2 maps per raid device (-2 for imsm_maps in imsm_dev */
3255         size += (4 - 2) * sizeof(struct imsm_map);
3256         /* 4 possible disk_ord_tbl's */
3257         size += 4 * (disks - 1) * sizeof(__u32);
3258
3259         return size;
3260 }
3261
3262 static __u64 avail_size_imsm(struct supertype *st, __u64 devsize,
3263                              unsigned long long data_offset)
3264 {
3265         if (devsize < (MPB_SECTOR_CNT + IMSM_RESERVED_SECTORS))
3266                 return 0;
3267
3268         return devsize - (MPB_SECTOR_CNT + IMSM_RESERVED_SECTORS);
3269 }
3270
3271 static void free_devlist(struct intel_super *super)
3272 {
3273         struct intel_dev *dv;
3274
3275         while (super->devlist) {
3276                 dv = super->devlist->next;
3277                 free(super->devlist->dev);
3278                 free(super->devlist);
3279                 super->devlist = dv;
3280         }
3281 }
3282
3283 static void imsm_copy_dev(struct imsm_dev *dest, struct imsm_dev *src)
3284 {
3285         memcpy(dest, src, sizeof_imsm_dev(src, 0));
3286 }
3287
3288 static int compare_super_imsm(struct supertype *st, struct supertype *tst)
3289 {
3290         /*
3291          * return:
3292          *  0 same, or first was empty, and second was copied
3293          *  1 second had wrong number
3294          *  2 wrong uuid
3295          *  3 wrong other info
3296          */
3297         struct intel_super *first = st->sb;
3298         struct intel_super *sec = tst->sb;
3299
3300         if (!first) {
3301                 st->sb = tst->sb;
3302                 tst->sb = NULL;
3303                 return 0;
3304         }
3305         /* in platform dependent environment test if the disks
3306          * use the same Intel hba
3307          * If not on Intel hba at all, allow anything.
3308          */
3309         if (!check_env("IMSM_NO_PLATFORM") && first->hba && sec->hba) {
3310                 if (first->hba->type != sec->hba->type) {
3311                         fprintf(stderr,
3312                                 "HBAs of devices do not match %s != %s\n",
3313                                 get_sys_dev_type(first->hba->type),
3314                                 get_sys_dev_type(sec->hba->type));
3315                         return 3;
3316                 }
3317                 if (first->orom != sec->orom) {
3318                         fprintf(stderr,
3319                                 "HBAs of devices do not match %s != %s\n",
3320                                 first->hba->pci_id, sec->hba->pci_id);
3321                         return 3;
3322                 }
3323         }
3324
3325         /* if an anchor does not have num_raid_devs set then it is a free
3326          * floating spare
3327          */
3328         if (first->anchor->num_raid_devs > 0 &&
3329             sec->anchor->num_raid_devs > 0) {
3330                 /* Determine if these disks might ever have been
3331                  * related.  Further disambiguation can only take place
3332                  * in load_super_imsm_all
3333                  */
3334                 __u32 first_family = first->anchor->orig_family_num;
3335                 __u32 sec_family = sec->anchor->orig_family_num;
3336
3337                 if (memcmp(first->anchor->sig, sec->anchor->sig,
3338                            MAX_SIGNATURE_LENGTH) != 0)
3339                         return 3;
3340
3341                 if (first_family == 0)
3342                         first_family = first->anchor->family_num;
3343                 if (sec_family == 0)
3344                         sec_family = sec->anchor->family_num;
3345
3346                 if (first_family != sec_family)
3347                         return 3;
3348
3349         }
3350
3351         /* if 'first' is a spare promote it to a populated mpb with sec's
3352          * family number
3353          */
3354         if (first->anchor->num_raid_devs == 0 &&
3355             sec->anchor->num_raid_devs > 0) {
3356                 int i;
3357                 struct intel_dev *dv;
3358                 struct imsm_dev *dev;
3359
3360                 /* we need to copy raid device info from sec if an allocation
3361                  * fails here we don't associate the spare
3362                  */
3363                 for (i = 0; i < sec->anchor->num_raid_devs; i++) {
3364                         dv = xmalloc(sizeof(*dv));
3365                         dev = xmalloc(sizeof_imsm_dev(get_imsm_dev(sec, i), 1));
3366                         dv->dev = dev;
3367                         dv->index = i;
3368                         dv->next = first->devlist;
3369                         first->devlist = dv;
3370                 }
3371                 if (i < sec->anchor->num_raid_devs) {
3372                         /* allocation failure */
3373                         free_devlist(first);
3374                         pr_err("imsm: failed to associate spare\n");
3375                         return 3;
3376                 }
3377                 first->anchor->num_raid_devs = sec->anchor->num_raid_devs;
3378                 first->anchor->orig_family_num = sec->anchor->orig_family_num;
3379                 first->anchor->family_num = sec->anchor->family_num;
3380                 memcpy(first->anchor->sig, sec->anchor->sig, MAX_SIGNATURE_LENGTH);
3381                 for (i = 0; i < sec->anchor->num_raid_devs; i++)
3382                         imsm_copy_dev(get_imsm_dev(first, i), get_imsm_dev(sec, i));
3383         }
3384
3385         return 0;
3386 }
3387
3388 static void fd2devname(int fd, char *name)
3389 {
3390         struct stat st;
3391         char path[256];
3392         char dname[PATH_MAX];
3393         char *nm;
3394         int rv;
3395
3396         name[0] = '\0';
3397         if (fstat(fd, &st) != 0)
3398                 return;
3399         sprintf(path, "/sys/dev/block/%d:%d",
3400                 major(st.st_rdev), minor(st.st_rdev));
3401
3402         rv = readlink(path, dname, sizeof(dname)-1);
3403         if (rv <= 0)
3404                 return;
3405
3406         dname[rv] = '\0';
3407         nm = strrchr(dname, '/');
3408         if (nm) {
3409                 nm++;
3410                 snprintf(name, MAX_RAID_SERIAL_LEN, "/dev/%s", nm);
3411         }
3412 }
3413
3414 static int nvme_get_serial(int fd, void *buf, size_t buf_len)
3415 {
3416         char path[60];
3417         char *name = fd2kname(fd);
3418
3419         if (!name)
3420                 return 1;
3421
3422         if (strncmp(name, "nvme", 4) != 0)
3423                 return 1;
3424
3425         snprintf(path, sizeof(path) - 1, "/sys/block/%s/device/serial", name);
3426
3427         return load_sys(path, buf, buf_len);
3428 }
3429
3430 extern int scsi_get_serial(int fd, void *buf, size_t buf_len);
3431
3432 static int imsm_read_serial(int fd, char *devname,
3433                             __u8 serial[MAX_RAID_SERIAL_LEN])
3434 {
3435         char buf[50];
3436         int rv;
3437         int len;
3438         char *dest;
3439         char *src;
3440         unsigned int i;
3441
3442         memset(buf, 0, sizeof(buf));
3443
3444         rv = nvme_get_serial(fd, buf, sizeof(buf));
3445
3446         if (rv)
3447                 rv = scsi_get_serial(fd, buf, sizeof(buf));
3448
3449         if (rv && check_env("IMSM_DEVNAME_AS_SERIAL")) {
3450                 memset(serial, 0, MAX_RAID_SERIAL_LEN);
3451                 fd2devname(fd, (char *) serial);
3452                 return 0;
3453         }
3454
3455         if (rv != 0) {
3456                 if (devname)
3457                         pr_err("Failed to retrieve serial for %s\n",
3458                                devname);
3459                 return rv;
3460         }
3461
3462         /* trim all whitespace and non-printable characters and convert
3463          * ':' to ';'
3464          */
3465         for (i = 0, dest = buf; i < sizeof(buf) && buf[i]; i++) {
3466                 src = &buf[i];
3467                 if (*src > 0x20) {
3468                         /* ':' is reserved for use in placeholder serial
3469                          * numbers for missing disks
3470                          */
3471                         if (*src == ':')
3472                                 *dest++ = ';';
3473                         else
3474                                 *dest++ = *src;
3475                 }
3476         }
3477         len = dest - buf;
3478         dest = buf;
3479
3480         /* truncate leading characters */
3481         if (len > MAX_RAID_SERIAL_LEN) {
3482                 dest += len - MAX_RAID_SERIAL_LEN;
3483                 len = MAX_RAID_SERIAL_LEN;
3484         }
3485
3486         memset(serial, 0, MAX_RAID_SERIAL_LEN);
3487         memcpy(serial, dest, len);
3488
3489         return 0;
3490 }
3491
3492 static int serialcmp(__u8 *s1, __u8 *s2)
3493 {
3494         return strncmp((char *) s1, (char *) s2, MAX_RAID_SERIAL_LEN);
3495 }
3496
3497 static void serialcpy(__u8 *dest, __u8 *src)
3498 {
3499         strncpy((char *) dest, (char *) src, MAX_RAID_SERIAL_LEN);
3500 }
3501
3502 static struct dl *serial_to_dl(__u8 *serial, struct intel_super *super)
3503 {
3504         struct dl *dl;
3505
3506         for (dl = super->disks; dl; dl = dl->next)
3507                 if (serialcmp(dl->serial, serial) == 0)
3508                         break;
3509
3510         return dl;
3511 }
3512
3513 static struct imsm_disk *
3514 __serial_to_disk(__u8 *serial, struct imsm_super *mpb, int *idx)
3515 {
3516         int i;
3517
3518         for (i = 0; i < mpb->num_disks; i++) {
3519                 struct imsm_disk *disk = __get_imsm_disk(mpb, i);
3520
3521                 if (serialcmp(disk->serial, serial) == 0) {
3522                         if (idx)
3523                                 *idx = i;
3524                         return disk;
3525                 }
3526         }
3527
3528         return NULL;
3529 }
3530
3531 static int
3532 load_imsm_disk(int fd, struct intel_super *super, char *devname, int keep_fd)
3533 {
3534         struct imsm_disk *disk;
3535         struct dl *dl;
3536         struct stat stb;
3537         int rv;
3538         char name[40];
3539         __u8 serial[MAX_RAID_SERIAL_LEN];
3540
3541         rv = imsm_read_serial(fd, devname, serial);
3542
3543         if (rv != 0)
3544                 return 2;
3545
3546         dl = xcalloc(1, sizeof(*dl));
3547
3548         fstat(fd, &stb);
3549         dl->major = major(stb.st_rdev);
3550         dl->minor = minor(stb.st_rdev);
3551         dl->next = super->disks;
3552         dl->fd = keep_fd ? fd : -1;
3553         assert(super->disks == NULL);
3554         super->disks = dl;
3555         serialcpy(dl->serial, serial);
3556         dl->index = -2;
3557         dl->e = NULL;
3558         fd2devname(fd, name);
3559         if (devname)
3560                 dl->devname = xstrdup(devname);
3561         else
3562                 dl->devname = xstrdup(name);
3563
3564         /* look up this disk's index in the current anchor */
3565         disk = __serial_to_disk(dl->serial, super->anchor, &dl->index);
3566         if (disk) {
3567                 dl->disk = *disk;
3568                 /* only set index on disks that are a member of a
3569                  * populated contianer, i.e. one with raid_devs
3570                  */
3571                 if (is_failed(&dl->disk))
3572                         dl->index = -2;
3573                 else if (is_spare(&dl->disk))
3574                         dl->index = -1;
3575         }
3576
3577         return 0;
3578 }
3579
3580 #ifndef MDASSEMBLE
3581 /* When migrating map0 contains the 'destination' state while map1
3582  * contains the current state.  When not migrating map0 contains the
3583  * current state.  This routine assumes that map[0].map_state is set to
3584  * the current array state before being called.
3585  *
3586  * Migration is indicated by one of the following states
3587  * 1/ Idle (migr_state=0 map0state=normal||unitialized||degraded||failed)
3588  * 2/ Initialize (migr_state=1 migr_type=MIGR_INIT map0state=normal
3589  *    map1state=unitialized)
3590  * 3/ Repair (Resync) (migr_state=1 migr_type=MIGR_REPAIR  map0state=normal
3591  *    map1state=normal)
3592  * 4/ Rebuild (migr_state=1 migr_type=MIGR_REBUILD map0state=normal
3593  *    map1state=degraded)
3594  * 5/ Migration (mig_state=1 migr_type=MIGR_GEN_MIGR map0state=normal
3595  *    map1state=normal)
3596  */
3597 static void migrate(struct imsm_dev *dev, struct intel_super *super,
3598                     __u8 to_state, int migr_type)
3599 {
3600         struct imsm_map *dest;
3601         struct imsm_map *src = get_imsm_map(dev, MAP_0);
3602
3603         dev->vol.migr_state = 1;
3604         set_migr_type(dev, migr_type);
3605         dev->vol.curr_migr_unit = 0;
3606         dest = get_imsm_map(dev, MAP_1);
3607
3608         /* duplicate and then set the target end state in map[0] */
3609         memcpy(dest, src, sizeof_imsm_map(src));
3610         if (migr_type == MIGR_REBUILD || migr_type ==  MIGR_GEN_MIGR) {
3611                 __u32 ord;
3612                 int i;
3613
3614                 for (i = 0; i < src->num_members; i++) {
3615                         ord = __le32_to_cpu(src->disk_ord_tbl[i]);
3616                         set_imsm_ord_tbl_ent(src, i, ord_to_idx(ord));
3617                 }
3618         }
3619
3620         if (migr_type == MIGR_GEN_MIGR)
3621                 /* Clear migration record */
3622                 memset(super->migr_rec, 0, sizeof(struct migr_record));
3623
3624         src->map_state = to_state;
3625 }
3626
3627 static void end_migration(struct imsm_dev *dev, struct intel_super *super,
3628                           __u8 map_state)
3629 {
3630         struct imsm_map *map = get_imsm_map(dev, MAP_0);
3631         struct imsm_map *prev = get_imsm_map(dev, dev->vol.migr_state == 0 ?
3632                                                     MAP_0 : MAP_1);
3633         int i, j;
3634
3635         /* merge any IMSM_ORD_REBUILD bits that were not successfully
3636          * completed in the last migration.
3637          *
3638          * FIXME add support for raid-level-migration
3639          */
3640         if (map_state != map->map_state && (is_gen_migration(dev) == 0) &&
3641             prev->map_state != IMSM_T_STATE_UNINITIALIZED) {
3642                 /* when final map state is other than expected
3643                  * merge maps (not for migration)
3644                  */
3645                 int failed;
3646
3647                 for (i = 0; i < prev->num_members; i++)
3648                         for (j = 0; j < map->num_members; j++)
3649                                 /* during online capacity expansion
3650                                  * disks position can be changed
3651                                  * if takeover is used
3652                                  */
3653                                 if (ord_to_idx(map->disk_ord_tbl[j]) ==
3654                                     ord_to_idx(prev->disk_ord_tbl[i])) {
3655                                         map->disk_ord_tbl[j] |=
3656                                                 prev->disk_ord_tbl[i];
3657                                         break;
3658                                 }
3659                 failed = imsm_count_failed(super, dev, MAP_0);
3660                 map_state = imsm_check_degraded(super, dev, failed, MAP_0);
3661         }
3662
3663         dev->vol.migr_state = 0;
3664         set_migr_type(dev, 0);
3665         dev->vol.curr_migr_unit = 0;
3666         map->map_state = map_state;
3667 }
3668 #endif
3669
3670 static int parse_raid_devices(struct intel_super *super)
3671 {
3672         int i;
3673         struct imsm_dev *dev_new;
3674         size_t len, len_migr;
3675         size_t max_len = 0;
3676         size_t space_needed = 0;
3677         struct imsm_super *mpb = super->anchor;
3678
3679         for (i = 0; i < super->anchor->num_raid_devs; i++) {
3680                 struct imsm_dev *dev_iter = __get_imsm_dev(super->anchor, i);
3681                 struct intel_dev *dv;
3682
3683                 len = sizeof_imsm_dev(dev_iter, 0);
3684                 len_migr = sizeof_imsm_dev(dev_iter, 1);
3685                 if (len_migr > len)
3686                         space_needed += len_migr - len;
3687
3688                 dv = xmalloc(sizeof(*dv));
3689                 if (max_len < len_migr)
3690                         max_len = len_migr;
3691                 if (max_len > len_migr)
3692                         space_needed += max_len - len_migr;
3693                 dev_new = xmalloc(max_len);
3694                 imsm_copy_dev(dev_new, dev_iter);
3695                 dv->dev = dev_new;
3696                 dv->index = i;
3697                 dv->next = super->devlist;
3698                 super->devlist = dv;
3699         }
3700
3701         /* ensure that super->buf is large enough when all raid devices
3702          * are migrating
3703          */
3704         if (__le32_to_cpu(mpb->mpb_size) + space_needed > super->len) {
3705                 void *buf;
3706
3707                 len = ROUND_UP(__le32_to_cpu(mpb->mpb_size) + space_needed,
3708                               super->sector_size);
3709                 if (posix_memalign(&buf, MAX_SECTOR_SIZE, len) != 0)
3710                         return 1;
3711
3712                 memcpy(buf, super->buf, super->len);
3713                 memset(buf + super->len, 0, len - super->len);
3714                 free(super->buf);
3715                 super->buf = buf;
3716                 super->len = len;
3717         }
3718
3719         return 0;
3720 }
3721
3722 /* retrieve a pointer to the bbm log which starts after all raid devices */
3723 struct bbm_log *__get_imsm_bbm_log(struct imsm_super *mpb)
3724 {
3725         void *ptr = NULL;
3726
3727         if (__le32_to_cpu(mpb->bbm_log_size)) {
3728                 ptr = mpb;
3729                 ptr += mpb->mpb_size - __le32_to_cpu(mpb->bbm_log_size);
3730         }
3731
3732         return ptr;
3733 }
3734
3735 /*******************************************************************************
3736  * Function:    check_mpb_migr_compatibility
3737  * Description: Function checks for unsupported migration features:
3738  *              - migration optimization area (pba_of_lba0)
3739  *              - descending reshape (ascending_migr)
3740  * Parameters:
3741  *      super   : imsm metadata information
3742  * Returns:
3743  *       0 : migration is compatible
3744  *      -1 : migration is not compatible
3745  ******************************************************************************/
3746 int check_mpb_migr_compatibility(struct intel_super *super)
3747 {
3748         struct imsm_map *map0, *map1;
3749         struct migr_record *migr_rec = super->migr_rec;
3750         int i;
3751
3752         for (i = 0; i < super->anchor->num_raid_devs; i++) {
3753                 struct imsm_dev *dev_iter = __get_imsm_dev(super->anchor, i);
3754
3755                 if (dev_iter &&
3756                     dev_iter->vol.migr_state == 1 &&
3757                     dev_iter->vol.migr_type == MIGR_GEN_MIGR) {
3758                         /* This device is migrating */
3759                         map0 = get_imsm_map(dev_iter, MAP_0);
3760                         map1 = get_imsm_map(dev_iter, MAP_1);
3761                         if (pba_of_lba0(map0) != pba_of_lba0(map1))
3762                                 /* migration optimization area was used */
3763                                 return -1;
3764                         if (migr_rec->ascending_migr == 0
3765                                 && migr_rec->dest_depth_per_unit > 0)
3766                                 /* descending reshape not supported yet */
3767                                 return -1;
3768                 }
3769         }
3770         return 0;
3771 }
3772
3773 static void __free_imsm(struct intel_super *super, int free_disks);
3774
3775 /* load_imsm_mpb - read matrix metadata
3776  * allocates super->mpb to be freed by free_imsm
3777  */
3778 static int load_imsm_mpb(int fd, struct intel_super *super, char *devname)
3779 {
3780         unsigned long long dsize;
3781         unsigned long long sectors;
3782         unsigned int sector_size = super->sector_size;
3783         struct stat;
3784         struct imsm_super *anchor;
3785         __u32 check_sum;
3786
3787         get_dev_size(fd, NULL, &dsize);
3788         if (dsize < 2*sector_size) {
3789                 if (devname)
3790                         pr_err("%s: device to small for imsm\n",
3791                                devname);
3792                 return 1;
3793         }
3794
3795         if (lseek64(fd, dsize - (sector_size * 2), SEEK_SET) < 0) {
3796                 if (devname)
3797                         pr_err("Cannot seek to anchor block on %s: %s\n",
3798                                devname, strerror(errno));
3799                 return 1;
3800         }
3801
3802         if (posix_memalign((void **)&anchor, sector_size, sector_size) != 0) {
3803                 if (devname)
3804                         pr_err("Failed to allocate imsm anchor buffer on %s\n", devname);
3805                 return 1;
3806         }
3807         if (read(fd, anchor, sector_size) != sector_size) {
3808                 if (devname)
3809                         pr_err("Cannot read anchor block on %s: %s\n",
3810                                devname, strerror(errno));
3811                 free(anchor);
3812                 return 1;
3813         }
3814
3815         if (strncmp((char *) anchor->sig, MPB_SIGNATURE, MPB_SIG_LEN) != 0) {
3816                 if (devname)
3817                         pr_err("no IMSM anchor on %s\n", devname);
3818                 free(anchor);
3819                 return 2;
3820         }
3821
3822         __free_imsm(super, 0);
3823         /*  reload capability and hba */
3824
3825         /* capability and hba must be updated with new super allocation */
3826         find_intel_hba_capability(fd, super, devname);
3827         super->len = ROUND_UP(anchor->mpb_size, sector_size);
3828         if (posix_memalign(&super->buf, MAX_SECTOR_SIZE, super->len) != 0) {
3829                 if (devname)
3830                         pr_err("unable to allocate %zu byte mpb buffer\n",
3831                                super->len);
3832                 free(anchor);
3833                 return 2;
3834         }
3835         memcpy(super->buf, anchor, sector_size);
3836
3837         sectors = mpb_sectors(anchor, sector_size) - 1;
3838         free(anchor);
3839
3840         if (posix_memalign(&super->migr_rec_buf, 512, MIGR_REC_BUF_SIZE) != 0) {
3841                 pr_err("could not allocate migr_rec buffer\n");
3842                 free(super->buf);
3843                 return 2;
3844         }
3845         super->clean_migration_record_by_mdmon = 0;
3846
3847         if (!sectors) {
3848                 check_sum = __gen_imsm_checksum(super->anchor);
3849                 if (check_sum != __le32_to_cpu(super->anchor->check_sum)) {
3850                         if (devname)
3851                                 pr_err("IMSM checksum %x != %x on %s\n",
3852                                        check_sum,
3853                                        __le32_to_cpu(super->anchor->check_sum),
3854                                        devname);
3855                         return 2;
3856                 }
3857
3858                 return 0;
3859         }
3860
3861         /* read the extended mpb */
3862         if (lseek64(fd, dsize - (sector_size * (2 + sectors)), SEEK_SET) < 0) {
3863                 if (devname)
3864                         pr_err("Cannot seek to extended mpb on %s: %s\n",
3865                                devname, strerror(errno));
3866                 return 1;
3867         }
3868
3869         if ((unsigned int)read(fd, super->buf + sector_size,
3870                     super->len - sector_size) != super->len - sector_size) {
3871                 if (devname)
3872                         pr_err("Cannot read extended mpb on %s: %s\n",
3873                                devname, strerror(errno));
3874                 return 2;
3875         }
3876
3877         check_sum = __gen_imsm_checksum(super->anchor);
3878         if (check_sum != __le32_to_cpu(super->anchor->check_sum)) {
3879                 if (devname)
3880                         pr_err("IMSM checksum %x != %x on %s\n",
3881                                check_sum, __le32_to_cpu(super->anchor->check_sum),
3882                                devname);
3883                 return 3;
3884         }
3885
3886         /* FIXME the BBM log is disk specific so we cannot use this global
3887          * buffer for all disks.  Ok for now since we only look at the global
3888          * bbm_log_size parameter to gate assembly
3889          */
3890         super->bbm_log = __get_imsm_bbm_log(super->anchor);
3891
3892         return 0;
3893 }
3894
3895 static int read_imsm_migr_rec(int fd, struct intel_super *super);
3896
3897 /* clears hi bits in metadata if MPB_ATTRIB_2TB_DISK not set */
3898 static void clear_hi(struct intel_super *super)
3899 {
3900         struct imsm_super *mpb = super->anchor;
3901         int i, n;
3902         if (mpb->attributes & MPB_ATTRIB_2TB_DISK)
3903                 return;
3904         for (i = 0; i < mpb->num_disks; ++i) {
3905                 struct imsm_disk *disk = &mpb->disk[i];
3906                 disk->total_blocks_hi = 0;
3907         }
3908         for (i = 0; i < mpb->num_raid_devs; ++i) {
3909                 struct imsm_dev *dev = get_imsm_dev(super, i);
3910                 if (!dev)
3911                         return;
3912                 for (n = 0; n < 2; ++n) {
3913                         struct imsm_map *map = get_imsm_map(dev, n);
3914                         if (!map)
3915                                 continue;
3916                         map->pba_of_lba0_hi = 0;
3917                         map->blocks_per_member_hi = 0;
3918                         map->num_data_stripes_hi = 0;
3919                 }
3920         }
3921 }
3922
3923 static int
3924 load_and_parse_mpb(int fd, struct intel_super *super, char *devname, int keep_fd)
3925 {
3926         int err;
3927
3928         err = load_imsm_mpb(fd, super, devname);
3929         if (err)
3930                 return err;
3931         if (super->sector_size == 4096)
3932                 convert_from_4k(super);
3933         err = load_imsm_disk(fd, super, devname, keep_fd);
3934         if (err)
3935                 return err;
3936         err = parse_raid_devices(super);
3937         clear_hi(super);
3938         return err;
3939 }
3940
3941 static void __free_imsm_disk(struct dl *d)
3942 {
3943         if (d->fd >= 0)
3944                 close(d->fd);
3945         if (d->devname)
3946                 free(d->devname);
3947         if (d->e)
3948                 free(d->e);
3949         free(d);
3950
3951 }
3952
3953 static void free_imsm_disks(struct intel_super *super)
3954 {
3955         struct dl *d;
3956
3957         while (super->disks) {
3958                 d = super->disks;
3959                 super->disks = d->next;
3960                 __free_imsm_disk(d);
3961         }
3962         while (super->disk_mgmt_list) {
3963                 d = super->disk_mgmt_list;
3964                 super->disk_mgmt_list = d->next;
3965                 __free_imsm_disk(d);
3966         }
3967         while (super->missing) {
3968                 d = super->missing;
3969                 super->missing = d->next;
3970                 __free_imsm_disk(d);
3971         }
3972
3973 }
3974
3975 /* free all the pieces hanging off of a super pointer */
3976 static void __free_imsm(struct intel_super *super, int free_disks)
3977 {
3978         struct intel_hba *elem, *next;
3979
3980         if (super->buf) {
3981                 free(super->buf);
3982                 super->buf = NULL;
3983         }
3984         /* unlink capability description */
3985         super->orom = NULL;
3986         if (super->migr_rec_buf) {
3987                 free(super->migr_rec_buf);
3988                 super->migr_rec_buf = NULL;
3989         }
3990         if (free_disks)
3991                 free_imsm_disks(super);
3992         free_devlist(super);
3993         elem = super->hba;
3994         while (elem) {
3995                 if (elem->path)
3996                         free((void *)elem->path);
3997                 next = elem->next;
3998                 free(elem);
3999                 elem = next;
4000         }
4001         super->hba = NULL;
4002 }
4003
4004 static void free_imsm(struct intel_super *super)
4005 {
4006         __free_imsm(super, 1);
4007         free(super);
4008 }
4009
4010 static void free_super_imsm(struct supertype *st)
4011 {
4012         struct intel_super *super = st->sb;
4013
4014         if (!super)
4015                 return;
4016
4017         free_imsm(super);
4018         st->sb = NULL;
4019 }
4020
4021 static struct intel_super *alloc_super(void)
4022 {
4023         struct intel_super *super = xcalloc(1, sizeof(*super));
4024
4025         super->current_vol = -1;
4026         super->create_offset = ~((unsigned long long) 0);
4027         return super;
4028 }
4029
4030 /*
4031  * find and allocate hba and OROM/EFI based on valid fd of RAID component device
4032  */
4033 static int find_intel_hba_capability(int fd, struct intel_super *super, char *devname)
4034 {
4035         struct sys_dev *hba_name;
4036         int rv = 0;
4037
4038         if (fd < 0 || check_env("IMSM_NO_PLATFORM")) {
4039                 super->orom = NULL;
4040                 super->hba = NULL;
4041                 return 0;
4042         }
4043         hba_name = find_disk_attached_hba(fd, NULL);
4044         if (!hba_name) {
4045                 if (devname)
4046                         pr_err("%s is not attached to Intel(R) RAID controller.\n",
4047                                devname);
4048                 return 1;
4049         }
4050         rv = attach_hba_to_super(super, hba_name);
4051         if (rv == 2) {
4052                 if (devname) {
4053                         struct intel_hba *hba = super->hba;
4054
4055                         pr_err("%s is attached to Intel(R) %s %s (%s),\n"
4056                                 "    but the container is assigned to Intel(R) %s %s (",
4057                                 devname,
4058                                 get_sys_dev_type(hba_name->type),
4059                                 hba_name->type == SYS_DEV_VMD ? "domain" : "RAID controller",
4060                                 hba_name->pci_id ? : "Err!",
4061                                 get_sys_dev_type(super->hba->type),
4062                                 hba->type == SYS_DEV_VMD ? "domain" : "RAID controller");
4063
4064                         while (hba) {
4065                                 fprintf(stderr, "%s", hba->pci_id ? : "Err!");
4066                                 if (hba->next)
4067                                         fprintf(stderr, ", ");
4068                                 hba = hba->next;
4069                         }
4070                         fprintf(stderr, ").\n"
4071                                 "    Mixing devices attached to different %s is not allowed.\n",
4072                                 hba_name->type == SYS_DEV_VMD ? "VMD domains" : "controllers");
4073                 }
4074                 return 2;
4075         }
4076         super->orom = find_imsm_capability(hba_name);
4077         if (!super->orom)
4078                 return 3;
4079
4080         return 0;
4081 }
4082
4083 /* find_missing - helper routine for load_super_imsm_all that identifies
4084  * disks that have disappeared from the system.  This routine relies on
4085  * the mpb being uptodate, which it is at load time.
4086  */
4087 static int find_missing(struct intel_super *super)
4088 {
4089         int i;
4090         struct imsm_super *mpb = super->anchor;
4091         struct dl *dl;
4092         struct imsm_disk *disk;
4093
4094         for (i = 0; i < mpb->num_disks; i++) {
4095                 disk = __get_imsm_disk(mpb, i);
4096                 dl = serial_to_dl(disk->serial, super);
4097                 if (dl)
4098                         continue;
4099
4100                 dl = xmalloc(sizeof(*dl));
4101                 dl->major = 0;
4102                 dl->minor = 0;
4103                 dl->fd = -1;
4104                 dl->devname = xstrdup("missing");
4105                 dl->index = i;
4106                 serialcpy(dl->serial, disk->serial);
4107                 dl->disk = *disk;
4108                 dl->e = NULL;
4109                 dl->next = super->missing;
4110                 super->missing = dl;
4111         }
4112
4113         return 0;
4114 }
4115
4116 #ifndef MDASSEMBLE
4117 static struct intel_disk *disk_list_get(__u8 *serial, struct intel_disk *disk_list)
4118 {
4119         struct intel_disk *idisk = disk_list;
4120
4121         while (idisk) {
4122                 if (serialcmp(idisk->disk.serial, serial) == 0)
4123                         break;
4124                 idisk = idisk->next;
4125         }
4126
4127         return idisk;
4128 }
4129
4130 static int __prep_thunderdome(struct intel_super **table, int tbl_size,
4131                               struct intel_super *super,
4132                               struct intel_disk **disk_list)
4133 {
4134         struct imsm_disk *d = &super->disks->disk;
4135         struct imsm_super *mpb = super->anchor;
4136         int i, j;
4137
4138         for (i = 0; i < tbl_size; i++) {
4139                 struct imsm_super *tbl_mpb = table[i]->anchor;
4140                 struct imsm_disk *tbl_d = &table[i]->disks->disk;
4141
4142                 if (tbl_mpb->family_num == mpb->family_num) {
4143                         if (tbl_mpb->check_sum == mpb->check_sum) {
4144                                 dprintf("mpb from %d:%d matches %d:%d\n",
4145                                         super->disks->major,
4146                                         super->disks->minor,
4147                                         table[i]->disks->major,
4148                                         table[i]->disks->minor);
4149                                 break;
4150                         }
4151
4152                         if (((is_configured(d) && !is_configured(tbl_d)) ||
4153                              is_configured(d) == is_configured(tbl_d)) &&
4154                             tbl_mpb->generation_num < mpb->generation_num) {
4155                                 /* current version of the mpb is a
4156                                  * better candidate than the one in
4157                                  * super_table, but copy over "cross
4158                                  * generational" status
4159                                  */
4160                                 struct intel_disk *idisk;
4161
4162                                 dprintf("mpb from %d:%d replaces %d:%d\n",
4163                                         super->disks->major,
4164                                         super->disks->minor,
4165                                         table[i]->disks->major,
4166                                         table[i]->disks->minor);
4167
4168                                 idisk = disk_list_get(tbl_d->serial, *disk_list);
4169                                 if (idisk && is_failed(&idisk->disk))
4170                                         tbl_d->status |= FAILED_DISK;
4171                                 break;
4172                         } else {
4173                                 struct intel_disk *idisk;
4174                                 struct imsm_disk *disk;
4175
4176                                 /* tbl_mpb is more up to date, but copy
4177                                  * over cross generational status before
4178                                  * returning
4179                                  */
4180                                 disk = __serial_to_disk(d->serial, mpb, NULL);
4181                                 if (disk && is_failed(disk))
4182                                         d->status |= FAILED_DISK;
4183
4184                                 idisk = disk_list_get(d->serial, *disk_list);
4185                                 if (idisk) {
4186                                         idisk->owner = i;
4187                                         if (disk && is_configured(disk))
4188                                                 idisk->disk.status |= CONFIGURED_DISK;
4189                                 }
4190
4191                                 dprintf("mpb from %d:%d prefer %d:%d\n",
4192                                         super->disks->major,
4193                                         super->disks->minor,
4194                                         table[i]->disks->major,
4195                                         table[i]->disks->minor);
4196
4197                                 return tbl_size;
4198                         }
4199                 }
4200         }
4201
4202         if (i >= tbl_size)
4203                 table[tbl_size++] = super;
4204         else
4205                 table[i] = super;
4206
4207         /* update/extend the merged list of imsm_disk records */
4208         for (j = 0; j < mpb->num_disks; j++) {
4209                 struct imsm_disk *disk = __get_imsm_disk(mpb, j);
4210                 struct intel_disk *idisk;
4211
4212                 idisk = disk_list_get(disk->serial, *disk_list);
4213                 if (idisk) {
4214                         idisk->disk.status |= disk->status;
4215                         if (is_configured(&idisk->disk) ||
4216                             is_failed(&idisk->disk))
4217                                 idisk->disk.status &= ~(SPARE_DISK);
4218                 } else {
4219                         idisk = xcalloc(1, sizeof(*idisk));
4220                         idisk->owner = IMSM_UNKNOWN_OWNER;
4221                         idisk->disk = *disk;
4222                         idisk->next = *disk_list;
4223                         *disk_list = idisk;
4224                 }
4225
4226                 if (serialcmp(idisk->disk.serial, d->serial) == 0)
4227                         idisk->owner = i;
4228         }
4229
4230         return tbl_size;
4231 }
4232
4233 static struct intel_super *
4234 validate_members(struct intel_super *super, struct intel_disk *disk_list,
4235                  const int owner)
4236 {
4237         struct imsm_super *mpb = super->anchor;
4238         int ok_count = 0;
4239         int i;
4240
4241         for (i = 0; i < mpb->num_disks; i++) {
4242                 struct imsm_disk *disk = __get_imsm_disk(mpb, i);
4243                 struct intel_disk *idisk;
4244
4245                 idisk = disk_list_get(disk->serial, disk_list);
4246                 if (idisk) {
4247                         if (idisk->owner == owner ||
4248                             idisk->owner == IMSM_UNKNOWN_OWNER)
4249                                 ok_count++;
4250                         else
4251                                 dprintf("'%.16s' owner %d != %d\n",
4252                                         disk->serial, idisk->owner,
4253                                         owner);
4254                 } else {
4255                         dprintf("unknown disk %x [%d]: %.16s\n",
4256                                 __le32_to_cpu(mpb->family_num), i,
4257                                 disk->serial);
4258                         break;
4259                 }
4260         }
4261
4262         if (ok_count == mpb->num_disks)
4263                 return super;
4264         return NULL;
4265 }
4266
4267 static void show_conflicts(__u32 family_num, struct intel_super *super_list)
4268 {
4269         struct intel_super *s;
4270
4271         for (s = super_list; s; s = s->next) {
4272                 if (family_num != s->anchor->family_num)
4273                         continue;
4274                 pr_err("Conflict, offlining family %#x on '%s'\n",
4275                         __le32_to_cpu(family_num), s->disks->devname);
4276         }
4277 }
4278
4279 static struct intel_super *
4280 imsm_thunderdome(struct intel_super **super_list, int len)
4281 {
4282         struct intel_super *super_table[len];
4283         struct intel_disk *disk_list = NULL;
4284         struct intel_super *champion, *spare;
4285         struct intel_super *s, **del;
4286         int tbl_size = 0;
4287         int conflict;
4288         int i;
4289
4290         memset(super_table, 0, sizeof(super_table));
4291         for (s = *super_list; s; s = s->next)
4292                 tbl_size = __prep_thunderdome(super_table, tbl_size, s, &disk_list);
4293
4294         for (i = 0; i < tbl_size; i++) {
4295                 struct imsm_disk *d;
4296                 struct intel_disk *idisk;
4297                 struct imsm_super *mpb = super_table[i]->anchor;
4298
4299                 s = super_table[i];
4300                 d = &s->disks->disk;
4301
4302                 /* 'd' must appear in merged disk list for its
4303                  * configuration to be valid
4304                  */
4305                 idisk = disk_list_get(d->serial, disk_list);
4306                 if (idisk && idisk->owner == i)
4307                         s = validate_members(s, disk_list, i);
4308                 else
4309                         s = NULL;
4310
4311                 if (!s)
4312                         dprintf("marking family: %#x from %d:%d offline\n",
4313                                 mpb->family_num,
4314                                 super_table[i]->disks->major,
4315                                 super_table[i]->disks->minor);
4316                 super_table[i] = s;
4317         }
4318
4319         /* This is where the mdadm implementation differs from the Windows
4320          * driver which has no strict concept of a container.  We can only
4321          * assemble one family from a container, so when returning a prodigal
4322          * array member to this system the code will not be able to disambiguate
4323          * the container contents that should be assembled ("foreign" versus
4324          * "local").  It requires user intervention to set the orig_family_num
4325          * to a new value to establish a new container.  The Windows driver in
4326          * this situation fixes up the volume name in place and manages the
4327          * foreign array as an independent entity.
4328          */
4329         s = NULL;
4330         spare = NULL;
4331         conflict = 0;
4332         for (i = 0; i < tbl_size; i++) {
4333                 struct intel_super *tbl_ent = super_table[i];
4334                 int is_spare = 0;
4335
4336                 if (!tbl_ent)
4337                         continue;
4338
4339                 if (tbl_ent->anchor->num_raid_devs == 0) {
4340                         spare = tbl_ent;
4341                         is_spare = 1;
4342                 }
4343
4344                 if (s && !is_spare) {
4345                         show_conflicts(tbl_ent->anchor->family_num, *super_list);
4346                         conflict++;
4347                 } else if (!s && !is_spare)
4348                         s = tbl_ent;
4349         }
4350
4351         if (!s)
4352                 s = spare;
4353         if (!s) {
4354                 champion = NULL;
4355                 goto out;
4356         }
4357         champion = s;
4358
4359         if (conflict)
4360                 pr_err("Chose family %#x on '%s', assemble conflicts to new container with '--update=uuid'\n",
4361                         __le32_to_cpu(s->anchor->family_num), s->disks->devname);
4362
4363         /* collect all dl's onto 'champion', and update them to
4364          * champion's version of the status
4365          */
4366         for (s = *super_list; s; s = s->next) {
4367                 struct imsm_super *mpb = champion->anchor;
4368                 struct dl *dl = s->disks;
4369
4370                 if (s == champion)
4371                         continue;
4372
4373                 mpb->attributes |= s->anchor->attributes & MPB_ATTRIB_2TB_DISK;
4374
4375                 for (i = 0; i < mpb->num_disks; i++) {
4376                         struct imsm_disk *disk;
4377
4378                         disk = __serial_to_disk(dl->serial, mpb, &dl->index);
4379                         if (disk) {
4380                                 dl->disk = *disk;
4381                                 /* only set index on disks that are a member of
4382                                  * a populated contianer, i.e. one with
4383                                  * raid_devs
4384                                  */
4385                                 if (is_failed(&dl->disk))
4386                                         dl->index = -2;
4387                                 else if (is_spare(&dl->disk))
4388                                         dl->index = -1;
4389                                 break;
4390                         }
4391                 }
4392
4393                 if (i >= mpb->num_disks) {
4394                         struct intel_disk *idisk;
4395
4396                         idisk = disk_list_get(dl->serial, disk_list);
4397                         if (idisk && is_spare(&idisk->disk) &&
4398                             !is_failed(&idisk->disk) && !is_configured(&idisk->disk))
4399                                 dl->index = -1;
4400                         else {
4401                                 dl->index = -2;
4402                                 continue;
4403                         }
4404                 }
4405
4406                 dl->next = champion->disks;
4407                 champion->disks = dl;
4408                 s->disks = NULL;
4409         }
4410
4411         /* delete 'champion' from super_list */
4412         for (del = super_list; *del; ) {
4413                 if (*del == champion) {
4414                         *del = (*del)->next;
4415                         break;
4416                 } else
4417                         del = &(*del)->next;
4418         }
4419         champion->next = NULL;
4420
4421  out:
4422         while (disk_list) {
4423                 struct intel_disk *idisk = disk_list;
4424
4425                 disk_list = disk_list->next;
4426                 free(idisk);
4427         }
4428
4429         return champion;
4430 }
4431
4432 static int
4433 get_sra_super_block(int fd, struct intel_super **super_list, char *devname, int *max, int keep_fd);
4434 static int get_super_block(struct intel_super **super_list, char *devnm, char *devname,
4435                            int major, int minor, int keep_fd);
4436 static int
4437 get_devlist_super_block(struct md_list *devlist, struct intel_super **super_list,
4438                         int *max, int keep_fd);
4439
4440 static int load_super_imsm_all(struct supertype *st, int fd, void **sbp,
4441                                char *devname, struct md_list *devlist,
4442                                int keep_fd)
4443 {
4444         struct intel_super *super_list = NULL;
4445         struct intel_super *super = NULL;
4446         int err = 0;
4447         int i = 0;
4448
4449         if (fd >= 0)
4450                 /* 'fd' is an opened container */
4451                 err = get_sra_super_block(fd, &super_list, devname, &i, keep_fd);
4452         else
4453                 /* get super block from devlist devices */
4454                 err = get_devlist_super_block(devlist, &super_list, &i, keep_fd);
4455         if (err)
4456                 goto error;
4457         /* all mpbs enter, maybe one leaves */
4458         super = imsm_thunderdome(&super_list, i);
4459         if (!super) {
4460                 err = 1;
4461                 goto error;
4462         }
4463
4464         if (find_missing(super) != 0) {
4465                 free_imsm(super);
4466                 err = 2;
4467                 goto error;
4468         }
4469
4470         /* load migration record */
4471         err = load_imsm_migr_rec(super, NULL);
4472         if (err == -1) {
4473                 /* migration is in progress,
4474                  * but migr_rec cannot be loaded,
4475                  */
4476                 err = 4;
4477                 goto error;
4478         }
4479
4480         /* Check migration compatibility */
4481         if (err == 0 && check_mpb_migr_compatibility(super) != 0) {
4482                 pr_err("Unsupported migration detected");
4483                 if (devname)
4484                         fprintf(stderr, " on %s\n", devname);
4485                 else
4486                         fprintf(stderr, " (IMSM).\n");
4487
4488                 err = 5;
4489                 goto error;
4490         }
4491
4492         err = 0;
4493
4494  error:
4495         while (super_list) {
4496                 struct intel_super *s = super_list;
4497
4498                 super_list = super_list->next;
4499                 free_imsm(s);
4500         }
4501
4502         if (err)
4503                 return err;
4504
4505         *sbp = super;
4506         if (fd >= 0)
4507                 strcpy(st->container_devnm, fd2devnm(fd));
4508         else
4509                 st->container_devnm[0] = 0;
4510         if (err == 0 && st->ss == NULL) {
4511                 st->ss = &super_imsm;
4512                 st->minor_version = 0;
4513                 st->max_devs = IMSM_MAX_DEVICES;
4514         }
4515         return 0;
4516 }
4517
4518 static int
4519 get_devlist_super_block(struct md_list *devlist, struct intel_super **super_list,
4520                         int *max, int keep_fd)
4521 {
4522         struct md_list *tmpdev;
4523         int err = 0;
4524         int i = 0;
4525
4526         for (i = 0, tmpdev = devlist; tmpdev; tmpdev = tmpdev->next) {
4527                 if (tmpdev->used != 1)
4528                         continue;
4529                 if (tmpdev->container == 1) {
4530                         int lmax = 0;
4531                         int fd = dev_open(tmpdev->devname, O_RDONLY|O_EXCL);
4532                         if (fd < 0) {
4533                                 pr_err("cannot open device %s: %s\n",
4534                                         tmpdev->devname, strerror(errno));
4535                                 err = 8;
4536                                 goto error;
4537                         }
4538                         err = get_sra_super_block(fd, super_list,
4539                                                   tmpdev->devname, &lmax,
4540                                                   keep_fd);
4541                         i += lmax;
4542                         close(fd);
4543                         if (err) {
4544                                 err = 7;
4545                                 goto error;
4546                         }
4547                 } else {
4548                         int major = major(tmpdev->st_rdev);
4549                         int minor = minor(tmpdev->st_rdev);
4550                         err = get_super_block(super_list,
4551                                               NULL,
4552                                               tmpdev->devname,
4553                                               major, minor,
4554                                               keep_fd);
4555                         i++;
4556                         if (err) {
4557                                 err = 6;
4558                                 goto error;
4559                         }
4560                 }
4561         }
4562  error:
4563         *max = i;
4564         return err;
4565 }
4566
4567 static int get_super_block(struct intel_super **super_list, char *devnm, char *devname,
4568                            int major, int minor, int keep_fd)
4569 {
4570         struct intel_super *s;
4571         char nm[32];
4572         int dfd = -1;
4573         int err = 0;
4574         int retry;
4575
4576         s = alloc_super();
4577         if (!s) {
4578                 err = 1;
4579                 goto error;
4580         }
4581
4582         sprintf(nm, "%d:%d", major, minor);
4583         dfd = dev_open(nm, O_RDWR);
4584         if (dfd < 0) {
4585                 err = 2;
4586                 goto error;
4587         }
4588
4589         get_dev_sector_size(dfd, NULL, &s->sector_size);
4590         find_intel_hba_capability(dfd, s, devname);
4591         err = load_and_parse_mpb(dfd, s, NULL, keep_fd);
4592
4593         /* retry the load if we might have raced against mdmon */
4594         if (err == 3 && devnm && mdmon_running(devnm))
4595                 for (retry = 0; retry < 3; retry++) {
4596                         usleep(3000);
4597                         err = load_and_parse_mpb(dfd, s, NULL, keep_fd);
4598                         if (err != 3)
4599                                 break;
4600                 }
4601  error:
4602         if (!err) {
4603                 s->next = *super_list;
4604                 *super_list = s;
4605         } else {
4606                 if (s)
4607                         free(s);
4608                 if (dfd >= 0)
4609                         close(dfd);
4610         }
4611         if (dfd >= 0 && !keep_fd)
4612                 close(dfd);
4613         return err;
4614
4615 }
4616
4617 static int
4618 get_sra_super_block(int fd, struct intel_super **super_list, char *devname, int *max, int keep_fd)
4619 {
4620         struct mdinfo *sra;
4621         char *devnm;
4622         struct mdinfo *sd;
4623         int err = 0;
4624         int i = 0;
4625         sra = sysfs_read(fd, NULL, GET_LEVEL|GET_VERSION|GET_DEVS|GET_STATE);
4626         if (!sra)
4627                 return 1;
4628
4629         if (sra->array.major_version != -1 ||
4630             sra->array.minor_version != -2 ||
4631             strcmp(sra->text_version, "imsm") != 0) {
4632                 err = 1;
4633                 goto error;
4634         }
4635         /* load all mpbs */
4636         devnm = fd2devnm(fd);
4637         for (sd = sra->devs, i = 0; sd; sd = sd->next, i++) {
4638                 if (get_super_block(super_list, devnm, devname,
4639                                     sd->disk.major, sd->disk.minor, keep_fd) != 0) {
4640                         err = 7;
4641                         goto error;
4642                 }
4643         }
4644  error:
4645         sysfs_free(sra);
4646         *max = i;
4647         return err;
4648 }
4649
4650 static int load_container_imsm(struct supertype *st, int fd, char *devname)
4651 {
4652         return load_super_imsm_all(st, fd, &st->sb, devname, NULL, 1);
4653 }
4654 #endif
4655
4656 static int load_super_imsm(struct supertype *st, int fd, char *devname)
4657 {
4658         struct intel_super *super;
4659         int rv;
4660         int retry;
4661
4662         if (test_partition(fd))
4663                 /* IMSM not allowed on partitions */
4664                 return 1;
4665
4666         free_super_imsm(st);
4667
4668         super = alloc_super();
4669         get_dev_sector_size(fd, NULL, &super->sector_size);
4670         /* Load hba and capabilities if they exist.
4671          * But do not preclude loading metadata in case capabilities or hba are
4672          * non-compliant and ignore_hw_compat is set.
4673          */
4674         rv = find_intel_hba_capability(fd, super, devname);
4675         /* no orom/efi or non-intel hba of the disk */
4676         if (rv != 0 && st->ignore_hw_compat == 0) {
4677                 if (devname)
4678                         pr_err("No OROM/EFI properties for %s\n", devname);
4679                 free_imsm(super);
4680                 return 2;
4681         }
4682         rv = load_and_parse_mpb(fd, super, devname, 0);
4683
4684         /* retry the load if we might have raced against mdmon */
4685         if (rv == 3) {
4686                 struct mdstat_ent *mdstat = NULL;
4687                 char *name = fd2kname(fd);
4688
4689                 if (name)
4690                         mdstat = mdstat_by_component(name);
4691
4692                 if (mdstat && mdmon_running(mdstat->devnm) && getpid() != mdmon_pid(mdstat->devnm)) {
4693                         for (retry = 0; retry < 3; retry++) {
4694                                 usleep(3000);
4695                                 rv = load_and_parse_mpb(fd, super, devname, 0);
4696                                 if (rv != 3)
4697                                         break;
4698                         }
4699                 }
4700
4701                 free_mdstat(mdstat);
4702         }
4703
4704         if (rv) {
4705                 if (devname)
4706                         pr_err("Failed to load all information sections on %s\n", devname);
4707                 free_imsm(super);
4708                 return rv;
4709         }
4710
4711         st->sb = super;
4712         if (st->ss == NULL) {
4713                 st->ss = &super_imsm;
4714                 st->minor_version = 0;
4715                 st->max_devs = IMSM_MAX_DEVICES;
4716         }
4717
4718         /* load migration record */
4719         if (load_imsm_migr_rec(super, NULL) == 0) {
4720                 /* Check for unsupported migration features */
4721                 if (check_mpb_migr_compatibility(super) != 0) {
4722                         pr_err("Unsupported migration detected");
4723                         if (devname)
4724                                 fprintf(stderr, " on %s\n", devname);
4725                         else
4726                                 fprintf(stderr, " (IMSM).\n");
4727                         return 3;
4728                 }
4729         }
4730
4731         return 0;
4732 }
4733
4734 static __u16 info_to_blocks_per_strip(mdu_array_info_t *info)
4735 {
4736         if (info->level == 1)
4737                 return 128;
4738         return info->chunk_size >> 9;
4739 }
4740
4741 static unsigned long long info_to_blocks_per_member(mdu_array_info_t *info,
4742                                                     unsigned long long size)
4743 {
4744         if (info->level == 1)
4745                 return size * 2;
4746         else
4747                 return (size * 2) & ~(info_to_blocks_per_strip(info) - 1);
4748 }
4749
4750 static void imsm_update_version_info(struct intel_super *super)
4751 {
4752         /* update the version and attributes */
4753         struct imsm_super *mpb = super->anchor;
4754         char *version;
4755         struct imsm_dev *dev;
4756         struct imsm_map *map;
4757         int i;
4758
4759         for (i = 0; i < mpb->num_raid_devs; i++) {
4760                 dev = get_imsm_dev(super, i);
4761                 map = get_imsm_map(dev, MAP_0);
4762                 if (__le32_to_cpu(dev->size_high) > 0)
4763                         mpb->attributes |= MPB_ATTRIB_2TB;
4764
4765                 /* FIXME detect when an array spans a port multiplier */
4766                 #if 0
4767                 mpb->attributes |= MPB_ATTRIB_PM;
4768                 #endif
4769
4770                 if (mpb->num_raid_devs > 1 ||
4771                     mpb->attributes != MPB_ATTRIB_CHECKSUM_VERIFY) {
4772                         version = MPB_VERSION_ATTRIBS;
4773                         switch (get_imsm_raid_level(map)) {
4774                         case 0: mpb->attributes |= MPB_ATTRIB_RAID0; break;
4775                         case 1: mpb->attributes |= MPB_ATTRIB_RAID1; break;
4776                         case 10: mpb->attributes |= MPB_ATTRIB_RAID10; break;
4777                         case 5: mpb->attributes |= MPB_ATTRIB_RAID5; break;
4778                         }
4779                 } else {
4780                         if (map->num_members >= 5)
4781                                 version = MPB_VERSION_5OR6_DISK_ARRAY;
4782                         else if (dev->status == DEV_CLONE_N_GO)
4783                                 version = MPB_VERSION_CNG;
4784                         else if (get_imsm_raid_level(map) == 5)
4785                                 version = MPB_VERSION_RAID5;
4786                         else if (map->num_members >= 3)
4787                                 version = MPB_VERSION_3OR4_DISK_ARRAY;
4788                         else if (get_imsm_raid_level(map) == 1)
4789                                 version = MPB_VERSION_RAID1;
4790                         else
4791                                 version = MPB_VERSION_RAID0;
4792                 }
4793                 strcpy(((char *) mpb->sig) + strlen(MPB_SIGNATURE), version);
4794         }
4795 }
4796
4797 static int check_name(struct intel_super *super, char *name, int quiet)
4798 {
4799         struct imsm_super *mpb = super->anchor;
4800         char *reason = NULL;
4801         int i;
4802
4803         if (strlen(name) > MAX_RAID_SERIAL_LEN)
4804                 reason = "must be 16 characters or less";
4805
4806         for (i = 0; i < mpb->num_raid_devs; i++) {
4807                 struct imsm_dev *dev = get_imsm_dev(super, i);
4808
4809                 if (strncmp((char *) dev->volume, name, MAX_RAID_SERIAL_LEN) == 0) {
4810                         reason = "already exists";
4811                         break;
4812                 }
4813         }
4814
4815         if (reason && !quiet)
4816                 pr_err("imsm volume name %s\n", reason);
4817
4818         return !reason;
4819 }
4820
4821 static int init_super_imsm_volume(struct supertype *st, mdu_array_info_t *info,
4822                                   unsigned long long size, char *name,
4823                                   char *homehost, int *uuid,
4824                                   long long data_offset)
4825 {
4826         /* We are creating a volume inside a pre-existing container.
4827          * so st->sb is already set.
4828          */
4829         struct intel_super *super = st->sb;
4830         unsigned int sector_size = super->sector_size;
4831         struct imsm_super *mpb = super->anchor;
4832         struct intel_dev *dv;
4833         struct imsm_dev *dev;
4834         struct imsm_vol *vol;
4835         struct imsm_map *map;
4836         int idx = mpb->num_raid_devs;
4837         int i;
4838         unsigned long long array_blocks;
4839         size_t size_old, size_new;
4840         unsigned long long num_data_stripes;
4841
4842         if (super->orom && mpb->num_raid_devs >= super->orom->vpa) {
4843                 pr_err("This imsm-container already has the maximum of %d volumes\n", super->orom->vpa);
4844                 return 0;
4845         }
4846
4847         /* ensure the mpb is large enough for the new data */
4848         size_old = __le32_to_cpu(mpb->mpb_size);
4849         size_new = disks_to_mpb_size(info->nr_disks);
4850         if (size_new > size_old) {
4851                 void *mpb_new;
4852                 size_t size_round = ROUND_UP(size_new, sector_size);
4853
4854                 if (posix_memalign(&mpb_new, sector_size, size_round) != 0) {
4855                         pr_err("could not allocate new mpb\n");
4856                         return 0;
4857                 }
4858                 if (posix_memalign(&super->migr_rec_buf, 512,
4859                                    MIGR_REC_BUF_SIZE) != 0) {
4860                         pr_err("could not allocate migr_rec buffer\n");
4861                         free(super->buf);
4862                         free(super);
4863                         free(mpb_new);
4864                         return 0;
4865                 }
4866                 memcpy(mpb_new, mpb, size_old);
4867                 free(mpb);
4868                 mpb = mpb_new;
4869                 super->anchor = mpb_new;
4870                 mpb->mpb_size = __cpu_to_le32(size_new);
4871                 memset(mpb_new + size_old, 0, size_round - size_old);
4872         }
4873         super->current_vol = idx;
4874
4875         /* handle 'failed_disks' by either:
4876          * a) create dummy disk entries in the table if this the first
4877          *    volume in the array.  We add them here as this is the only
4878          *    opportunity to add them. add_to_super_imsm_volume()
4879          *    handles the non-failed disks and continues incrementing
4880          *    mpb->num_disks.
4881          * b) validate that 'failed_disks' matches the current number
4882          *    of missing disks if the container is populated
4883          */
4884         if (super->current_vol == 0) {
4885                 mpb->num_disks = 0;
4886                 for (i = 0; i < info->failed_disks; i++) {
4887                         struct imsm_disk *disk;
4888
4889                         mpb->num_disks++;
4890                         disk = __get_imsm_disk(mpb, i);
4891                         disk->status = CONFIGURED_DISK | FAILED_DISK;
4892                         disk->scsi_id = __cpu_to_le32(~(__u32)0);
4893                         snprintf((char *) disk->serial, MAX_RAID_SERIAL_LEN,
4894                                  "missing:%d", i);
4895                 }
4896                 find_missing(super);
4897         } else {
4898                 int missing = 0;
4899                 struct dl *d;
4900
4901                 for (d = super->missing; d; d = d->next)
4902                         missing++;
4903                 if (info->failed_disks > missing) {
4904                         pr_err("unable to add 'missing' disk to container\n");
4905                         return 0;
4906                 }
4907         }
4908
4909         if (!check_name(super, name, 0))
4910                 return 0;
4911         dv = xmalloc(sizeof(*dv));
4912         dev = xcalloc(1, sizeof(*dev) + sizeof(__u32) * (info->raid_disks - 1));
4913         strncpy((char *) dev->volume, name, MAX_RAID_SERIAL_LEN);
4914         array_blocks = calc_array_size(info->level, info->raid_disks,
4915                                                info->layout, info->chunk_size,
4916                                                size * 2);
4917         /* round array size down to closest MB */
4918         array_blocks = (array_blocks >> SECT_PER_MB_SHIFT) << SECT_PER_MB_SHIFT;
4919
4920         dev->size_low = __cpu_to_le32((__u32) array_blocks);
4921         dev->size_high = __cpu_to_le32((__u32) (array_blocks >> 32));
4922         dev->status = (DEV_READ_COALESCING | DEV_WRITE_COALESCING);
4923         vol = &dev->vol;
4924         vol->migr_state = 0;
4925         set_migr_type(dev, MIGR_INIT);
4926         vol->dirty = !info->state;
4927         vol->curr_migr_unit = 0;
4928         map = get_imsm_map(dev, MAP_0);
4929         set_pba_of_lba0(map, super->create_offset);
4930         set_blocks_per_member(map, info_to_blocks_per_member(info, size));
4931         map->blocks_per_strip = __cpu_to_le16(info_to_blocks_per_strip(info));
4932         map->failed_disk_num = ~0;
4933         if (info->level > 0)
4934                 map->map_state = (info->state ? IMSM_T_STATE_NORMAL
4935                                   : IMSM_T_STATE_UNINITIALIZED);
4936         else
4937                 map->map_state = info->failed_disks ? IMSM_T_STATE_FAILED :
4938                                                       IMSM_T_STATE_NORMAL;
4939         map->ddf = 1;
4940
4941         if (info->level == 1 && info->raid_disks > 2) {
4942                 free(dev);
4943                 free(dv);
4944                 pr_err("imsm does not support more than 2 disksin a raid1 volume\n");
4945                 return 0;
4946         }
4947
4948         map->raid_level = info->level;
4949         if (info->level == 10) {
4950                 map->raid_level = 1;
4951                 map->num_domains = info->raid_disks / 2;
4952         } else if (info->level == 1)
4953                 map->num_domains = info->raid_disks;
4954         else
4955                 map->num_domains = 1;
4956
4957         /* info->size is only int so use the 'size' parameter instead */
4958         num_data_stripes = (size * 2) / info_to_blocks_per_strip(info);
4959         num_data_stripes /= map->num_domains;
4960         set_num_data_stripes(map, num_data_stripes);
4961
4962         map->num_members = info->raid_disks;
4963         for (i = 0; i < map->num_members; i++) {
4964                 /* initialized in add_to_super */
4965                 set_imsm_ord_tbl_ent(map, i, IMSM_ORD_REBUILD);
4966         }
4967         mpb->num_raid_devs++;
4968
4969         dv->dev = dev;
4970         dv->index = super->current_vol;
4971         dv->next = super->devlist;
4972         super->devlist = dv;
4973
4974         imsm_update_version_info(super);
4975
4976         return 1;
4977 }
4978
4979 static int init_super_imsm(struct supertype *st, mdu_array_info_t *info,
4980                            unsigned long long size, char *name,
4981                            char *homehost, int *uuid,
4982                            unsigned long long data_offset)
4983 {
4984         /* This is primarily called by Create when creating a new array.
4985          * We will then get add_to_super called for each component, and then
4986          * write_init_super called to write it out to each device.
4987          * For IMSM, Create can create on fresh devices or on a pre-existing
4988          * array.
4989          * To create on a pre-existing array a different method will be called.
4990          * This one is just for fresh drives.
4991          */
4992         struct intel_super *super;
4993         struct imsm_super *mpb;
4994         size_t mpb_size;
4995         char *version;
4996
4997         if (data_offset != INVALID_SECTORS) {
4998                 pr_err("data-offset not supported by imsm\n");
4999                 return 0;
5000         }
5001
5002         if (st->sb)
5003                 return init_super_imsm_volume(st, info, size, name, homehost, uuid,
5004                                               data_offset);
5005
5006         if (info)
5007                 mpb_size = disks_to_mpb_size(info->nr_disks);
5008         else
5009                 mpb_size = MAX_SECTOR_SIZE;
5010
5011         super = alloc_super();
5012         if (super &&
5013             posix_memalign(&super->buf, MAX_SECTOR_SIZE, mpb_size) != 0) {
5014                 free(super);
5015                 super = NULL;
5016         }
5017         if (!super) {
5018                 pr_err("could not allocate superblock\n");
5019                 return 0;
5020         }
5021         if (posix_memalign(&super->migr_rec_buf, 512, MIGR_REC_BUF_SIZE) != 0) {
5022                 pr_err("could not allocate migr_rec buffer\n");
5023                 free(super->buf);
5024                 free(super);
5025                 return 0;
5026         }
5027         memset(super->buf, 0, mpb_size);
5028         mpb = super->buf;
5029         mpb->mpb_size = __cpu_to_le32(mpb_size);
5030         st->sb = super;
5031
5032         if (info == NULL) {
5033                 /* zeroing superblock */
5034                 return 0;
5035         }
5036
5037         mpb->attributes = MPB_ATTRIB_CHECKSUM_VERIFY;
5038
5039         version = (char *) mpb->sig;
5040         strcpy(version, MPB_SIGNATURE);
5041         version += strlen(MPB_SIGNATURE);
5042         strcpy(version, MPB_VERSION_RAID0);
5043
5044         return 1;
5045 }
5046
5047 #ifndef MDASSEMBLE
5048 static int add_to_super_imsm_volume(struct supertype *st, mdu_disk_info_t *dk,
5049                                      int fd, char *devname)
5050 {
5051         struct intel_super *super = st->sb;
5052         struct imsm_super *mpb = super->anchor;
5053         struct imsm_disk *_disk;
5054         struct imsm_dev *dev;
5055         struct imsm_map *map;
5056         struct dl *dl, *df;
5057         int slot;
5058
5059         dev = get_imsm_dev(super, super->current_vol);
5060         map = get_imsm_map(dev, MAP_0);
5061
5062         if (! (dk->state & (1<<MD_DISK_SYNC))) {
5063                 pr_err("%s: Cannot add spare devices to IMSM volume\n",
5064                         devname);
5065                 return 1;
5066         }
5067
5068         if (fd == -1) {
5069                 /* we're doing autolayout so grab the pre-marked (in
5070                  * validate_geometry) raid_disk
5071                  */
5072                 for (dl = super->disks; dl; dl = dl->next)
5073                         if (dl->raiddisk == dk->raid_disk)
5074                                 break;
5075         } else {
5076                 for (dl = super->disks; dl ; dl = dl->next)
5077                         if (dl->major == dk->major &&
5078                             dl->minor == dk->minor)
5079                                 break;
5080         }
5081
5082         if (!dl) {
5083                 pr_err("%s is not a member of the same container\n", devname);
5084                 return 1;
5085         }
5086
5087         /* add a pristine spare to the metadata */
5088         if (dl->index < 0) {
5089                 dl->index = super->anchor->num_disks;
5090                 super->anchor->num_disks++;
5091         }
5092         /* Check the device has not already been added */
5093         slot = get_imsm_disk_slot(map, dl->index);
5094         if (slot >= 0 &&
5095             (get_imsm_ord_tbl_ent(dev, slot, MAP_X) & IMSM_ORD_REBUILD) == 0) {
5096                 pr_err("%s has been included in this array twice\n",
5097                         devname);
5098                 return 1;
5099         }
5100         set_imsm_ord_tbl_ent(map, dk->raid_disk, dl->index);
5101         dl->disk.status = CONFIGURED_DISK;
5102
5103         /* update size of 'missing' disks to be at least as large as the
5104          * largest acitve member (we only have dummy missing disks when
5105          * creating the first volume)
5106          */
5107         if (super->current_vol == 0) {
5108                 for (df = super->missing; df; df = df->next) {
5109                         if (total_blocks(&dl->disk) > total_blocks(&df->disk))
5110                                 set_total_blocks(&df->disk, total_blocks(&dl->disk));
5111                         _disk = __get_imsm_disk(mpb, df->index);
5112                         *_disk = df->disk;
5113                 }
5114         }
5115
5116         /* refresh unset/failed slots to point to valid 'missing' entries */
5117         for (df = super->missing; df; df = df->next)
5118                 for (slot = 0; slot < mpb->num_disks; slot++) {
5119                         __u32 ord = get_imsm_ord_tbl_ent(dev, slot, MAP_X);
5120
5121                         if ((ord & IMSM_ORD_REBUILD) == 0)
5122                                 continue;
5123                         set_imsm_ord_tbl_ent(map, slot, df->index | IMSM_ORD_REBUILD);
5124                         if (is_gen_migration(dev)) {
5125                                 struct imsm_map *map2 = get_imsm_map(dev,
5126                                                                      MAP_1);
5127                                 int slot2 = get_imsm_disk_slot(map2, df->index);
5128                                 if (slot2 < map2->num_members && slot2 >= 0) {
5129                                         __u32 ord2 = get_imsm_ord_tbl_ent(dev,
5130                                                                          slot2,
5131                                                                          MAP_1);
5132                                         if ((unsigned)df->index ==
5133                                                                ord_to_idx(ord2))
5134                                                 set_imsm_ord_tbl_ent(map2,
5135                                                         slot2,
5136                                                         df->index |
5137                                                         IMSM_ORD_REBUILD);
5138                                 }
5139                         }
5140                         dprintf("set slot:%d to missing disk:%d\n", slot, df->index);
5141                         break;
5142                 }
5143
5144         /* if we are creating the first raid device update the family number */
5145         if (super->current_vol == 0) {
5146                 __u32 sum;
5147                 struct imsm_dev *_dev = __get_imsm_dev(mpb, 0);
5148
5149                 _disk = __get_imsm_disk(mpb, dl->index);
5150                 if (!_dev || !_disk) {
5151                         pr_err("BUG mpb setup error\n");
5152                         return 1;
5153                 }
5154                 *_dev = *dev;
5155                 *_disk = dl->disk;
5156                 sum = random32();
5157                 sum += __gen_imsm_checksum(mpb);
5158                 mpb->family_num = __cpu_to_le32(sum);
5159                 mpb->orig_family_num = mpb->family_num;
5160         }
5161         super->current_disk = dl;
5162         return 0;
5163 }
5164
5165 /* mark_spare()
5166  *   Function marks disk as spare and restores disk serial
5167  *   in case it was previously marked as failed by takeover operation
5168  * reruns:
5169  *   -1 : critical error
5170  *    0 : disk is marked as spare but serial is not set
5171  *    1 : success
5172  */
5173 int mark_spare(struct dl *disk)
5174 {
5175         __u8 serial[MAX_RAID_SERIAL_LEN];
5176         int ret_val = -1;
5177
5178         if (!disk)
5179                 return ret_val;
5180
5181         ret_val = 0;
5182         if (!imsm_read_serial(disk->fd, NULL, serial)) {
5183                 /* Restore disk serial number, because takeover marks disk
5184                  * as failed and adds to serial ':0' before it becomes
5185                  * a spare disk.
5186                  */
5187                 serialcpy(disk->serial, serial);
5188                 serialcpy(disk->disk.serial, serial);
5189                 ret_val = 1;
5190         }
5191         disk->disk.status = SPARE_DISK;
5192         disk->index = -1;
5193
5194         return ret_val;
5195 }
5196
5197 static int add_to_super_imsm(struct supertype *st, mdu_disk_info_t *dk,
5198                              int fd, char *devname,
5199                              unsigned long long data_offset)
5200 {
5201         struct intel_super *super = st->sb;
5202         struct dl *dd;
5203         unsigned long long size;
5204         unsigned int member_sector_size;
5205         __u32 id;
5206         int rv;
5207         struct stat stb;
5208
5209         /* If we are on an RAID enabled platform check that the disk is
5210          * attached to the raid controller.
5211          * We do not need to test disks attachment for container based additions,
5212          * they shall be already tested when container was created/assembled.
5213          */
5214         rv = find_intel_hba_capability(fd, super, devname);
5215         /* no orom/efi or non-intel hba of the disk */
5216         if (rv != 0) {
5217                 dprintf("capability: %p fd: %d ret: %d\n",
5218                         super->orom, fd, rv);
5219                 return 1;
5220         }
5221
5222         if (super->current_vol >= 0)
5223                 return add_to_super_imsm_volume(st, dk, fd, devname);
5224
5225         fstat(fd, &stb);
5226         dd = xcalloc(sizeof(*dd), 1);
5227         dd->major = major(stb.st_rdev);
5228         dd->minor = minor(stb.st_rdev);
5229         dd->devname = devname ? xstrdup(devname) : NULL;
5230         dd->fd = fd;
5231         dd->e = NULL;
5232         dd->action = DISK_ADD;
5233         rv = imsm_read_serial(fd, devname, dd->serial);
5234         if (rv) {
5235                 pr_err("failed to retrieve scsi serial, aborting\n");
5236                 if (dd->devname)
5237                         free(dd->devname);
5238                 free(dd);
5239                 abort();
5240         }
5241         if (super->hba && ((super->hba->type == SYS_DEV_NVME) ||
5242            (super->hba->type == SYS_DEV_VMD))) {
5243                 int i;
5244                 char *devpath = diskfd_to_devpath(fd);
5245                 char controller_path[PATH_MAX];
5246
5247                 if (!devpath) {
5248                         pr_err("failed to get devpath, aborting\n");
5249                         if (dd->devname)
5250                                 free(dd->devname);
5251                         free(dd);
5252                         return 1;
5253                 }
5254
5255                 snprintf(controller_path, PATH_MAX-1, "%s/device", devpath);
5256                 free(devpath);
5257
5258                 if (devpath_to_vendor(controller_path) == 0x8086) {
5259                         /*
5260                          * If Intel's NVMe drive has serial ended with
5261                          * "-A","-B","-1" or "-2" it means that this is "x8"
5262                          * device (double drive on single PCIe card).
5263                          * User should be warned about potential data loss.
5264                          */
5265                         for (i = MAX_RAID_SERIAL_LEN-1; i > 0; i--) {
5266                                 /* Skip empty character at the end */
5267                                 if (dd->serial[i] == 0)
5268                                         continue;
5269
5270                                 if (((dd->serial[i] == 'A') ||
5271                                    (dd->serial[i] == 'B') ||
5272                                    (dd->serial[i] == '1') ||
5273                                    (dd->serial[i] == '2')) &&
5274                                    (dd->serial[i-1] == '-'))
5275                                         pr_err("\tThe action you are about to take may put your data at risk.\n"
5276                                                 "\tPlease note that x8 devices may consist of two separate x4 devices "
5277                                                 "located on a single PCIe port.\n"
5278                                                 "\tRAID 0 is the only supported configuration for this type of x8 device.\n");
5279                                 break;
5280                         }
5281                 }
5282         }
5283
5284         get_dev_size(fd, NULL, &size);
5285         get_dev_sector_size(fd, NULL, &member_sector_size);
5286
5287         if (super->sector_size == 0) {
5288                 /* this a first device, so sector_size is not set yet */
5289                 super->sector_size = member_sector_size;
5290         } else if (member_sector_size != super->sector_size) {
5291                 pr_err("Mixing between different sector size is forbidden, aborting...\n");
5292                 if (dd->devname)
5293                         free(dd->devname);
5294                 free(dd);
5295                 return 1;
5296         }
5297
5298         /* clear migr_rec when adding disk to container */
5299         memset(super->migr_rec_buf, 0, MIGR_REC_BUF_SIZE);
5300         if (lseek64(fd, size - MIGR_REC_POSITION, SEEK_SET) >= 0) {
5301                 if (write(fd, super->migr_rec_buf,
5302                         MIGR_REC_BUF_SIZE) != MIGR_REC_BUF_SIZE)
5303                         perror("Write migr_rec failed");
5304         }
5305
5306         size /= 512;
5307         serialcpy(dd->disk.serial, dd->serial);
5308         set_total_blocks(&dd->disk, size);
5309         if (__le32_to_cpu(dd->disk.total_blocks_hi) > 0) {
5310                 struct imsm_super *mpb = super->anchor;
5311                 mpb->attributes |= MPB_ATTRIB_2TB_DISK;
5312         }
5313         mark_spare(dd);
5314         if (sysfs_disk_to_scsi_id(fd, &id) == 0)
5315                 dd->disk.scsi_id = __cpu_to_le32(id);
5316         else
5317                 dd->disk.scsi_id = __cpu_to_le32(0);
5318
5319         if (st->update_tail) {
5320                 dd->next = super->disk_mgmt_list;
5321                 super->disk_mgmt_list = dd;
5322         } else {
5323                 dd->next = super->disks;
5324                 super->disks = dd;
5325                 super->updates_pending++;
5326         }
5327
5328         return 0;
5329 }
5330
5331 static int remove_from_super_imsm(struct supertype *st, mdu_disk_info_t *dk)
5332 {
5333         struct intel_super *super = st->sb;
5334         struct dl *dd;
5335
5336         /* remove from super works only in mdmon - for communication
5337          * manager - monitor. Check if communication memory buffer
5338          * is prepared.
5339          */
5340         if (!st->update_tail) {
5341                 pr_err("shall be used in mdmon context only\n");
5342                 return 1;
5343         }
5344         dd = xcalloc(1, sizeof(*dd));
5345         dd->major = dk->major;
5346         dd->minor = dk->minor;
5347         dd->fd = -1;
5348         mark_spare(dd);
5349         dd->action = DISK_REMOVE;
5350
5351         dd->next = super->disk_mgmt_list;
5352         super->disk_mgmt_list = dd;
5353
5354         return 0;
5355 }
5356
5357 static int store_imsm_mpb(int fd, struct imsm_super *mpb);
5358
5359 static union {
5360         char buf[MAX_SECTOR_SIZE];
5361         struct imsm_super anchor;
5362 } spare_record __attribute__ ((aligned(MAX_SECTOR_SIZE)));
5363
5364 /* spare records have their own family number and do not have any defined raid
5365  * devices
5366  */
5367 static int write_super_imsm_spares(struct intel_super *super, int doclose)
5368 {
5369         struct imsm_super *mpb = super->anchor;
5370         struct imsm_super *spare = &spare_record.anchor;
5371         __u32 sum;
5372         struct dl *d;
5373
5374         spare->mpb_size = __cpu_to_le32(sizeof(struct imsm_super));
5375         spare->generation_num = __cpu_to_le32(1UL);
5376         spare->attributes = MPB_ATTRIB_CHECKSUM_VERIFY;
5377         spare->num_disks = 1;
5378         spare->num_raid_devs = 0;
5379         spare->cache_size = mpb->cache_size;
5380         spare->pwr_cycle_count = __cpu_to_le32(1);
5381
5382         snprintf((char *) spare->sig, MAX_SIGNATURE_LENGTH,
5383                  MPB_SIGNATURE MPB_VERSION_RAID0);
5384
5385         for (d = super->disks; d; d = d->next) {
5386                 if (d->index != -1)
5387                         continue;
5388
5389                 spare->disk[0] = d->disk;
5390                 if (__le32_to_cpu(d->disk.total_blocks_hi) > 0)
5391                         spare->attributes |= MPB_ATTRIB_2TB_DISK;
5392
5393                 if (super->sector_size == 4096)
5394                         convert_to_4k_imsm_disk(&spare->disk[0]);
5395
5396                 sum = __gen_imsm_checksum(spare);
5397                 spare->family_num = __cpu_to_le32(sum);
5398                 spare->orig_family_num = 0;
5399                 sum = __gen_imsm_checksum(spare);
5400                 spare->check_sum = __cpu_to_le32(sum);
5401
5402                 if (store_imsm_mpb(d->fd, spare)) {
5403                         pr_err("failed for device %d:%d %s\n",
5404                                 d->major, d->minor, strerror(errno));
5405                         return 1;
5406                 }
5407                 if (doclose) {
5408                         close(d->fd);
5409                         d->fd = -1;
5410                 }
5411         }
5412
5413         return 0;
5414 }
5415
5416 static int write_super_imsm(struct supertype *st, int doclose)
5417 {
5418         struct intel_super *super = st->sb;
5419         unsigned int sector_size = super->sector_size;
5420         struct imsm_super *mpb = super->anchor;
5421         struct dl *d;
5422         __u32 generation;
5423         __u32 sum;
5424         int spares = 0;
5425         int i;
5426         __u32 mpb_size = sizeof(struct imsm_super) - sizeof(struct imsm_disk);
5427         int num_disks = 0;
5428         int clear_migration_record = 1;
5429
5430         /* 'generation' is incremented everytime the metadata is written */
5431         generation = __le32_to_cpu(mpb->generation_num);
5432         generation++;
5433         mpb->generation_num = __cpu_to_le32(generation);
5434
5435         /* fix up cases where previous mdadm releases failed to set
5436          * orig_family_num
5437          */
5438         if (mpb->orig_family_num == 0)
5439                 mpb->orig_family_num = mpb->family_num;
5440
5441         for (d = super->disks; d; d = d->next) {
5442                 if (d->index == -1)
5443                         spares++;
5444                 else {
5445                         mpb->disk[d->index] = d->disk;
5446                         num_disks++;
5447                 }
5448         }
5449         for (d = super->missing; d; d = d->next) {
5450                 mpb->disk[d->index] = d->disk;
5451                 num_disks++;
5452         }
5453         mpb->num_disks = num_disks;
5454         mpb_size += sizeof(struct imsm_disk) * mpb->num_disks;
5455
5456         for (i = 0; i < mpb->num_raid_devs; i++) {
5457                 struct imsm_dev *dev = __get_imsm_dev(mpb, i);
5458                 struct imsm_dev *dev2 = get_imsm_dev(super, i);
5459                 if (dev && dev2) {
5460                         imsm_copy_dev(dev, dev2);
5461                         mpb_size += sizeof_imsm_dev(dev, 0);
5462                 }
5463                 if (is_gen_migration(dev2))
5464                         clear_migration_record = 0;
5465         }
5466         mpb_size += __le32_to_cpu(mpb->bbm_log_size);
5467         mpb->mpb_size = __cpu_to_le32(mpb_size);
5468
5469         /* recalculate checksum */
5470         sum = __gen_imsm_checksum(mpb);
5471         mpb->check_sum = __cpu_to_le32(sum);
5472
5473         if (super->clean_migration_record_by_mdmon) {
5474                 clear_migration_record = 1;
5475                 super->clean_migration_record_by_mdmon = 0;
5476         }
5477         if (clear_migration_record)
5478                 memset(super->migr_rec_buf, 0, MIGR_REC_BUF_SIZE);
5479
5480         if (sector_size == 4096)
5481                 convert_to_4k(super);
5482
5483         /* write the mpb for disks that compose raid devices */
5484         for (d = super->disks; d ; d = d->next) {
5485                 if (d->index < 0 || is_failed(&d->disk))
5486                         continue;
5487
5488                 if (clear_migration_record) {
5489                         unsigned long long dsize;
5490
5491                         get_dev_size(d->fd, NULL, &dsize);
5492                         if (lseek64(d->fd, dsize - 512, SEEK_SET) >= 0) {
5493                                 if (write(d->fd, super->migr_rec_buf,
5494                                         MIGR_REC_BUF_SIZE) != MIGR_REC_BUF_SIZE)
5495                                         perror("Write migr_rec failed");
5496                         }
5497                 }
5498
5499                 if (store_imsm_mpb(d->fd, mpb))
5500                         fprintf(stderr,
5501                                 "failed for device %d:%d (fd: %d)%s\n",
5502                                 d->major, d->minor,
5503                                 d->fd, strerror(errno));
5504
5505                 if (doclose) {
5506                         close(d->fd);
5507                         d->fd = -1;
5508                 }
5509         }
5510
5511         if (spares)
5512                 return write_super_imsm_spares(super, doclose);
5513
5514         return 0;
5515 }
5516
5517 static int create_array(struct supertype *st, int dev_idx)
5518 {
5519         size_t len;
5520         struct imsm_update_create_array *u;
5521         struct intel_super *super = st->sb;
5522         struct imsm_dev *dev = get_imsm_dev(super, dev_idx);
5523         struct imsm_map *map = get_imsm_map(dev, MAP_0);
5524         struct disk_info *inf;
5525         struct imsm_disk *disk;
5526         int i;
5527
5528         len = sizeof(*u) - sizeof(*dev) + sizeof_imsm_dev(dev, 0) +
5529               sizeof(*inf) * map->num_members;
5530         u = xmalloc(len);
5531         u->type = update_create_array;
5532         u->dev_idx = dev_idx;
5533         imsm_copy_dev(&u->dev, dev);
5534         inf = get_disk_info(u);
5535         for (i = 0; i < map->num_members; i++) {
5536                 int idx = get_imsm_disk_idx(dev, i, MAP_X);
5537
5538                 disk = get_imsm_disk(super, idx);
5539                 if (!disk)
5540                         disk = get_imsm_missing(super, idx);
5541                 serialcpy(inf[i].serial, disk->serial);
5542         }
5543         append_metadata_update(st, u, len);
5544
5545         return 0;
5546 }
5547
5548 static int mgmt_disk(struct supertype *st)
5549 {
5550         struct intel_super *super = st->sb;
5551         size_t len;
5552         struct imsm_update_add_remove_disk *u;
5553
5554         if (!super->disk_mgmt_list)
5555                 return 0;
5556
5557         len = sizeof(*u);
5558         u = xmalloc(len);
5559         u->type = update_add_remove_disk;
5560         append_metadata_update(st, u, len);
5561
5562         return 0;
5563 }
5564
5565 static int write_init_super_imsm(struct supertype *st)
5566 {
5567         struct intel_super *super = st->sb;
5568         int current_vol = super->current_vol;
5569
5570         /* we are done with current_vol reset it to point st at the container */
5571         super->current_vol = -1;
5572
5573         if (st->update_tail) {
5574                 /* queue the recently created array / added disk
5575                  * as a metadata update */
5576                 int rv;
5577
5578                 /* determine if we are creating a volume or adding a disk */
5579                 if (current_vol < 0) {
5580                         /* in the mgmt (add/remove) disk case we are running
5581                          * in mdmon context, so don't close fd's
5582                          */
5583                         return mgmt_disk(st);
5584                 } else
5585                         rv = create_array(st, current_vol);
5586
5587                 return rv;
5588         } else {
5589                 struct dl *d;
5590                 for (d = super->disks; d; d = d->next)
5591                         Kill(d->devname, NULL, 0, -1, 1);
5592                 return write_super_imsm(st, 1);
5593         }
5594 }
5595 #endif
5596
5597 static int store_super_imsm(struct supertype *st, int fd)
5598 {
5599         struct intel_super *super = st->sb;
5600         struct imsm_super *mpb = super ? super->anchor : NULL;
5601
5602         if (!mpb)
5603                 return 1;
5604
5605 #ifndef MDASSEMBLE
5606         if (super->sector_size == 4096)
5607                 convert_to_4k(super);
5608         return store_imsm_mpb(fd, mpb);
5609 #else
5610         return 1;
5611 #endif
5612 }
5613
5614 static int imsm_bbm_log_size(struct imsm_super *mpb)
5615 {
5616         return __le32_to_cpu(mpb->bbm_log_size);
5617 }
5618
5619 #ifndef MDASSEMBLE
5620 static int validate_geometry_imsm_container(struct supertype *st, int level,
5621                                             int layout, int raiddisks, int chunk,
5622                                             unsigned long long size,
5623                                             unsigned long long data_offset,
5624                                             char *dev,
5625                                             unsigned long long *freesize,
5626                                             int verbose)
5627 {
5628         int fd;
5629         unsigned long long ldsize;
5630         struct intel_super *super;
5631         int rv = 0;
5632
5633         if (level != LEVEL_CONTAINER)
5634                 return 0;
5635         if (!dev)
5636                 return 1;
5637
5638         fd = open(dev, O_RDONLY|O_EXCL, 0);
5639         if (fd < 0) {
5640                 if (verbose > 0)
5641                         pr_err("imsm: Cannot open %s: %s\n",
5642                                 dev, strerror(errno));
5643                 return 0;
5644         }
5645         if (!get_dev_size(fd, dev, &ldsize)) {
5646                 close(fd);
5647                 return 0;
5648         }
5649
5650         /* capabilities retrieve could be possible
5651          * note that there is no fd for the disks in array.
5652          */
5653         super = alloc_super();
5654         if (!get_dev_sector_size(fd, NULL, &super->sector_size)) {
5655                 close(fd);
5656                 free_imsm(super);
5657                 return 0;
5658         }
5659
5660         rv = find_intel_hba_capability(fd, super, verbose > 0 ? dev : NULL);
5661         if (rv != 0) {
5662 #if DEBUG
5663                 char str[256];
5664                 fd2devname(fd, str);
5665                 dprintf("fd: %d %s orom: %p rv: %d raiddisk: %d\n",
5666                         fd, str, super->orom, rv, raiddisks);
5667 #endif
5668                 /* no orom/efi or non-intel hba of the disk */
5669                 close(fd);
5670                 free_imsm(super);
5671                 return 0;
5672         }
5673         close(fd);
5674         if (super->orom) {
5675                 if (raiddisks > super->orom->tds) {
5676                         if (verbose)
5677                                 pr_err("%d exceeds maximum number of platform supported disks: %d\n",
5678                                         raiddisks, super->orom->tds);
5679                         free_imsm(super);
5680                         return 0;
5681                 }
5682                 if ((super->orom->attr & IMSM_OROM_ATTR_2TB_DISK) == 0 &&
5683                     (ldsize >> 9) >> 32 > 0) {
5684                         if (verbose)
5685                                 pr_err("%s exceeds maximum platform supported size\n", dev);
5686                         free_imsm(super);
5687                         return 0;
5688                 }
5689         }
5690
5691         *freesize = avail_size_imsm(st, ldsize >> 9, data_offset);
5692         free_imsm(super);
5693
5694         return 1;
5695 }
5696
5697 static unsigned long long find_size(struct extent *e, int *idx, int num_extents)
5698 {
5699         const unsigned long long base_start = e[*idx].start;
5700         unsigned long long end = base_start + e[*idx].size;
5701         int i;
5702
5703         if (base_start == end)
5704                 return 0;
5705
5706         *idx = *idx + 1;
5707         for (i = *idx; i < num_extents; i++) {
5708                 /* extend overlapping extents */
5709                 if (e[i].start >= base_start &&
5710                     e[i].start <= end) {
5711                         if (e[i].size == 0)
5712                                 return 0;
5713                         if (e[i].start + e[i].size > end)
5714                                 end = e[i].start + e[i].size;
5715                 } else if (e[i].start > end) {
5716                         *idx = i;
5717                         break;
5718                 }
5719         }
5720
5721         return end - base_start;
5722 }
5723
5724 static unsigned long long merge_extents(struct intel_super *super, int sum_extents)
5725 {
5726         /* build a composite disk with all known extents and generate a new
5727          * 'maxsize' given the "all disks in an array must share a common start
5728          * offset" constraint
5729          */
5730         struct extent *e = xcalloc(sum_extents, sizeof(*e));
5731         struct dl *dl;
5732         int i, j;
5733         int start_extent;
5734         unsigned long long pos;
5735         unsigned long long start = 0;
5736         unsigned long long maxsize;
5737         unsigned long reserve;
5738
5739         /* coalesce and sort all extents. also, check to see if we need to
5740          * reserve space between member arrays
5741          */
5742         j = 0;
5743         for (dl = super->disks; dl; dl = dl->next) {
5744                 if (!dl->e)
5745                         continue;
5746                 for (i = 0; i < dl->extent_cnt; i++)
5747                         e[j++] = dl->e[i];
5748         }
5749         qsort(e, sum_extents, sizeof(*e), cmp_extent);
5750
5751         /* merge extents */
5752         i = 0;
5753         j = 0;
5754         while (i < sum_extents) {
5755                 e[j].start = e[i].start;
5756                 e[j].size = find_size(e, &i, sum_extents);
5757                 j++;
5758                 if (e[j-1].size == 0)
5759                         break;
5760         }
5761
5762         pos = 0;
5763         maxsize = 0;
5764         start_extent = 0;
5765         i = 0;
5766         do {
5767                 unsigned long long esize;
5768
5769                 esize = e[i].start - pos;
5770                 if (esize >= maxsize) {
5771                         maxsize = esize;
5772                         start = pos;
5773                         start_extent = i;
5774                 }
5775                 pos = e[i].start + e[i].size;
5776                 i++;
5777         } while (e[i-1].size);
5778         free(e);
5779
5780         if (maxsize == 0)
5781                 return 0;
5782
5783         /* FIXME assumes volume at offset 0 is the first volume in a
5784          * container
5785          */
5786         if (start_extent > 0)
5787                 reserve = IMSM_RESERVED_SECTORS; /* gap between raid regions */
5788         else
5789                 reserve = 0;
5790
5791         if (maxsize < reserve)
5792                 return 0;
5793
5794         super->create_offset = ~((unsigned long long) 0);
5795         if (start + reserve > super->create_offset)
5796                 return 0; /* start overflows create_offset */
5797         super->create_offset = start + reserve;
5798
5799         return maxsize - reserve;
5800 }
5801
5802 static int is_raid_level_supported(const struct imsm_orom *orom, int level, int raiddisks)
5803 {
5804         if (level < 0 || level == 6 || level == 4)
5805                 return 0;
5806
5807         /* if we have an orom prevent invalid raid levels */
5808         if (orom)
5809                 switch (level) {
5810                 case 0: return imsm_orom_has_raid0(orom);
5811                 case 1:
5812                         if (raiddisks > 2)
5813                                 return imsm_orom_has_raid1e(orom);
5814                         return imsm_orom_has_raid1(orom) && raiddisks == 2;
5815                 case 10: return imsm_orom_has_raid10(orom) && raiddisks == 4;
5816                 case 5: return imsm_orom_has_raid5(orom) && raiddisks > 2;
5817                 }
5818         else
5819                 return 1; /* not on an Intel RAID platform so anything goes */
5820
5821         return 0;
5822 }
5823
5824 static int
5825 active_arrays_by_format(char *name, char* hba, struct md_list **devlist,
5826                         int dpa, int verbose)
5827 {
5828         struct mdstat_ent *mdstat = mdstat_read(0, 0);
5829         struct mdstat_ent *memb;
5830         int count = 0;
5831         int num = 0;
5832         struct md_list *dv;
5833         int found;
5834
5835         for (memb = mdstat ; memb ; memb = memb->next) {
5836                 if (memb->metadata_version &&
5837                     (strncmp(memb->metadata_version, "external:", 9) == 0)  &&
5838                     (strcmp(&memb->metadata_version[9], name) == 0) &&
5839                     !is_subarray(memb->metadata_version+9) &&
5840                     memb->members) {
5841                         struct dev_member *dev = memb->members;
5842                         int fd = -1;
5843                         while(dev && (fd < 0)) {
5844                                 char *path = xmalloc(strlen(dev->name) + strlen("/dev/") + 1);
5845                                 num = sprintf(path, "%s%s", "/dev/", dev->name);
5846                                 if (num > 0)
5847                                         fd = open(path, O_RDONLY, 0);
5848                                 if (num <= 0 || fd < 0) {
5849                                         pr_vrb("Cannot open %s: %s\n",
5850                                                dev->name, strerror(errno));
5851                                 }
5852                                 free(path);
5853                                 dev = dev->next;
5854                         }
5855                         found = 0;
5856                         if (fd >= 0 && disk_attached_to_hba(fd, hba)) {
5857                                 struct mdstat_ent *vol;
5858                                 for (vol = mdstat ; vol ; vol = vol->next) {
5859                                         if (vol->active > 0 &&
5860                                             vol->metadata_version &&
5861                                             is_container_member(vol, memb->devnm)) {
5862                                                 found++;
5863                                                 count++;
5864                                         }
5865                                 }
5866                                 if (*devlist && (found < dpa)) {
5867                                         dv = xcalloc(1, sizeof(*dv));
5868                                         dv->devname = xmalloc(strlen(memb->devnm) + strlen("/dev/") + 1);
5869                                         sprintf(dv->devname, "%s%s", "/dev/", memb->devnm);
5870                                         dv->found = found;
5871                                         dv->used = 0;
5872                                         dv->next = *devlist;
5873                                         *devlist = dv;
5874                                 }
5875                         }
5876                         if (fd >= 0)
5877                                 close(fd);
5878                 }
5879         }
5880         free_mdstat(mdstat);
5881         return count;
5882 }
5883
5884 #ifdef DEBUG_LOOP
5885 static struct md_list*
5886 get_loop_devices(void)
5887 {
5888         int i;
5889         struct md_list *devlist = NULL;
5890         struct md_list *dv;
5891
5892         for(i = 0; i < 12; i++) {
5893                 dv = xcalloc(1, sizeof(*dv));
5894                 dv->devname = xmalloc(40);
5895                 sprintf(dv->devname, "/dev/loop%d", i);
5896                 dv->next = devlist;
5897                 devlist = dv;
5898         }
5899         return devlist;
5900 }
5901 #endif
5902
5903 static struct md_list*
5904 get_devices(const char *hba_path)
5905 {
5906         struct md_list *devlist = NULL;
5907         struct md_list *dv;
5908         struct dirent *ent;
5909         DIR *dir;
5910         int err = 0;
5911
5912 #if DEBUG_LOOP
5913         devlist = get_loop_devices();
5914         return devlist;
5915 #endif
5916         /* scroll through /sys/dev/block looking for devices attached to
5917          * this hba
5918          */
5919         dir = opendir("/sys/dev/block");
5920         for (ent = dir ? readdir(dir) : NULL; ent; ent = readdir(dir)) {
5921                 int fd;
5922                 char buf[1024];
5923                 int major, minor;
5924                 char *path = NULL;
5925                 if (sscanf(ent->d_name, "%d:%d", &major, &minor) != 2)
5926                         continue;
5927                 path = devt_to_devpath(makedev(major, minor));
5928                 if (!path)
5929                         continue;
5930                 if (!path_attached_to_hba(path, hba_path)) {
5931                         free(path);
5932                         path = NULL;
5933                         continue;
5934                 }
5935                 free(path);
5936                 path = NULL;
5937                 fd = dev_open(ent->d_name, O_RDONLY);
5938                 if (fd >= 0) {
5939                         fd2devname(fd, buf);
5940                         close(fd);
5941                 } else {
5942                         pr_err("cannot open device: %s\n",
5943                                 ent->d_name);
5944                         continue;
5945                 }
5946
5947                 dv = xcalloc(1, sizeof(*dv));
5948                 dv->devname = xstrdup(buf);
5949                 dv->next = devlist;
5950                 devlist = dv;
5951         }
5952         if (err) {
5953                 while(devlist) {
5954                         dv = devlist;
5955                         devlist = devlist->next;
5956                         free(dv->devname);
5957                         free(dv);
5958                 }
5959         }
5960         closedir(dir);
5961         return devlist;
5962 }
5963
5964 static int
5965 count_volumes_list(struct md_list *devlist, char *homehost,
5966                    int verbose, int *found)
5967 {
5968         struct md_list *tmpdev;
5969         int count = 0;
5970         struct supertype *st;
5971
5972         /* first walk the list of devices to find a consistent set
5973          * that match the criterea, if that is possible.
5974          * We flag the ones we like with 'used'.
5975          */
5976         *found = 0;
5977         st = match_metadata_desc_imsm("imsm");
5978         if (st == NULL) {
5979                 pr_vrb("cannot allocate memory for imsm supertype\n");
5980                 return 0;
5981         }
5982
5983         for (tmpdev = devlist; tmpdev; tmpdev = tmpdev->next) {
5984                 char *devname = tmpdev->devname;
5985                 struct stat stb;
5986                 struct supertype *tst;
5987                 int dfd;
5988                 if (tmpdev->used > 1)
5989                         continue;
5990                 tst = dup_super(st);
5991                 if (tst == NULL) {
5992                         pr_vrb("cannot allocate memory for imsm supertype\n");
5993                         goto err_1;
5994                 }
5995                 tmpdev->container = 0;
5996                 dfd = dev_open(devname, O_RDONLY|O_EXCL);
5997                 if (dfd < 0) {
5998                         dprintf("cannot open device %s: %s\n",
5999                                 devname, strerror(errno));
6000                         tmpdev->used = 2;
6001                 } else if (fstat(dfd, &stb)< 0) {
6002                         /* Impossible! */
6003                         dprintf("fstat failed for %s: %s\n",
6004                                 devname, strerror(errno));
6005                         tmpdev->used = 2;
6006                 } else if ((stb.st_mode & S_IFMT) != S_IFBLK) {
6007                         dprintf("%s is not a block device.\n",
6008                                 devname);
6009                         tmpdev->used = 2;
6010                 } else if (must_be_container(dfd)) {
6011                         struct supertype *cst;
6012                         cst = super_by_fd(dfd, NULL);
6013                         if (cst == NULL) {
6014                                 dprintf("cannot recognize container type %s\n",
6015                                         devname);
6016                                 tmpdev->used = 2;
6017                         } else if (tst->ss != st->ss) {
6018                                 dprintf("non-imsm container - ignore it: %s\n",
6019                                         devname);
6020                                 tmpdev->used = 2;
6021                         } else if (!tst->ss->load_container ||
6022                                    tst->ss->load_container(tst, dfd, NULL))
6023                                 tmpdev->used = 2;
6024                         else {
6025                                 tmpdev->container = 1;
6026                         }
6027                         if (cst)
6028                                 cst->ss->free_super(cst);
6029                 } else {
6030                         tmpdev->st_rdev = stb.st_rdev;
6031                         if (tst->ss->load_super(tst,dfd, NULL)) {
6032                                 dprintf("no RAID superblock on %s\n",
6033                                         devname);
6034                                 tmpdev->used = 2;
6035                         } else if (tst->ss->compare_super == NULL) {
6036                                 dprintf("Cannot assemble %s metadata on %s\n",
6037                                         tst->ss->name, devname);
6038                                 tmpdev->used = 2;
6039                         }
6040                 }
6041                 if (dfd >= 0)
6042                         close(dfd);
6043                 if (tmpdev->used == 2 || tmpdev->used == 4) {
6044                         /* Ignore unrecognised devices during auto-assembly */
6045                         goto loop;
6046                 }
6047                 else {
6048                         struct mdinfo info;
6049                         tst->ss->getinfo_super(tst, &info, NULL);
6050
6051                         if (st->minor_version == -1)
6052                                 st->minor_version = tst->minor_version;
6053
6054                         if (memcmp(info.uuid, uuid_zero,
6055                                    sizeof(int[4])) == 0) {
6056                                 /* this is a floating spare.  It cannot define
6057                                  * an array unless there are no more arrays of
6058                                  * this type to be found.  It can be included
6059                                  * in an array of this type though.
6060                                  */
6061                                 tmpdev->used = 3;
6062                                 goto loop;
6063                         }
6064
6065                         if (st->ss != tst->ss ||
6066                             st->minor_version != tst->minor_version ||
6067                             st->ss->compare_super(st, tst) != 0) {
6068                                 /* Some mismatch. If exactly one array matches this host,
6069                                  * we can resolve on that one.
6070                                  * Or, if we are auto assembling, we just ignore the second
6071                                  * for now.
6072                                  */
6073                                 dprintf("superblock on %s doesn't match others - assembly aborted\n",
6074                                         devname);
6075                                 goto loop;
6076                         }
6077                         tmpdev->used = 1;
6078                         *found = 1;
6079                         dprintf("found: devname: %s\n", devname);
6080                 }
6081         loop:
6082                 if (tst)
6083                         tst->ss->free_super(tst);
6084         }
6085         if (*found != 0) {
6086                 int err;
6087                 if ((err = load_super_imsm_all(st, -1, &st->sb, NULL, devlist, 0)) == 0) {
6088                         struct mdinfo *iter, *head = st->ss->container_content(st, NULL);
6089                         for (iter = head; iter; iter = iter->next) {
6090                                 dprintf("content->text_version: %s vol\n",
6091                                         iter->text_version);
6092                                 if (iter->array.state & (1<<MD_SB_BLOCK_VOLUME)) {
6093                                         /* do not assemble arrays with unsupported
6094                                            configurations */
6095                                         dprintf("Cannot activate member %s.\n",
6096                                                 iter->text_version);
6097                                 } else
6098                                         count++;
6099                         }
6100                         sysfs_free(head);
6101
6102                 } else {
6103                         dprintf("No valid super block on device list: err: %d %p\n",
6104                                 err, st->sb);
6105                 }
6106         } else {
6107                 dprintf("no more devices to examine\n");
6108         }
6109
6110         for (tmpdev = devlist; tmpdev; tmpdev = tmpdev->next) {
6111                 if (tmpdev->used == 1 && tmpdev->found) {
6112                         if (count) {
6113                                 if (count < tmpdev->found)
6114                                         count = 0;
6115                                 else
6116                                         count -= tmpdev->found;
6117                         }
6118                 }
6119                 if (tmpdev->used == 1)
6120                         tmpdev->used = 4;
6121         }
6122         err_1:
6123         if (st)
6124                 st->ss->free_super(st);
6125         return count;
6126 }
6127
6128 static int
6129 count_volumes(struct intel_hba *hba, int dpa, int verbose)
6130 {
6131         struct sys_dev *idev, *intel_devices = find_intel_devices();
6132         int count = 0;
6133         const struct orom_entry *entry;
6134         struct devid_list *dv, *devid_list;
6135
6136         if (!hba || !hba->path)
6137                 return 0;
6138
6139         for (idev = intel_devices; idev; idev = idev->next) {
6140                 if (strstr(idev->path, hba->path))
6141                                 break;
6142         }
6143
6144         if (!idev || !idev->dev_id)
6145                 return 0;
6146
6147         entry = get_orom_entry_by_device_id(idev->dev_id);
6148
6149         if (!entry || !entry->devid_list)
6150                 return 0;
6151
6152         devid_list = entry->devid_list;
6153         for (dv = devid_list; dv; dv = dv->next) {
6154                 struct md_list *devlist;
6155                 struct sys_dev *device = device_by_id(dv->devid);
6156                 char *hba_path;
6157                 int found = 0;
6158
6159                 if (device)
6160                         hba_path = device->path;
6161                 else
6162                         return 0;
6163
6164                 devlist = get_devices(hba_path);
6165                 /* if no intel devices return zero volumes */
6166                 if (devlist == NULL)
6167                         return 0;
6168
6169                 count += active_arrays_by_format("imsm", hba_path, &devlist, dpa, verbose);
6170                 dprintf("path: %s active arrays: %d\n", hba_path, count);
6171                 if (devlist == NULL)
6172                         return 0;
6173                 do  {
6174                         found = 0;
6175                         count += count_volumes_list(devlist,
6176                                                         NULL,
6177                                                         verbose,
6178                                                         &found);
6179                         dprintf("found %d count: %d\n", found, count);
6180                 } while (found);
6181
6182                 dprintf("path: %s total number of volumes: %d\n", hba_path, count);
6183
6184                 while (devlist) {
6185                         struct md_list *dv = devlist;
6186                         devlist = devlist->next;
6187                         free(dv->devname);
6188                         free(dv);
6189                 }
6190         }
6191         return count;
6192 }
6193
6194 static int imsm_default_chunk(const struct imsm_orom *orom)
6195 {
6196         /* up to 512 if the plaform supports it, otherwise the platform max.
6197          * 128 if no platform detected
6198          */
6199         int fs = max(7, orom ? fls(orom->sss) : 0);
6200
6201         return min(512, (1 << fs));
6202 }
6203
6204 static int
6205 validate_geometry_imsm_orom(struct intel_super *super, int level, int layout,
6206                             int raiddisks, int *chunk, unsigned long long size, int verbose)
6207 {
6208         /* check/set platform and metadata limits/defaults */
6209         if (super->orom && raiddisks > super->orom->dpa) {
6210                 pr_vrb("platform supports a maximum of %d disks per array\n",
6211                        super->orom->dpa);
6212                 return 0;
6213         }
6214
6215         /* capabilities of OROM tested - copied from validate_geometry_imsm_volume */
6216         if (!is_raid_level_supported(super->orom, level, raiddisks)) {
6217                 pr_vrb("platform does not support raid%d with %d disk%s\n",
6218                         level, raiddisks, raiddisks > 1 ? "s" : "");
6219                 return 0;
6220         }
6221
6222         if (*chunk == 0 || *chunk == UnSet)
6223                 *chunk = imsm_default_chunk(super->orom);
6224
6225         if (super->orom && !imsm_orom_has_chunk(super->orom, *chunk)) {
6226                 pr_vrb("platform does not support a chunk size of: %d\n", *chunk);
6227                 return 0;
6228         }
6229
6230         if (layout != imsm_level_to_layout(level)) {
6231                 if (level == 5)
6232                         pr_vrb("imsm raid 5 only supports the left-asymmetric layout\n");
6233                 else if (level == 10)
6234                         pr_vrb("imsm raid 10 only supports the n2 layout\n");
6235                 else
6236                         pr_vrb("imsm unknown layout %#x for this raid level %d\n",
6237                                 layout, level);
6238                 return 0;
6239         }
6240
6241         if (super->orom && (super->orom->attr & IMSM_OROM_ATTR_2TB) == 0 &&
6242                         (calc_array_size(level, raiddisks, layout, *chunk, size) >> 32) > 0) {
6243                 pr_vrb("platform does not support a volume size over 2TB\n");
6244                 return 0;
6245         }
6246
6247         return 1;
6248 }
6249
6250 /* validate_geometry_imsm_volume - lifted from validate_geometry_ddf_bvd
6251  * FIX ME add ahci details
6252  */
6253 static int validate_geometry_imsm_volume(struct supertype *st, int level,
6254                                          int layout, int raiddisks, int *chunk,
6255                                          unsigned long long size,
6256                                          unsigned long long data_offset,
6257                                          char *dev,
6258                                          unsigned long long *freesize,
6259                                          int verbose)
6260 {
6261         struct stat stb;
6262         struct intel_super *super = st->sb;
6263         struct imsm_super *mpb;
6264         struct dl *dl;
6265         unsigned long long pos = 0;
6266         unsigned long long maxsize;
6267         struct extent *e;
6268         int i;
6269
6270         /* We must have the container info already read in. */
6271         if (!super)
6272                 return 0;
6273
6274         mpb = super->anchor;
6275
6276         if (!validate_geometry_imsm_orom(super, level, layout, raiddisks, chunk, size, verbose)) {
6277                 pr_err("RAID gemetry validation failed. Cannot proceed with the action(s).\n");
6278                 return 0;
6279         }
6280         if (!dev) {
6281                 /* General test:  make sure there is space for
6282                  * 'raiddisks' device extents of size 'size' at a given
6283                  * offset
6284                  */
6285                 unsigned long long minsize = size;
6286                 unsigned long long start_offset = MaxSector;
6287                 int dcnt = 0;
6288                 if (minsize == 0)
6289                         minsize = MPB_SECTOR_CNT + IMSM_RESERVED_SECTORS;
6290                 for (dl = super->disks; dl ; dl = dl->next) {
6291                         int found = 0;
6292
6293                         pos = 0;
6294                         i = 0;
6295                         e = get_extents(super, dl);
6296                         if (!e) continue;
6297                         do {
6298                                 unsigned long long esize;
6299                                 esize = e[i].start - pos;
6300                                 if (esize >= minsize)
6301                                         found = 1;
6302                                 if (found && start_offset == MaxSector) {
6303                                         start_offset = pos;
6304                                         break;
6305                                 } else if (found && pos != start_offset) {
6306                                         found = 0;
6307                                         break;
6308                                 }
6309                                 pos = e[i].start + e[i].size;
6310                                 i++;
6311                         } while (e[i-1].size);
6312                         if (found)
6313                                 dcnt++;
6314                         free(e);
6315                 }
6316                 if (dcnt < raiddisks) {
6317                         if (verbose)
6318                                 pr_err("imsm: Not enough devices with space for this array (%d < %d)\n",
6319                                         dcnt, raiddisks);
6320                         return 0;
6321                 }
6322                 return 1;
6323         }
6324
6325         /* This device must be a member of the set */
6326         if (stat(dev, &stb) < 0)
6327                 return 0;
6328         if ((S_IFMT & stb.st_mode) != S_IFBLK)
6329                 return 0;
6330         for (dl = super->disks ; dl ; dl = dl->next) {
6331                 if (dl->major == (int)major(stb.st_rdev) &&
6332                     dl->minor == (int)minor(stb.st_rdev))
6333                         break;
6334         }
6335         if (!dl) {
6336                 if (verbose)
6337                         pr_err("%s is not in the same imsm set\n", dev);
6338                 return 0;
6339         } else if (super->orom && dl->index < 0 && mpb->num_raid_devs) {
6340                 /* If a volume is present then the current creation attempt
6341                  * cannot incorporate new spares because the orom may not
6342                  * understand this configuration (all member disks must be
6343                  * members of each array in the container).
6344                  */
6345                 pr_err("%s is a spare and a volume is already defined for this container\n", dev);
6346                 pr_err("The option-rom requires all member disks to be a member of all volumes\n");
6347                 return 0;
6348         } else if (super->orom && mpb->num_raid_devs > 0 &&
6349                    mpb->num_disks != raiddisks) {
6350                 pr_err("The option-rom requires all member disks to be a member of all volumes\n");
6351                 return 0;
6352         }
6353
6354         /* retrieve the largest free space block */
6355         e = get_extents(super, dl);
6356         maxsize = 0;
6357         i = 0;
6358         if (e) {
6359                 do {
6360                         unsigned long long esize;
6361
6362                         esize = e[i].start - pos;
6363                         if (esize >= maxsize)
6364                                 maxsize = esize;
6365                         pos = e[i].start + e[i].size;
6366                         i++;
6367                 } while (e[i-1].size);
6368                 dl->e = e;
6369                 dl->extent_cnt = i;
6370         } else {
6371                 if (verbose)
6372                         pr_err("unable to determine free space for: %s\n",
6373                                 dev);
6374                 return 0;
6375         }
6376         if (maxsize < size) {
6377                 if (verbose)
6378                         pr_err("%s not enough space (%llu < %llu)\n",
6379                                 dev, maxsize, size);
6380                 return 0;
6381         }
6382
6383         /* count total number of extents for merge */
6384         i = 0;
6385         for (dl = super->disks; dl; dl = dl->next)
6386                 if (dl->e)
6387                         i += dl->extent_cnt;
6388
6389         maxsize = merge_extents(super, i);
6390
6391         if (!check_env("IMSM_NO_PLATFORM") &&
6392             mpb->num_raid_devs > 0 && size && size != maxsize) {
6393                 pr_err("attempting to create a second volume with size less then remaining space. Aborting...\n");
6394                 return 0;
6395         }
6396
6397         if (maxsize < size || maxsize == 0) {
6398                 if (verbose) {
6399                         if (maxsize == 0)
6400                                 pr_err("no free space left on device. Aborting...\n");
6401                         else
6402                                 pr_err("not enough space to create volume of given size (%llu < %llu). Aborting...\n",
6403                                                 maxsize, size);
6404                 }
6405                 return 0;
6406         }
6407
6408         *freesize = maxsize;
6409
6410         if (super->orom) {
6411                 int count = count_volumes(super->hba,
6412                                       super->orom->dpa, verbose);
6413                 if (super->orom->vphba <= count) {
6414                         pr_vrb("platform does not support more than %d raid volumes.\n",
6415                                super->orom->vphba);
6416                         return 0;
6417                 }
6418         }
6419         return 1;
6420 }
6421
6422 static int imsm_get_free_size(struct supertype *st, int raiddisks,
6423                          unsigned long long size, int chunk,
6424                          unsigned long long *freesize)
6425 {
6426         struct intel_super *super = st->sb;
6427         struct imsm_super *mpb = super->anchor;
6428         struct dl *dl;
6429         int i;
6430         int extent_cnt;
6431         struct extent *e;
6432         unsigned long long maxsize;
6433         unsigned long long minsize;
6434         int cnt;
6435         int used;
6436
6437         /* find the largest common start free region of the possible disks */
6438         used = 0;
6439         extent_cnt = 0;
6440         cnt = 0;
6441         for (dl = super->disks; dl; dl = dl->next) {
6442                 dl->raiddisk = -1;
6443
6444                 if (dl->index >= 0)
6445                         used++;
6446
6447                 /* don't activate new spares if we are orom constrained
6448                  * and there is already a volume active in the container
6449                  */
6450                 if (super->orom && dl->index < 0 && mpb->num_raid_devs)
6451                         continue;
6452
6453                 e = get_extents(super, dl);
6454                 if (!e)
6455                         continue;
6456                 for (i = 1; e[i-1].size; i++)
6457                         ;
6458                 dl->e = e;
6459                 dl->extent_cnt = i;
6460                 extent_cnt += i;
6461                 cnt++;
6462         }
6463
6464         maxsize = merge_extents(super, extent_cnt);
6465         minsize = size;
6466         if (size == 0)
6467                 /* chunk is in K */
6468                 minsize = chunk * 2;
6469
6470         if (cnt < raiddisks ||
6471             (super->orom && used && used != raiddisks) ||
6472             maxsize < minsize ||
6473             maxsize == 0) {
6474                 pr_err("not enough devices with space to create array.\n");
6475                 return 0; /* No enough free spaces large enough */
6476         }
6477
6478         if (size == 0) {
6479                 size = maxsize;
6480                 if (chunk) {
6481                         size /= 2 * chunk;
6482                         size *= 2 * chunk;
6483                 }
6484                 maxsize = size;
6485         }
6486         if (!check_env("IMSM_NO_PLATFORM") &&
6487             mpb->num_raid_devs > 0 && size && size != maxsize) {
6488                 pr_err("attempting to create a second volume with size less then remaining space. Aborting...\n");
6489                 return 0;
6490         }
6491         cnt = 0;
6492         for (dl = super->disks; dl; dl = dl->next)
6493                 if (dl->e)
6494                         dl->raiddisk = cnt++;
6495
6496         *freesize = size;
6497
6498         dprintf("imsm: imsm_get_free_size() returns : %llu\n", size);
6499
6500         return 1;
6501 }
6502
6503 static int reserve_space(struct supertype *st, int raiddisks,
6504                          unsigned long long size, int chunk,
6505                          unsigned long long *freesize)
6506 {
6507         struct intel_super *super = st->sb;
6508         struct dl *dl;
6509         int cnt;
6510         int rv = 0;
6511
6512         rv = imsm_get_free_size(st, raiddisks, size, chunk, freesize);
6513         if (rv) {
6514                 cnt = 0;
6515                 for (dl = super->disks; dl; dl = dl->next)
6516                         if (dl->e)
6517                                 dl->raiddisk = cnt++;
6518                 rv = 1;
6519         }
6520
6521         return rv;
6522 }
6523
6524 static int validate_geometry_imsm(struct supertype *st, int level, int layout,
6525                                   int raiddisks, int *chunk, unsigned long long size,
6526                                   unsigned long long data_offset,
6527                                   char *dev, unsigned long long *freesize,
6528                                   int verbose)
6529 {
6530         int fd, cfd;
6531         struct mdinfo *sra;
6532         int is_member = 0;
6533
6534         /* load capability
6535          * if given unused devices create a container
6536          * if given given devices in a container create a member volume
6537          */
6538         if (level == LEVEL_CONTAINER) {
6539                 /* Must be a fresh device to add to a container */
6540                 return validate_geometry_imsm_container(st, level, layout,
6541                                                         raiddisks,
6542                                                         *chunk,
6543                                                         size, data_offset,
6544                                                         dev, freesize,
6545                                                         verbose);
6546         }
6547
6548         if (!dev) {
6549                 if (st->sb) {
6550                         struct intel_super *super = st->sb;
6551                         if (!validate_geometry_imsm_orom(st->sb, level, layout,
6552                                                          raiddisks, chunk, size,
6553                                                          verbose))
6554                                 return 0;
6555                         /* we are being asked to automatically layout a
6556                          * new volume based on the current contents of
6557                          * the container.  If the the parameters can be
6558                          * satisfied reserve_space will record the disks,
6559                          * start offset, and size of the volume to be
6560                          * created.  add_to_super and getinfo_super
6561                          * detect when autolayout is in progress.
6562                          */
6563                         /* assuming that freesize is always given when array is
6564                            created */
6565                         if (super->orom && freesize) {
6566                                 int count;
6567                                 count = count_volumes(super->hba,
6568                                                       super->orom->dpa, verbose);
6569                                 if (super->orom->vphba <= count) {
6570                                         pr_vrb("platform does not support more than %d raid volumes.\n",
6571                                                super->orom->vphba);
6572                                         return 0;
6573                                 }
6574                         }
6575                         if (freesize)
6576                                 return reserve_space(st, raiddisks, size,
6577                                                      *chunk, freesize);
6578                 }
6579                 return 1;
6580         }
6581         if (st->sb) {
6582                 /* creating in a given container */
6583                 return validate_geometry_imsm_volume(st, level, layout,
6584                                                      raiddisks, chunk, size,
6585                                                      data_offset,
6586                                                      dev, freesize, verbose);
6587         }
6588
6589         /* This device needs to be a device in an 'imsm' container */
6590         fd = open(dev, O_RDONLY|O_EXCL, 0);
6591         if (fd >= 0) {
6592                 if (verbose)
6593                         pr_err("Cannot create this array on device %s\n",
6594                                dev);
6595                 close(fd);
6596                 return 0;
6597         }
6598         if (errno != EBUSY || (fd = open(dev, O_RDONLY, 0)) < 0) {
6599                 if (verbose)
6600                         pr_err("Cannot open %s: %s\n",
6601                                 dev, strerror(errno));
6602                 return 0;
6603         }
6604         /* Well, it is in use by someone, maybe an 'imsm' container. */
6605         cfd = open_container(fd);
6606         close(fd);
6607         if (cfd < 0) {
6608                 if (verbose)
6609                         pr_err("Cannot use %s: It is busy\n",
6610                                 dev);
6611                 return 0;
6612         }
6613         sra = sysfs_read(cfd, NULL, GET_VERSION);
6614         if (sra && sra->array.major_version == -1 &&
6615             strcmp(sra->text_version, "imsm") == 0)
6616                 is_member = 1;
6617         sysfs_free(sra);
6618         if (is_member) {
6619                 /* This is a member of a imsm container.  Load the container
6620                  * and try to create a volume
6621                  */
6622                 struct intel_super *super;
6623
6624                 if (load_super_imsm_all(st, cfd, (void **) &super, NULL, NULL, 1) == 0) {
6625                         st->sb = super;
6626                         strcpy(st->container_devnm, fd2devnm(cfd));
6627                         close(cfd);
6628                         return validate_geometry_imsm_volume(st, level, layout,
6629                                                              raiddisks, chunk,
6630                                                              size, data_offset, dev,
6631                                                              freesize, 1)
6632                                 ? 1 : -1;
6633                 }
6634         }
6635
6636         if (verbose)
6637                 pr_err("failed container membership check\n");
6638
6639         close(cfd);
6640         return 0;
6641 }
6642
6643 static void default_geometry_imsm(struct supertype *st, int *level, int *layout, int *chunk)
6644 {
6645         struct intel_super *super = st->sb;
6646
6647         if (level && *level == UnSet)
6648                 *level = LEVEL_CONTAINER;
6649
6650         if (level && layout && *layout == UnSet)
6651                 *layout = imsm_level_to_layout(*level);
6652
6653         if (chunk && (*chunk == UnSet || *chunk == 0))
6654                 *chunk = imsm_default_chunk(super->orom);
6655 }
6656
6657 static void handle_missing(struct intel_super *super, struct imsm_dev *dev);
6658
6659 static int kill_subarray_imsm(struct supertype *st)
6660 {
6661         /* remove the subarray currently referenced by ->current_vol */
6662         __u8 i;
6663         struct intel_dev **dp;
6664         struct intel_super *super = st->sb;
6665         __u8 current_vol = super->current_vol;
6666         struct imsm_super *mpb = super->anchor;
6667
6668         if (super->current_vol < 0)
6669                 return 2;
6670         super->current_vol = -1; /* invalidate subarray cursor */
6671
6672         /* block deletions that would change the uuid of active subarrays
6673          *
6674          * FIXME when immutable ids are available, but note that we'll
6675          * also need to fixup the invalidated/active subarray indexes in
6676          * mdstat
6677          */
6678         for (i = 0; i < mpb->num_raid_devs; i++) {
6679                 char subarray[4];
6680
6681                 if (i < current_vol)
6682                         continue;
6683                 sprintf(subarray, "%u", i);
6684                 if (is_subarray_active(subarray, st->devnm)) {
6685                         pr_err("deleting subarray-%d would change the UUID of active subarray-%d, aborting\n",
6686                                current_vol, i);
6687
6688                         return 2;
6689                 }
6690         }
6691
6692         if (st->update_tail) {
6693                 struct imsm_update_kill_array *u = xmalloc(sizeof(*u));
6694
6695                 u->type = update_kill_array;
6696                 u->dev_idx = current_vol;
6697                 append_metadata_update(st, u, sizeof(*u));
6698
6699                 return 0;
6700         }
6701
6702         for (dp = &super->devlist; *dp;)
6703                 if ((*dp)->index == current_vol) {
6704                         *dp = (*dp)->next;
6705                 } else {
6706                         handle_missing(super, (*dp)->dev);
6707                         if ((*dp)->index > current_vol)
6708                                 (*dp)->index--;
6709                         dp = &(*dp)->next;
6710                 }
6711
6712         /* no more raid devices, all active components are now spares,
6713          * but of course failed are still failed
6714          */
6715         if (--mpb->num_raid_devs == 0) {
6716                 struct dl *d;
6717
6718                 for (d = super->disks; d; d = d->next)
6719                         if (d->index > -2)
6720                                 mark_spare(d);
6721         }
6722
6723         super->updates_pending++;
6724
6725         return 0;
6726 }
6727
6728 static int update_subarray_imsm(struct supertype *st, char *subarray,
6729                                 char *update, struct mddev_ident *ident)
6730 {
6731         /* update the subarray currently referenced by ->current_vol */
6732         struct intel_super *super = st->sb;
6733         struct imsm_super *mpb = super->anchor;
6734
6735         if (strcmp(update, "name") == 0) {
6736                 char *name = ident->name;
6737                 char *ep;
6738                 int vol;
6739
6740                 if (is_subarray_active(subarray, st->devnm)) {
6741                         pr_err("Unable to update name of active subarray\n");
6742                         return 2;
6743                 }
6744
6745                 if (!check_name(super, name, 0))
6746                         return 2;
6747
6748                 vol = strtoul(subarray, &ep, 10);
6749                 if (*ep != '\0' || vol >= super->anchor->num_raid_devs)
6750                         return 2;
6751
6752                 if (st->update_tail) {
6753                         struct imsm_update_rename_array *u = xmalloc(sizeof(*u));
6754
6755                         u->type = update_rename_array;
6756                         u->dev_idx = vol;
6757                         snprintf((char *) u->name, MAX_RAID_SERIAL_LEN, "%s", name);
6758                         append_metadata_update(st, u, sizeof(*u));
6759                 } else {
6760                         struct imsm_dev *dev;
6761                         int i;
6762
6763                         dev = get_imsm_dev(super, vol);
6764                         snprintf((char *) dev->volume, MAX_RAID_SERIAL_LEN, "%s", name);
6765                         for (i = 0; i < mpb->num_raid_devs; i++) {
6766                                 dev = get_imsm_dev(super, i);
6767                                 handle_missing(super, dev);
6768                         }
6769                         super->updates_pending++;
6770                 }
6771         } else
6772                 return 2;
6773
6774         return 0;
6775 }
6776 #endif /* MDASSEMBLE */
6777
6778 static int is_gen_migration(struct imsm_dev *dev)
6779 {
6780         if (dev == NULL)
6781                 return 0;
6782
6783         if (!dev->vol.migr_state)
6784                 return 0;
6785
6786         if (migr_type(dev) == MIGR_GEN_MIGR)
6787                 return 1;
6788
6789         return 0;
6790 }
6791
6792 static int is_rebuilding(struct imsm_dev *dev)
6793 {
6794         struct imsm_map *migr_map;
6795
6796         if (!dev->vol.migr_state)
6797                 return 0;
6798
6799         if (migr_type(dev) != MIGR_REBUILD)
6800                 return 0;
6801
6802         migr_map = get_imsm_map(dev, MAP_1);
6803
6804         if (migr_map->map_state == IMSM_T_STATE_DEGRADED)
6805                 return 1;
6806         else
6807                 return 0;
6808 }
6809
6810 #ifndef MDASSEMBLE
6811 static int is_initializing(struct imsm_dev *dev)
6812 {
6813         struct imsm_map *migr_map;
6814
6815         if (!dev->vol.migr_state)
6816                 return 0;
6817
6818         if (migr_type(dev) != MIGR_INIT)
6819                 return 0;
6820
6821         migr_map = get_imsm_map(dev, MAP_1);
6822
6823         if (migr_map->map_state == IMSM_T_STATE_UNINITIALIZED)
6824                 return 1;
6825
6826         return 0;
6827 }
6828 #endif
6829
6830 static void update_recovery_start(struct intel_super *super,
6831                                         struct imsm_dev *dev,
6832                                         struct mdinfo *array)
6833 {
6834         struct mdinfo *rebuild = NULL;
6835         struct mdinfo *d;
6836         __u32 units;
6837
6838         if (!is_rebuilding(dev))
6839                 return;
6840
6841         /* Find the rebuild target, but punt on the dual rebuild case */
6842         for (d = array->devs; d; d = d->next)
6843                 if (d->recovery_start == 0) {
6844                         if (rebuild)
6845                                 return;
6846                         rebuild = d;
6847                 }
6848
6849         if (!rebuild) {
6850                 /* (?) none of the disks are marked with
6851                  * IMSM_ORD_REBUILD, so assume they are missing and the
6852                  * disk_ord_tbl was not correctly updated
6853                  */
6854                 dprintf("failed to locate out-of-sync disk\n");
6855                 return;
6856         }
6857
6858         units = __le32_to_cpu(dev->vol.curr_migr_unit);
6859         rebuild->recovery_start = units * blocks_per_migr_unit(super, dev);
6860 }
6861
6862 #ifndef MDASSEMBLE
6863 static int recover_backup_imsm(struct supertype *st, struct mdinfo *info);
6864 #endif
6865
6866 static struct mdinfo *container_content_imsm(struct supertype *st, char *subarray)
6867 {
6868         /* Given a container loaded by load_super_imsm_all,
6869          * extract information about all the arrays into
6870          * an mdinfo tree.
6871          * If 'subarray' is given, just extract info about that array.
6872          *
6873          * For each imsm_dev create an mdinfo, fill it in,
6874          *  then look for matching devices in super->disks
6875          *  and create appropriate device mdinfo.
6876          */
6877         struct intel_super *super = st->sb;
6878         struct imsm_super *mpb = super->anchor;
6879         struct mdinfo *rest = NULL;
6880         unsigned int i;
6881         int sb_errors = 0;
6882         struct dl *d;
6883         int spare_disks = 0;
6884
6885         /* do not assemble arrays when not all attributes are supported */
6886         if (imsm_check_attributes(mpb->attributes) == 0) {
6887                 sb_errors = 1;
6888                 pr_err("Unsupported attributes in IMSM metadata.Arrays activation is blocked.\n");
6889         }
6890
6891         /* check for bad blocks */
6892         if (imsm_bbm_log_size(super->anchor)) {
6893                 pr_err("BBM log found in IMSM metadata.Arrays activation is blocked.\n");
6894                 sb_errors = 1;
6895         }
6896
6897         /* count spare devices, not used in maps
6898          */
6899         for (d = super->disks; d; d = d->next)
6900                 if (d->index == -1)
6901                         spare_disks++;
6902
6903         for (i = 0; i < mpb->num_raid_devs; i++) {
6904                 struct imsm_dev *dev;
6905                 struct imsm_map *map;
6906                 struct imsm_map *map2;
6907                 struct mdinfo *this;
6908                 int slot;
6909 #ifndef MDASSEMBLE
6910                 int chunk;
6911 #endif
6912                 char *ep;
6913
6914                 if (subarray &&
6915                     (i != strtoul(subarray, &ep, 10) || *ep != '\0'))
6916                         continue;
6917
6918                 dev = get_imsm_dev(super, i);
6919                 map = get_imsm_map(dev, MAP_0);
6920                 map2 = get_imsm_map(dev, MAP_1);
6921
6922                 /* do not publish arrays that are in the middle of an
6923                  * unsupported migration
6924                  */
6925                 if (dev->vol.migr_state &&
6926                     (migr_type(dev) == MIGR_STATE_CHANGE)) {
6927                         pr_err("cannot assemble volume '%.16s': unsupported migration in progress\n",
6928                                 dev->volume);
6929                         continue;
6930                 }
6931                 /* do not publish arrays that are not support by controller's
6932                  * OROM/EFI
6933                  */
6934
6935                 this = xmalloc(sizeof(*this));
6936
6937                 super->current_vol = i;
6938                 getinfo_super_imsm_volume(st, this, NULL);
6939                 this->next = rest;
6940 #ifndef MDASSEMBLE
6941                 chunk = __le16_to_cpu(map->blocks_per_strip) >> 1;
6942                 /* mdadm does not support all metadata features- set the bit in all arrays state */
6943                 if (!validate_geometry_imsm_orom(super,
6944                                                  get_imsm_raid_level(map), /* RAID level */
6945                                                  imsm_level_to_layout(get_imsm_raid_level(map)),
6946                                                  map->num_members, /* raid disks */
6947                                                  &chunk, join_u32(dev->size_low, dev->size_high),
6948                                                  1 /* verbose */)) {
6949                         pr_err("IMSM RAID geometry validation failed.  Array %s activation is blocked.\n",
6950                                 dev->volume);
6951                         this->array.state |=
6952                           (1<<MD_SB_BLOCK_CONTAINER_RESHAPE) |
6953                           (1<<MD_SB_BLOCK_VOLUME);
6954                 }
6955 #endif
6956
6957                 /* if array has bad blocks, set suitable bit in all arrays state */
6958                 if (sb_errors)
6959                         this->array.state |=
6960                           (1<<MD_SB_BLOCK_CONTAINER_RESHAPE) |
6961                           (1<<MD_SB_BLOCK_VOLUME);
6962
6963                 for (slot = 0 ; slot <  map->num_members; slot++) {
6964                         unsigned long long recovery_start;
6965                         struct mdinfo *info_d;
6966                         struct dl *d;
6967                         int idx;
6968                         int skip;
6969                         __u32 ord;
6970
6971                         skip = 0;
6972                         idx = get_imsm_disk_idx(dev, slot, MAP_0);
6973                         ord = get_imsm_ord_tbl_ent(dev, slot, MAP_X);
6974                         for (d = super->disks; d ; d = d->next)
6975                                 if (d->index == idx)
6976                                         break;
6977
6978                         recovery_start = MaxSector;
6979                         if (d == NULL)
6980                                 skip = 1;
6981                         if (d && is_failed(&d->disk))
6982                                 skip = 1;
6983                         if (ord & IMSM_ORD_REBUILD)
6984                                 recovery_start = 0;
6985
6986                         /*
6987                          * if we skip some disks the array will be assmebled degraded;
6988                          * reset resync start to avoid a dirty-degraded
6989                          * situation when performing the intial sync
6990                          *
6991                          * FIXME handle dirty degraded
6992                          */
6993                         if ((skip || recovery_start == 0) && !dev->vol.dirty)
6994                                 this->resync_start = MaxSector;
6995                         if (skip)
6996                                 continue;
6997
6998                         info_d = xcalloc(1, sizeof(*info_d));
6999                         info_d->next = this->devs;
7000                         this->devs = info_d;
7001
7002                         info_d->disk.number = d->index;
7003                         info_d->disk.major = d->major;
7004                         info_d->disk.minor = d->minor;
7005                         info_d->disk.raid_disk = slot;
7006                         info_d->recovery_start = recovery_start;
7007                         if (map2) {
7008                                 if (slot < map2->num_members)
7009                                         info_d->disk.state = (1 << MD_DISK_ACTIVE);
7010                                 else
7011                                         this->array.spare_disks++;
7012                         } else {
7013                                 if (slot < map->num_members)
7014                                         info_d->disk.state = (1 << MD_DISK_ACTIVE);
7015                                 else
7016                                         this->array.spare_disks++;
7017                         }
7018                         if (info_d->recovery_start == MaxSector)
7019                                 this->array.working_disks++;
7020
7021                         info_d->events = __le32_to_cpu(mpb->generation_num);
7022                         info_d->data_offset = pba_of_lba0(map);
7023                         info_d->component_size = blocks_per_member(map);
7024                 }
7025                 /* now that the disk list is up-to-date fixup recovery_start */
7026                 update_recovery_start(super, dev, this);
7027                 this->array.spare_disks += spare_disks;
7028
7029 #ifndef MDASSEMBLE
7030                 /* check for reshape */
7031                 if (this->reshape_active == 1)
7032                         recover_backup_imsm(st, this);
7033 #endif
7034                 rest = this;
7035         }
7036
7037         return rest;
7038 }
7039
7040 static __u8 imsm_check_degraded(struct intel_super *super, struct imsm_dev *dev,
7041                                 int failed, int look_in_map)
7042 {
7043         struct imsm_map *map;
7044
7045         map = get_imsm_map(dev, look_in_map);
7046
7047         if (!failed)
7048                 return map->map_state == IMSM_T_STATE_UNINITIALIZED ?
7049                         IMSM_T_STATE_UNINITIALIZED : IMSM_T_STATE_NORMAL;
7050
7051         switch (get_imsm_raid_level(map)) {
7052         case 0:
7053                 return IMSM_T_STATE_FAILED;
7054                 break;
7055         case 1:
7056                 if (failed < map->num_members)
7057                         return IMSM_T_STATE_DEGRADED;
7058                 else
7059                         return IMSM_T_STATE_FAILED;
7060                 break;
7061         case 10:
7062         {
7063                 /**
7064                  * check to see if any mirrors have failed, otherwise we
7065                  * are degraded.  Even numbered slots are mirrored on
7066                  * slot+1
7067                  */
7068                 int i;
7069                 /* gcc -Os complains that this is unused */
7070                 int insync = insync;
7071
7072                 for (i = 0; i < map->num_members; i++) {
7073                         __u32 ord = get_imsm_ord_tbl_ent(dev, i, MAP_X);
7074                         int idx = ord_to_idx(ord);
7075                         struct imsm_disk *disk;
7076
7077                         /* reset the potential in-sync count on even-numbered
7078                          * slots.  num_copies is always 2 for imsm raid10
7079                          */
7080                         if ((i & 1) == 0)
7081                                 insync = 2;
7082
7083                         disk = get_imsm_disk(super, idx);
7084                         if (!disk || is_failed(disk) || ord & IMSM_ORD_REBUILD)
7085                                 insync--;
7086
7087                         /* no in-sync disks left in this mirror the
7088                          * array has failed
7089                          */
7090                         if (insync == 0)
7091                                 return IMSM_T_STATE_FAILED;
7092                 }
7093
7094                 return IMSM_T_STATE_DEGRADED;
7095         }
7096         case 5:
7097                 if (failed < 2)
7098                         return IMSM_T_STATE_DEGRADED;
7099                 else
7100                         return IMSM_T_STATE_FAILED;
7101                 break;
7102         default:
7103                 break;
7104         }
7105
7106         return map->map_state;
7107 }
7108
7109 static int imsm_count_failed(struct intel_super *super, struct imsm_dev *dev,
7110                              int look_in_map)
7111 {
7112         int i;
7113         int failed = 0;
7114         struct imsm_disk *disk;
7115         struct imsm_map *map = get_imsm_map(dev, MAP_0);
7116         struct imsm_map *prev = get_imsm_map(dev, MAP_1);
7117         struct imsm_map *map_for_loop;
7118         __u32 ord;
7119         int idx;
7120         int idx_1;
7121
7122         /* at the beginning of migration we set IMSM_ORD_REBUILD on
7123          * disks that are being rebuilt.  New failures are recorded to
7124          * map[0].  So we look through all the disks we started with and
7125          * see if any failures are still present, or if any new ones
7126          * have arrived
7127          */
7128         map_for_loop = map;
7129         if (prev && (map->num_members < prev->num_members))
7130                 map_for_loop = prev;
7131
7132         for (i = 0; i < map_for_loop->num_members; i++) {
7133                 idx_1 = -255;
7134                 /* when MAP_X is passed both maps failures are counted
7135                  */
7136                 if (prev &&
7137                     (look_in_map == MAP_1 || look_in_map == MAP_X) &&
7138                     i < prev->num_members) {
7139                         ord = __le32_to_cpu(prev->disk_ord_tbl[i]);
7140                         idx_1 = ord_to_idx(ord);
7141
7142                         disk = get_imsm_disk(super, idx_1);
7143                         if (!disk || is_failed(disk) || ord & IMSM_ORD_REBUILD)
7144                                 failed++;
7145                 }
7146                 if ((look_in_map == MAP_0 || look_in_map == MAP_X) &&
7147                     i < map->num_members) {
7148                         ord = __le32_to_cpu(map->disk_ord_tbl[i]);
7149                         idx = ord_to_idx(ord);
7150
7151                         if (idx != idx_1) {
7152                                 disk = get_imsm_disk(super, idx);
7153                                 if (!disk || is_failed(disk) ||
7154                                     ord & IMSM_ORD_REBUILD)
7155                                         failed++;
7156                         }
7157                 }
7158         }
7159
7160         return failed;
7161 }
7162
7163 #ifndef MDASSEMBLE
7164 static int imsm_open_new(struct supertype *c, struct active_array *a,
7165                          char *inst)
7166 {
7167         struct intel_super *super = c->sb;
7168         struct imsm_super *mpb = super->anchor;
7169
7170         if (atoi(inst) >= mpb->num_raid_devs) {
7171                 pr_err("subarry index %d, out of range\n", atoi(inst));
7172                 return -ENODEV;
7173         }
7174
7175         dprintf("imsm: open_new %s\n", inst);
7176         a->info.container_member = atoi(inst);
7177         return 0;
7178 }
7179
7180 static int is_resyncing(struct imsm_dev *dev)
7181 {
7182         struct imsm_map *migr_map;
7183
7184         if (!dev->vol.migr_state)
7185                 return 0;
7186
7187         if (migr_type(dev) == MIGR_INIT ||
7188             migr_type(dev) == MIGR_REPAIR)
7189                 return 1;
7190
7191         if (migr_type(dev) == MIGR_GEN_MIGR)
7192                 return 0;
7193
7194         migr_map = get_imsm_map(dev, MAP_1);
7195
7196         if (migr_map->map_state == IMSM_T_STATE_NORMAL &&
7197             dev->vol.migr_type != MIGR_GEN_MIGR)
7198                 return 1;
7199         else
7200                 return 0;
7201 }
7202
7203 /* return true if we recorded new information */
7204 static int mark_failure(struct imsm_dev *dev, struct imsm_disk *disk, int idx)
7205 {
7206         __u32 ord;
7207         int slot;
7208         struct imsm_map *map;
7209         char buf[MAX_RAID_SERIAL_LEN+3];
7210         unsigned int len, shift = 0;
7211
7212         /* new failures are always set in map[0] */
7213         map = get_imsm_map(dev, MAP_0);
7214
7215         slot = get_imsm_disk_slot(map, idx);
7216         if (slot < 0)
7217                 return 0;
7218
7219         ord = __le32_to_cpu(map->disk_ord_tbl[slot]);
7220         if (is_failed(disk) && (ord & IMSM_ORD_REBUILD))
7221                 return 0;
7222
7223         memcpy(buf, disk->serial, MAX_RAID_SERIAL_LEN);
7224         buf[MAX_RAID_SERIAL_LEN] = '\000';
7225         strcat(buf, ":0");
7226         if ((len = strlen(buf)) >= MAX_RAID_SERIAL_LEN)
7227                 shift = len - MAX_RAID_SERIAL_LEN + 1;
7228         strncpy((char *)disk->serial, &buf[shift], MAX_RAID_SERIAL_LEN);
7229
7230         disk->status |= FAILED_DISK;
7231         set_imsm_ord_tbl_ent(map, slot, idx | IMSM_ORD_REBUILD);
7232         /* mark failures in second map if second map exists and this disk
7233          * in this slot.
7234          * This is valid for migration, initialization and rebuild
7235          */
7236         if (dev->vol.migr_state) {
7237                 struct imsm_map *map2 = get_imsm_map(dev, MAP_1);
7238                 int slot2 = get_imsm_disk_slot(map2, idx);
7239
7240                 if (slot2 < map2->num_members && slot2 >= 0)
7241                         set_imsm_ord_tbl_ent(map2, slot2,
7242                                              idx | IMSM_ORD_REBUILD);
7243         }
7244         if (map->failed_disk_num == 0xff)
7245                 map->failed_disk_num = slot;
7246         return 1;
7247 }
7248
7249 static void mark_missing(struct imsm_dev *dev, struct imsm_disk *disk, int idx)
7250 {
7251         mark_failure(dev, disk, idx);
7252
7253         if (disk->scsi_id == __cpu_to_le32(~(__u32)0))
7254                 return;
7255
7256         disk->scsi_id = __cpu_to_le32(~(__u32)0);
7257         memmove(&disk->serial[0], &disk->serial[1], MAX_RAID_SERIAL_LEN - 1);
7258 }
7259
7260 static void handle_missing(struct intel_super *super, struct imsm_dev *dev)
7261 {
7262         struct dl *dl;
7263
7264         if (!super->missing)
7265                 return;
7266
7267         /* When orom adds replacement for missing disk it does
7268          * not remove entry of missing disk, but just updates map with
7269          * new added disk. So it is not enough just to test if there is
7270          * any missing disk, we have to look if there are any failed disks
7271          * in map to stop migration */
7272
7273         dprintf("imsm: mark missing\n");
7274         /* end process for initialization and rebuild only
7275          */
7276         if (is_gen_migration(dev) == 0) {
7277                 __u8 map_state;
7278                 int failed;
7279
7280                 failed = imsm_count_failed(super, dev, MAP_0);
7281                 map_state = imsm_check_degraded(super, dev, failed, MAP_0);
7282
7283                 if (failed)
7284                         end_migration(dev, super, map_state);
7285         }
7286         for (dl = super->missing; dl; dl = dl->next)
7287                 mark_missing(dev, &dl->disk, dl->index);
7288         super->updates_pending++;
7289 }
7290
7291 static unsigned long long imsm_set_array_size(struct imsm_dev *dev,
7292                                               long long new_size)
7293 {
7294         int used_disks = imsm_num_data_members(dev, MAP_0);
7295         unsigned long long array_blocks;
7296         struct imsm_map *map;
7297
7298         if (used_disks == 0) {
7299                 /* when problems occures
7300                  * return current array_blocks value
7301                  */
7302                 array_blocks = __le32_to_cpu(dev->size_high);
7303                 array_blocks = array_blocks << 32;
7304                 array_blocks += __le32_to_cpu(dev->size_low);
7305
7306                 return array_blocks;
7307         }
7308
7309         /* set array size in metadata
7310          */
7311         if (new_size <= 0) {
7312                 /* OLCE size change is caused by added disks
7313                  */
7314                 map = get_imsm_map(dev, MAP_0);
7315                 array_blocks = blocks_per_member(map) * used_disks;
7316         } else {
7317                 /* Online Volume Size Change
7318                  * Using  available free space
7319                  */
7320                 array_blocks = new_size;
7321         }
7322
7323         /* round array size down to closest MB
7324          */
7325         array_blocks = (array_blocks >> SECT_PER_MB_SHIFT) << SECT_PER_MB_SHIFT;
7326         dev->size_low = __cpu_to_le32((__u32)array_blocks);
7327         dev->size_high = __cpu_to_le32((__u32)(array_blocks >> 32));
7328
7329         return array_blocks;
7330 }
7331
7332 static void imsm_set_disk(struct active_array *a, int n, int state);
7333
7334 static void imsm_progress_container_reshape(struct intel_super *super)
7335 {
7336         /* if no device has a migr_state, but some device has a
7337          * different number of members than the previous device, start
7338          * changing the number of devices in this device to match
7339          * previous.
7340          */
7341         struct imsm_super *mpb = super->anchor;
7342         int prev_disks = -1;
7343         int i;
7344         int copy_map_size;
7345
7346         for (i = 0; i < mpb->num_raid_devs; i++) {
7347                 struct imsm_dev *dev = get_imsm_dev(super, i);
7348                 struct imsm_map *map = get_imsm_map(dev, MAP_0);
7349                 struct imsm_map *map2;
7350                 int prev_num_members;
7351
7352                 if (dev->vol.migr_state)
7353                         return;
7354
7355                 if (prev_disks == -1)
7356                         prev_disks = map->num_members;
7357                 if (prev_disks == map->num_members)
7358                         continue;
7359
7360                 /* OK, this array needs to enter reshape mode.
7361                  * i.e it needs a migr_state
7362                  */
7363
7364                 copy_map_size = sizeof_imsm_map(map);
7365                 prev_num_members = map->num_members;
7366                 map->num_members = prev_disks;
7367                 dev->vol.migr_state = 1;
7368                 dev->vol.curr_migr_unit = 0;
7369                 set_migr_type(dev, MIGR_GEN_MIGR);
7370                 for (i = prev_num_members;
7371                      i < map->num_members; i++)
7372                         set_imsm_ord_tbl_ent(map, i, i);
7373                 map2 = get_imsm_map(dev, MAP_1);
7374                 /* Copy the current map */
7375                 memcpy(map2, map, copy_map_size);
7376                 map2->num_members = prev_num_members;
7377
7378                 imsm_set_array_size(dev, -1);
7379                 super->clean_migration_record_by_mdmon = 1;
7380                 super->updates_pending++;
7381         }
7382 }
7383
7384 /* Handle dirty -> clean transititions, resync and reshape.  Degraded and rebuild
7385  * states are handled in imsm_set_disk() with one exception, when a
7386  * resync is stopped due to a new failure this routine will set the
7387  * 'degraded' state for the array.
7388  */
7389 static int imsm_set_array_state(struct active_array *a, int consistent)
7390 {
7391         int inst = a->info.container_member;
7392         struct intel_super *super = a->container->sb;
7393         struct imsm_dev *dev = get_imsm_dev(super, inst);
7394         struct imsm_map *map = get_imsm_map(dev, MAP_0);
7395         int failed = imsm_count_failed(super, dev, MAP_0);
7396         __u8 map_state = imsm_check_degraded(super, dev, failed, MAP_0);
7397         __u32 blocks_per_unit;
7398
7399         if (dev->vol.migr_state &&
7400             dev->vol.migr_type  == MIGR_GEN_MIGR) {
7401                 /* array state change is blocked due to reshape action
7402                  * We might need to
7403                  * - abort the reshape (if last_checkpoint is 0 and action!= reshape)
7404                  * - finish the reshape (if last_checkpoint is big and action != reshape)
7405                  * - update curr_migr_unit
7406                  */
7407                 if (a->curr_action == reshape) {
7408                         /* still reshaping, maybe update curr_migr_unit */
7409                         goto mark_checkpoint;
7410                 } else {
7411                         if (a->last_checkpoint == 0 && a->prev_action == reshape) {
7412                                 /* for some reason we aborted the reshape.
7413                                  *
7414                                  * disable automatic metadata rollback
7415                                  * user action is required to recover process
7416                                  */
7417                                 if (0) {
7418                                         struct imsm_map *map2 =
7419                                                 get_imsm_map(dev, MAP_1);
7420                                         dev->vol.migr_state = 0;
7421                                         set_migr_type(dev, 0);
7422                                         dev->vol.curr_migr_unit = 0;
7423                                         memcpy(map, map2,
7424                                                sizeof_imsm_map(map2));
7425                                         super->updates_pending++;
7426                                 }
7427                         }
7428                         if (a->last_checkpoint >= a->info.component_size) {
7429                                 unsigned long long array_blocks;
7430                                 int used_disks;
7431                                 struct mdinfo *mdi;
7432
7433                                 used_disks = imsm_num_data_members(dev, MAP_0);
7434                                 if (used_disks > 0) {
7435                                         array_blocks =
7436                                                 blocks_per_member(map) *
7437                                                 used_disks;
7438                                         /* round array size down to closest MB
7439                                          */
7440                                         array_blocks = (array_blocks
7441                                                         >> SECT_PER_MB_SHIFT)
7442                                                 << SECT_PER_MB_SHIFT;
7443                                         a->info.custom_array_size = array_blocks;
7444                                         /* encourage manager to update array
7445                                          * size
7446                                          */
7447
7448                                         a->check_reshape = 1;
7449                                 }
7450                                 /* finalize online capacity expansion/reshape */
7451                                 for (mdi = a->info.devs; mdi; mdi = mdi->next)
7452                                         imsm_set_disk(a,
7453                                                       mdi->disk.raid_disk,
7454                                                       mdi->curr_state);
7455
7456                                 imsm_progress_container_reshape(super);
7457                         }
7458                 }
7459         }
7460
7461         /* before we activate this array handle any missing disks */
7462         if (consistent == 2)
7463                 handle_missing(super, dev);
7464
7465         if (consistent == 2 &&
7466             (!is_resync_complete(&a->info) ||
7467              map_state != IMSM_T_STATE_NORMAL ||
7468              dev->vol.migr_state))
7469                 consistent = 0;
7470
7471         if (is_resync_complete(&a->info)) {
7472                 /* complete intialization / resync,
7473                  * recovery and interrupted recovery is completed in
7474                  * ->set_disk
7475                  */
7476                 if (is_resyncing(dev)) {
7477                         dprintf("imsm: mark resync done\n");
7478                         end_migration(dev, super, map_state);
7479                         super->updates_pending++;
7480                         a->last_checkpoint = 0;
7481                 }
7482         } else if ((!is_resyncing(dev) && !failed) &&
7483                    (imsm_reshape_blocks_arrays_changes(super) == 0)) {
7484                 /* mark the start of the init process if nothing is failed */
7485                 dprintf("imsm: mark resync start\n");
7486                 if (map->map_state == IMSM_T_STATE_UNINITIALIZED)
7487                         migrate(dev, super, IMSM_T_STATE_NORMAL, MIGR_INIT);
7488                 else
7489                         migrate(dev, super, IMSM_T_STATE_NORMAL, MIGR_REPAIR);
7490                 super->updates_pending++;
7491         }
7492
7493 mark_checkpoint:
7494         /* skip checkpointing for general migration,
7495          * it is controlled in mdadm
7496          */
7497         if (is_gen_migration(dev))
7498                 goto skip_mark_checkpoint;
7499
7500         /* check if we can update curr_migr_unit from resync_start, recovery_start */
7501         blocks_per_unit = blocks_per_migr_unit(super, dev);
7502         if (blocks_per_unit) {
7503                 __u32 units32;
7504                 __u64 units;
7505
7506                 units = a->last_checkpoint / blocks_per_unit;
7507                 units32 = units;
7508
7509                 /* check that we did not overflow 32-bits, and that
7510                  * curr_migr_unit needs updating
7511                  */
7512                 if (units32 == units &&
7513                     units32 != 0 &&
7514                     __le32_to_cpu(dev->vol.curr_migr_unit) != units32) {
7515                         dprintf("imsm: mark checkpoint (%u)\n", units32);
7516                         dev->vol.curr_migr_unit = __cpu_to_le32(units32);
7517                         super->updates_pending++;
7518                 }
7519         }
7520
7521 skip_mark_checkpoint:
7522         /* mark dirty / clean */
7523         if (dev->vol.dirty != !consistent) {
7524                 dprintf("imsm: mark '%s'\n", consistent ? "clean" : "dirty");
7525                 if (consistent)
7526                         dev->vol.dirty = 0;
7527                 else
7528                         dev->vol.dirty = 1;
7529                 super->updates_pending++;
7530         }
7531
7532         return consistent;
7533 }
7534
7535 static void imsm_set_disk(struct active_array *a, int n, int state)
7536 {
7537         int inst = a->info.container_member;
7538         struct intel_super *super = a->container->sb;
7539         struct imsm_dev *dev = get_imsm_dev(super, inst);
7540         struct imsm_map *map = get_imsm_map(dev, MAP_0);
7541         struct imsm_disk *disk;
7542         struct mdinfo *mdi;
7543         int recovery_not_finished = 0;
7544         int failed;
7545         __u32 ord;
7546         __u8 map_state;
7547
7548         if (n > map->num_members)
7549                 pr_err("imsm: set_disk %d out of range 0..%d\n",
7550                         n, map->num_members - 1);
7551
7552         if (n < 0)
7553                 return;
7554
7555         dprintf("imsm: set_disk %d:%x\n", n, state);
7556
7557         ord = get_imsm_ord_tbl_ent(dev, n, MAP_0);
7558         disk = get_imsm_disk(super, ord_to_idx(ord));
7559
7560         /* check for new failures */
7561         if (state & DS_FAULTY) {
7562                 if (mark_failure(dev, disk, ord_to_idx(ord)))
7563                         super->updates_pending++;
7564         }
7565
7566         /* check if in_sync */
7567         if (state & DS_INSYNC && ord & IMSM_ORD_REBUILD && is_rebuilding(dev)) {
7568                 struct imsm_map *migr_map = get_imsm_map(dev, MAP_1);
7569
7570                 set_imsm_ord_tbl_ent(migr_map, n, ord_to_idx(ord));
7571                 super->updates_pending++;
7572         }
7573
7574         failed = imsm_count_failed(super, dev, MAP_0);
7575         map_state = imsm_check_degraded(super, dev, failed, MAP_0);
7576
7577         /* check if recovery complete, newly degraded, or failed */
7578         dprintf("imsm: Detected transition to state ");
7579         switch (map_state) {
7580         case IMSM_T_STATE_NORMAL: /* transition to normal state */
7581                 dprintf("normal: ");
7582                 if (is_rebuilding(dev)) {
7583                         dprintf_cont("while rebuilding");
7584                         /* check if recovery is really finished */
7585                         for (mdi = a->info.devs; mdi ; mdi = mdi->next)
7586                                 if (mdi->recovery_start != MaxSector) {
7587                                         recovery_not_finished = 1;
7588                                         break;
7589                                 }
7590                         if (recovery_not_finished) {
7591                                 dprintf_cont("\n");
7592                                 dprintf("Rebuild has not finished yet, state not changed");
7593                                 if (a->last_checkpoint < mdi->recovery_start) {
7594                                         a->last_checkpoint = mdi->recovery_start;
7595                                         super->updates_pending++;
7596                                 }
7597                                 break;
7598                         }
7599                         end_migration(dev, super, map_state);
7600                         map = get_imsm_map(dev, MAP_0);
7601                         map->failed_disk_num = ~0;
7602                         super->updates_pending++;
7603                         a->last_checkpoint = 0;
7604                         break;
7605                 }
7606                 if (is_gen_migration(dev)) {
7607                         dprintf_cont("while general migration");
7608                         if (a->last_checkpoint >= a->info.component_size)
7609                                 end_migration(dev, super, map_state);
7610                         else
7611                                 map->map_state = map_state;
7612                         map = get_imsm_map(dev, MAP_0);
7613                         map->failed_disk_num = ~0;
7614                         super->updates_pending++;
7615                         break;
7616                 }
7617         break;
7618         case IMSM_T_STATE_DEGRADED: /* transition to degraded state */
7619                 dprintf_cont("degraded: ");
7620                 if (map->map_state != map_state && !dev->vol.migr_state) {
7621                         dprintf_cont("mark degraded");
7622                         map->map_state = map_state;
7623                         super->updates_pending++;
7624                         a->last_checkpoint = 0;
7625                         break;
7626                 }
7627                 if (is_rebuilding(dev)) {
7628                         dprintf_cont("while rebuilding.");
7629                         if (map->map_state != map_state)  {
7630                                 dprintf_cont(" Map state change");
7631                                 end_migration(dev, super, map_state);
7632                                 super->updates_pending++;
7633                         }
7634                         break;
7635                 }
7636                 if (is_gen_migration(dev)) {
7637                         dprintf_cont("while general migration");
7638                         if (a->last_checkpoint >= a->info.component_size)
7639                                 end_migration(dev, super, map_state);
7640                         else {
7641                                 map->map_state = map_state;
7642                                 manage_second_map(super, dev);
7643                         }
7644                         super->updates_pending++;
7645                         break;
7646                 }
7647                 if (is_initializing(dev)) {
7648                         dprintf_cont("while initialization.");
7649                         map->map_state = map_state;
7650                         super->updates_pending++;
7651                         break;
7652                 }
7653         break;
7654         case IMSM_T_STATE_FAILED: /* transition to failed state */
7655                 dprintf_cont("failed: ");
7656                 if (is_gen_migration(dev)) {
7657                         dprintf_cont("while general migration");
7658                         map->map_state = map_state;
7659                         super->updates_pending++;
7660                         break;
7661                 }
7662                 if (map->map_state != map_state) {
7663                         dprintf_cont("mark failed");
7664                         end_migration(dev, super, map_state);
7665                         super->updates_pending++;
7666                         a->last_checkpoint = 0;
7667                         break;
7668                 }
7669         break;
7670         default:
7671                 dprintf_cont("state %i\n", map_state);
7672         }
7673         dprintf_cont("\n");
7674 }
7675
7676 static int store_imsm_mpb(int fd, struct imsm_super *mpb)
7677 {
7678         void *buf = mpb;
7679         __u32 mpb_size = __le32_to_cpu(mpb->mpb_size);
7680         unsigned long long dsize;
7681         unsigned long long sectors;
7682         unsigned int sector_size;
7683
7684         get_dev_sector_size(fd, NULL, &sector_size);
7685         get_dev_size(fd, NULL, &dsize);
7686
7687         if (mpb_size > sector_size) {
7688                 /* -1 to account for anchor */
7689                 sectors = mpb_sectors(mpb, sector_size) - 1;
7690
7691                 /* write the extended mpb to the sectors preceeding the anchor */
7692                 if (lseek64(fd, dsize - (sector_size * (2 + sectors)),
7693                    SEEK_SET) < 0)
7694                         return 1;
7695
7696                 if ((unsigned long long)write(fd, buf + sector_size,
7697                    sector_size * sectors) != sector_size * sectors)
7698                         return 1;
7699         }
7700
7701         /* first block is stored on second to last sector of the disk */
7702         if (lseek64(fd, dsize - (sector_size * 2), SEEK_SET) < 0)
7703                 return 1;
7704
7705         if (write(fd, buf, sector_size) != sector_size)
7706                 return 1;
7707
7708         return 0;
7709 }
7710
7711 static void imsm_sync_metadata(struct supertype *container)
7712 {
7713         struct intel_super *super = container->sb;
7714
7715         dprintf("sync metadata: %d\n", super->updates_pending);
7716         if (!super->updates_pending)
7717                 return;
7718
7719         write_super_imsm(container, 0);
7720
7721         super->updates_pending = 0;
7722 }
7723
7724 static struct dl *imsm_readd(struct intel_super *super, int idx, struct active_array *a)
7725 {
7726         struct imsm_dev *dev = get_imsm_dev(super, a->info.container_member);
7727         int i = get_imsm_disk_idx(dev, idx, MAP_X);
7728         struct dl *dl;
7729
7730         for (dl = super->disks; dl; dl = dl->next)
7731                 if (dl->index == i)
7732                         break;
7733
7734         if (dl && is_failed(&dl->disk))
7735                 dl = NULL;
7736
7737         if (dl)
7738                 dprintf("found %x:%x\n", dl->major, dl->minor);
7739
7740         return dl;
7741 }
7742
7743 static struct dl *imsm_add_spare(struct intel_super *super, int slot,
7744                                  struct active_array *a, int activate_new,
7745                                  struct mdinfo *additional_test_list)
7746 {
7747         struct imsm_dev *dev = get_imsm_dev(super, a->info.container_member);
7748         int idx = get_imsm_disk_idx(dev, slot, MAP_X);
7749         struct imsm_super *mpb = super->anchor;
7750         struct imsm_map *map;
7751         unsigned long long pos;
7752         struct mdinfo *d;
7753         struct extent *ex;
7754         int i, j;
7755         int found;
7756         __u32 array_start = 0;
7757         __u32 array_end = 0;
7758         struct dl *dl;
7759         struct mdinfo *test_list;
7760
7761         for (dl = super->disks; dl; dl = dl->next) {
7762                 /* If in this array, skip */
7763                 for (d = a->info.devs ; d ; d = d->next)
7764                         if (d->state_fd >= 0 &&
7765                             d->disk.major == dl->major &&
7766                             d->disk.minor == dl->minor) {
7767                                 dprintf("%x:%x already in array\n",
7768                                         dl->major, dl->minor);
7769                                 break;
7770                         }
7771                 if (d)
7772                         continue;
7773                 test_list = additional_test_list;
7774                 while (test_list) {
7775                         if (test_list->disk.major == dl->major &&
7776                             test_list->disk.minor == dl->minor) {
7777                                 dprintf("%x:%x already in additional test list\n",
7778                                         dl->major, dl->minor);
7779                                 break;
7780                         }
7781                         test_list = test_list->next;
7782                 }
7783                 if (test_list)
7784                         continue;
7785
7786                 /* skip in use or failed drives */
7787                 if (is_failed(&dl->disk) || idx == dl->index ||
7788                     dl->index == -2) {
7789                         dprintf("%x:%x status (failed: %d index: %d)\n",
7790                                 dl->major, dl->minor, is_failed(&dl->disk), idx);
7791                         continue;
7792                 }
7793
7794                 /* skip pure spares when we are looking for partially
7795                  * assimilated drives
7796                  */
7797                 if (dl->index == -1 && !activate_new)
7798                         continue;
7799
7800                 /* Does this unused device have the requisite free space?
7801                  * It needs to be able to cover all member volumes
7802                  */
7803                 ex = get_extents(super, dl);
7804                 if (!ex) {
7805                         dprintf("cannot get extents\n");
7806                         continue;
7807                 }
7808                 for (i = 0; i < mpb->num_raid_devs; i++) {
7809                         dev = get_imsm_dev(super, i);
7810                         map = get_imsm_map(dev, MAP_0);
7811
7812                         /* check if this disk is already a member of
7813                          * this array
7814                          */
7815                         if (get_imsm_disk_slot(map, dl->index) >= 0)
7816                                 continue;
7817
7818                         found = 0;
7819                         j = 0;
7820                         pos = 0;
7821                         array_start = pba_of_lba0(map);
7822                         array_end = array_start +
7823                                     blocks_per_member(map) - 1;
7824
7825                         do {
7826                                 /* check that we can start at pba_of_lba0 with
7827                                  * blocks_per_member of space
7828                                  */
7829                                 if (array_start >= pos && array_end < ex[j].start) {
7830                                         found = 1;
7831                                         break;
7832                                 }
7833                                 pos = ex[j].start + ex[j].size;
7834                                 j++;
7835                         } while (ex[j-1].size);
7836
7837                         if (!found)
7838                                 break;
7839                 }
7840
7841                 free(ex);
7842                 if (i < mpb->num_raid_devs) {
7843                         dprintf("%x:%x does not have %u to %u available\n",
7844                                 dl->major, dl->minor, array_start, array_end);
7845                         /* No room */
7846                         continue;
7847                 }
7848                 return dl;
7849         }
7850
7851         return dl;
7852 }
7853
7854 static int imsm_rebuild_allowed(struct supertype *cont, int dev_idx, int failed)
7855 {
7856         struct imsm_dev *dev2;
7857         struct imsm_map *map;
7858         struct dl *idisk;
7859         int slot;
7860         int idx;
7861         __u8 state;
7862
7863         dev2 = get_imsm_dev(cont->sb, dev_idx);
7864         if (dev2) {
7865                 state = imsm_check_degraded(cont->sb, dev2, failed, MAP_0);
7866                 if (state == IMSM_T_STATE_FAILED) {
7867                         map = get_imsm_map(dev2, MAP_0);
7868                         if (!map)
7869                                 return 1;
7870                         for (slot = 0; slot < map->num_members; slot++) {
7871                                 /*
7872                                  * Check if failed disks are deleted from intel
7873                                  * disk list or are marked to be deleted
7874                                  */
7875                                 idx = get_imsm_disk_idx(dev2, slot, MAP_X);
7876                                 idisk = get_imsm_dl_disk(cont->sb, idx);
7877                                 /*
7878                                  * Do not rebuild the array if failed disks
7879                                  * from failed sub-array are not removed from
7880                                  * container.
7881                                  */
7882                                 if (idisk &&
7883                                     is_failed(&idisk->disk) &&
7884                                     (idisk->action != DISK_REMOVE))
7885                                         return 0;
7886                         }
7887                 }
7888         }
7889         return 1;
7890 }
7891
7892 static struct mdinfo *imsm_activate_spare(struct active_array *a,
7893                                           struct metadata_update **updates)
7894 {
7895         /**
7896          * Find a device with unused free space and use it to replace a
7897          * failed/vacant region in an array.  We replace failed regions one a
7898          * array at a time.  The result is that a new spare disk will be added
7899          * to the first failed array and after the monitor has finished
7900          * propagating failures the remainder will be consumed.
7901          *
7902          * FIXME add a capability for mdmon to request spares from another
7903          * container.
7904          */
7905
7906         struct intel_super *super = a->container->sb;
7907         int inst = a->info.container_member;
7908         struct imsm_dev *dev = get_imsm_dev(super, inst);
7909         struct imsm_map *map = get_imsm_map(dev, MAP_0);
7910         int failed = a->info.array.raid_disks;
7911         struct mdinfo *rv = NULL;
7912         struct mdinfo *d;
7913         struct mdinfo *di;
7914         struct metadata_update *mu;
7915         struct dl *dl;
7916         struct imsm_update_activate_spare *u;
7917         int num_spares = 0;
7918         int i;
7919         int allowed;
7920
7921         for (d = a->info.devs ; d ; d = d->next) {
7922                 if ((d->curr_state & DS_FAULTY) &&
7923                         d->state_fd >= 0)
7924                         /* wait for Removal to happen */
7925                         return NULL;
7926                 if (d->state_fd >= 0)
7927                         failed--;
7928         }
7929
7930         dprintf("imsm: activate spare: inst=%d failed=%d (%d) level=%d\n",
7931                 inst, failed, a->info.array.raid_disks, a->info.array.level);
7932
7933         if (imsm_reshape_blocks_arrays_changes(super))
7934                         return NULL;
7935
7936         /* Cannot activate another spare if rebuild is in progress already
7937          */
7938         if (is_rebuilding(dev)) {
7939                 dprintf("imsm: No spare activation allowed. Rebuild in progress already.\n");
7940                 return NULL;
7941         }
7942
7943         if (a->info.array.level == 4)
7944                 /* No repair for takeovered array
7945                  * imsm doesn't support raid4
7946                  */
7947                 return NULL;
7948
7949         if (imsm_check_degraded(super, dev, failed, MAP_0) !=
7950                         IMSM_T_STATE_DEGRADED)
7951                 return NULL;
7952
7953         if (get_imsm_map(dev, MAP_0)->map_state == IMSM_T_STATE_UNINITIALIZED) {
7954                 dprintf("imsm: No spare activation allowed. Volume is not initialized.\n");
7955                 return NULL;
7956         }
7957
7958         /*
7959          * If there are any failed disks check state of the other volume.
7960          * Block rebuild if the another one is failed until failed disks
7961          * are removed from container.
7962          */
7963         if (failed) {
7964                 dprintf("found failed disks in %.*s, check if there anotherfailed sub-array.\n",
7965                         MAX_RAID_SERIAL_LEN, dev->volume);
7966                 /* check if states of the other volumes allow for rebuild */
7967                 for (i = 0; i <  super->anchor->num_raid_devs; i++) {
7968                         if (i != inst) {
7969                                 allowed = imsm_rebuild_allowed(a->container,
7970                                                                i, failed);
7971                                 if (!allowed)
7972                                         return NULL;
7973                         }
7974                 }
7975         }
7976
7977         /* For each slot, if it is not working, find a spare */
7978         for (i = 0; i < a->info.array.raid_disks; i++) {
7979                 for (d = a->info.devs ; d ; d = d->next)
7980                         if (d->disk.raid_disk == i)
7981                                 break;
7982                 dprintf("found %d: %p %x\n", i, d, d?d->curr_state:0);
7983                 if (d && (d->state_fd >= 0))
7984                         continue;
7985
7986                 /*
7987                  * OK, this device needs recovery.  Try to re-add the
7988                  * previous occupant of this slot, if this fails see if
7989                  * we can continue the assimilation of a spare that was
7990                  * partially assimilated, finally try to activate a new
7991                  * spare.
7992                  */
7993                 dl = imsm_readd(super, i, a);
7994                 if (!dl)
7995                         dl = imsm_add_spare(super, i, a, 0, rv);
7996                 if (!dl)
7997                         dl = imsm_add_spare(super, i, a, 1, rv);
7998                 if (!dl)
7999                         continue;
8000
8001                 /* found a usable disk with enough space */
8002                 di = xcalloc(1, sizeof(*di));
8003
8004                 /* dl->index will be -1 in the case we are activating a
8005                  * pristine spare.  imsm_process_update() will create a
8006                  * new index in this case.  Once a disk is found to be
8007                  * failed in all member arrays it is kicked from the
8008                  * metadata
8009                  */
8010                 di->disk.number = dl->index;
8011
8012                 /* (ab)use di->devs to store a pointer to the device
8013                  * we chose
8014                  */
8015                 di->devs = (struct mdinfo *) dl;
8016
8017                 di->disk.raid_disk = i;
8018                 di->disk.major = dl->major;
8019                 di->disk.minor = dl->minor;
8020                 di->disk.state = 0;
8021                 di->recovery_start = 0;
8022                 di->data_offset = pba_of_lba0(map);
8023                 di->component_size = a->info.component_size;
8024                 di->container_member = inst;
8025                 super->random = random32();
8026                 di->next = rv;
8027                 rv = di;
8028                 num_spares++;
8029                 dprintf("%x:%x to be %d at %llu\n", dl->major, dl->minor,
8030                         i, di->data_offset);
8031         }
8032
8033         if (!rv)
8034                 /* No spares found */
8035                 return rv;
8036         /* Now 'rv' has a list of devices to return.
8037          * Create a metadata_update record to update the
8038          * disk_ord_tbl for the array
8039          */
8040         mu = xmalloc(sizeof(*mu));
8041         mu->buf = xcalloc(num_spares,
8042                           sizeof(struct imsm_update_activate_spare));
8043         mu->space = NULL;
8044         mu->space_list = NULL;
8045         mu->len = sizeof(struct imsm_update_activate_spare) * num_spares;
8046         mu->next = *updates;
8047         u = (struct imsm_update_activate_spare *) mu->buf;
8048
8049         for (di = rv ; di ; di = di->next) {
8050                 u->type = update_activate_spare;
8051                 u->dl = (struct dl *) di->devs;
8052                 di->devs = NULL;
8053                 u->slot = di->disk.raid_disk;
8054                 u->array = inst;
8055                 u->next = u + 1;
8056                 u++;
8057         }
8058         (u-1)->next = NULL;
8059         *updates = mu;
8060
8061         return rv;
8062 }
8063
8064 static int disks_overlap(struct intel_super *super, int idx, struct imsm_update_create_array *u)
8065 {
8066         struct imsm_dev *dev = get_imsm_dev(super, idx);
8067         struct imsm_map *map = get_imsm_map(dev, MAP_0);
8068         struct imsm_map *new_map = get_imsm_map(&u->dev, MAP_0);
8069         struct disk_info *inf = get_disk_info(u);
8070         struct imsm_disk *disk;
8071         int i;
8072         int j;
8073
8074         for (i = 0; i < map->num_members; i++) {
8075                 disk = get_imsm_disk(super, get_imsm_disk_idx(dev, i, MAP_X));
8076                 for (j = 0; j < new_map->num_members; j++)
8077                         if (serialcmp(disk->serial, inf[j].serial) == 0)
8078                                 return 1;
8079         }
8080
8081         return 0;
8082 }
8083
8084 static struct dl *get_disk_super(struct intel_super *super, int major, int minor)
8085 {
8086         struct dl *dl;
8087
8088         for (dl = super->disks; dl; dl = dl->next)
8089                 if (dl->major == major &&  dl->minor == minor)
8090                         return dl;
8091         return NULL;
8092 }
8093
8094 static int remove_disk_super(struct intel_super *super, int major, int minor)
8095 {
8096         struct dl *prev;
8097         struct dl *dl;
8098
8099         prev = NULL;
8100         for (dl = super->disks; dl; dl = dl->next) {
8101                 if (dl->major == major && dl->minor == minor) {
8102                         /* remove */
8103                         if (prev)
8104                                 prev->next = dl->next;
8105                         else
8106                                 super->disks = dl->next;
8107                         dl->next = NULL;
8108                         __free_imsm_disk(dl);
8109                         dprintf("removed %x:%x\n", major, minor);
8110                         break;
8111                 }
8112                 prev = dl;
8113         }
8114         return 0;
8115 }
8116
8117 static void imsm_delete(struct intel_super *super, struct dl **dlp, unsigned index);
8118
8119 static int add_remove_disk_update(struct intel_super *super)
8120 {
8121         int check_degraded = 0;
8122         struct dl *disk;
8123
8124         /* add/remove some spares to/from the metadata/contrainer */
8125         while (super->disk_mgmt_list) {
8126                 struct dl *disk_cfg;
8127
8128                 disk_cfg = super->disk_mgmt_list;
8129                 super->disk_mgmt_list = disk_cfg->next;
8130                 disk_cfg->next = NULL;
8131
8132                 if (disk_cfg->action == DISK_ADD) {
8133                         disk_cfg->next = super->disks;
8134                         super->disks = disk_cfg;
8135                         check_degraded = 1;
8136                         dprintf("added %x:%x\n",
8137                                 disk_cfg->major, disk_cfg->minor);
8138                 } else if (disk_cfg->action == DISK_REMOVE) {
8139                         dprintf("Disk remove action processed: %x.%x\n",
8140                                 disk_cfg->major, disk_cfg->minor);
8141                         disk = get_disk_super(super,
8142                                               disk_cfg->major,
8143                                               disk_cfg->minor);
8144                         if (disk) {
8145                                 /* store action status */
8146                                 disk->action = DISK_REMOVE;
8147                                 /* remove spare disks only */
8148                                 if (disk->index == -1) {
8149                                         remove_disk_super(super,
8150                                                           disk_cfg->major,
8151                                                           disk_cfg->minor);
8152                                 }
8153                         }
8154                         /* release allocate disk structure */
8155                         __free_imsm_disk(disk_cfg);
8156                 }
8157         }
8158         return check_degraded;
8159 }
8160
8161 static int apply_reshape_migration_update(struct imsm_update_reshape_migration *u,
8162                                                 struct intel_super *super,
8163                                                 void ***space_list)
8164 {
8165         struct intel_dev *id;
8166         void **tofree = NULL;
8167         int ret_val = 0;
8168
8169         dprintf("(enter)\n");
8170         if (u->subdev < 0 || u->subdev > 1) {
8171                 dprintf("imsm: Error: Wrong subdev: %i\n", u->subdev);
8172                 return ret_val;
8173         }
8174         if (space_list == NULL || *space_list == NULL) {
8175                 dprintf("imsm: Error: Memory is not allocated\n");
8176                 return ret_val;
8177         }
8178
8179         for (id = super->devlist ; id; id = id->next) {
8180                 if (id->index == (unsigned)u->subdev) {
8181                         struct imsm_dev *dev = get_imsm_dev(super, u->subdev);
8182                         struct imsm_map *map;
8183                         struct imsm_dev *new_dev =
8184                                 (struct imsm_dev *)*space_list;
8185                         struct imsm_map *migr_map = get_imsm_map(dev, MAP_1);
8186                         int to_state;
8187                         struct dl *new_disk;
8188
8189                         if (new_dev == NULL)
8190                                 return ret_val;
8191                         *space_list = **space_list;
8192                         memcpy(new_dev, dev, sizeof_imsm_dev(dev, 0));
8193                         map = get_imsm_map(new_dev, MAP_0);
8194                         if (migr_map) {
8195                                 dprintf("imsm: Error: migration in progress");
8196                                 return ret_val;
8197                         }
8198
8199                         to_state = map->map_state;
8200                         if ((u->new_level == 5) && (map->raid_level == 0)) {
8201                                 map->num_members++;
8202                                 /* this should not happen */
8203                                 if (u->new_disks[0] < 0) {
8204                                         map->failed_disk_num =
8205                                                 map->num_members - 1;
8206                                         to_state = IMSM_T_STATE_DEGRADED;
8207                                 } else
8208                                         to_state = IMSM_T_STATE_NORMAL;
8209                         }
8210                         migrate(new_dev, super, to_state, MIGR_GEN_MIGR);
8211                         if (u->new_level > -1)
8212                                 map->raid_level = u->new_level;
8213                         migr_map = get_imsm_map(new_dev, MAP_1);
8214                         if ((u->new_level == 5) &&
8215                             (migr_map->raid_level == 0)) {
8216                                 int ord = map->num_members - 1;
8217                                 migr_map->num_members--;
8218                                 if (u->new_disks[0] < 0)
8219                                         ord |= IMSM_ORD_REBUILD;
8220                                 set_imsm_ord_tbl_ent(map,
8221                                                      map->num_members - 1,
8222                                                      ord);
8223                         }
8224                         id->dev = new_dev;
8225                         tofree = (void **)dev;
8226
8227                         /* update chunk size
8228                          */
8229                         if (u->new_chunksize > 0)
8230                                 map->blocks_per_strip =
8231                                         __cpu_to_le16(u->new_chunksize * 2);
8232
8233                         /* add disk
8234                          */
8235                         if (u->new_level != 5 || migr_map->raid_level != 0 ||
8236                             migr_map->raid_level == map->raid_level)
8237                                 goto skip_disk_add;
8238
8239                         if (u->new_disks[0] >= 0) {
8240                                 /* use passes spare
8241                                  */
8242                                 new_disk = get_disk_super(super,
8243                                                         major(u->new_disks[0]),
8244                                                         minor(u->new_disks[0]));
8245                                 dprintf("imsm: new disk for reshape is: %i:%i (%p, index = %i)\n",
8246                                         major(u->new_disks[0]),
8247                                         minor(u->new_disks[0]),
8248                                         new_disk, new_disk->index);
8249                                 if (new_disk == NULL)
8250                                         goto error_disk_add;
8251
8252                                 new_disk->index = map->num_members - 1;
8253                                 /* slot to fill in autolayout
8254                                  */
8255                                 new_disk->raiddisk = new_disk->index;
8256                                 new_disk->disk.status |= CONFIGURED_DISK;
8257                                 new_disk->disk.status &= ~SPARE_DISK;
8258                         } else
8259                                 goto error_disk_add;
8260
8261 skip_disk_add:
8262                         *tofree = *space_list;
8263                         /* calculate new size
8264                          */
8265                         imsm_set_array_size(new_dev, -1);
8266
8267                         ret_val = 1;
8268                 }
8269         }
8270
8271         if (tofree)
8272                 *space_list = tofree;
8273         return ret_val;
8274
8275 error_disk_add:
8276         dprintf("Error: imsm: Cannot find disk.\n");
8277         return ret_val;
8278 }
8279
8280 static int apply_size_change_update(struct imsm_update_size_change *u,
8281                 struct intel_super *super)
8282 {
8283         struct intel_dev *id;
8284         int ret_val = 0;
8285
8286         dprintf("(enter)\n");
8287         if (u->subdev < 0 || u->subdev > 1) {
8288                 dprintf("imsm: Error: Wrong subdev: %i\n", u->subdev);
8289                 return ret_val;
8290         }
8291
8292         for (id = super->devlist ; id; id = id->next) {
8293                 if (id->index == (unsigned)u->subdev) {
8294                         struct imsm_dev *dev = get_imsm_dev(super, u->subdev);
8295                         struct imsm_map *map = get_imsm_map(dev, MAP_0);
8296                         int used_disks = imsm_num_data_members(dev, MAP_0);
8297                         unsigned long long blocks_per_member;
8298
8299                         /* calculate new size
8300                          */
8301                         blocks_per_member = u->new_size / used_disks;
8302                         dprintf("(size: %llu, blocks per member: %llu)\n",
8303                                 u->new_size, blocks_per_member);
8304                         set_blocks_per_member(map, blocks_per_member);
8305                         imsm_set_array_size(dev, u->new_size);
8306
8307                         ret_val = 1;
8308                         break;
8309                 }
8310         }
8311
8312         return ret_val;
8313 }
8314
8315 static int apply_update_activate_spare(struct imsm_update_activate_spare *u,
8316                                        struct intel_super *super,
8317                                        struct active_array *active_array)
8318 {
8319         struct imsm_super *mpb = super->anchor;
8320         struct imsm_dev *dev = get_imsm_dev(super, u->array);
8321         struct imsm_map *map = get_imsm_map(dev, MAP_0);
8322         struct imsm_map *migr_map;
8323         struct active_array *a;
8324         struct imsm_disk *disk;
8325         __u8 to_state;
8326         struct dl *dl;
8327         unsigned int found;
8328         int failed;
8329         int victim;
8330         int i;
8331         int second_map_created = 0;
8332
8333         for (; u; u = u->next) {
8334                 victim = get_imsm_disk_idx(dev, u->slot, MAP_X);
8335
8336                 if (victim < 0)
8337                         return 0;
8338
8339                 for (dl = super->disks; dl; dl = dl->next)
8340                         if (dl == u->dl)
8341                                 break;
8342
8343                 if (!dl) {
8344                         pr_err("error: imsm_activate_spare passed an unknown disk (index: %d)\n",
8345                                 u->dl->index);
8346                         return 0;
8347                 }
8348
8349                 /* count failures (excluding rebuilds and the victim)
8350                  * to determine map[0] state
8351                  */
8352                 failed = 0;
8353                 for (i = 0; i < map->num_members; i++) {
8354                         if (i == u->slot)
8355                                 continue;
8356                         disk = get_imsm_disk(super,
8357                                              get_imsm_disk_idx(dev, i, MAP_X));
8358                         if (!disk || is_failed(disk))
8359                                 failed++;
8360                 }
8361
8362                 /* adding a pristine spare, assign a new index */
8363                 if (dl->index < 0) {
8364                         dl->index = super->anchor->num_disks;
8365                         super->anchor->num_disks++;
8366                 }
8367                 disk = &dl->disk;
8368                 disk->status |= CONFIGURED_DISK;
8369                 disk->status &= ~SPARE_DISK;
8370
8371                 /* mark rebuild */
8372                 to_state = imsm_check_degraded(super, dev, failed, MAP_0);
8373                 if (!second_map_created) {
8374                         second_map_created = 1;
8375                         map->map_state = IMSM_T_STATE_DEGRADED;
8376                         migrate(dev, super, to_state, MIGR_REBUILD);
8377                 } else
8378                         map->map_state = to_state;
8379                 migr_map = get_imsm_map(dev, MAP_1);
8380                 set_imsm_ord_tbl_ent(map, u->slot, dl->index);
8381                 set_imsm_ord_tbl_ent(migr_map, u->slot,
8382                                      dl->index | IMSM_ORD_REBUILD);
8383
8384                 /* update the family_num to mark a new container
8385                  * generation, being careful to record the existing
8386                  * family_num in orig_family_num to clean up after
8387                  * earlier mdadm versions that neglected to set it.
8388                  */
8389                 if (mpb->orig_family_num == 0)
8390                         mpb->orig_family_num = mpb->family_num;
8391                 mpb->family_num += super->random;
8392
8393                 /* count arrays using the victim in the metadata */
8394                 found = 0;
8395                 for (a = active_array; a ; a = a->next) {
8396                         dev = get_imsm_dev(super, a->info.container_member);
8397                         map = get_imsm_map(dev, MAP_0);
8398
8399                         if (get_imsm_disk_slot(map, victim) >= 0)
8400                                 found++;
8401                 }
8402
8403                 /* delete the victim if it is no longer being
8404                  * utilized anywhere
8405                  */
8406                 if (!found) {
8407                         struct dl **dlp;
8408
8409                         /* We know that 'manager' isn't touching anything,
8410                          * so it is safe to delete
8411                          */
8412                         for (dlp = &super->disks; *dlp; dlp = &(*dlp)->next)
8413                                 if ((*dlp)->index == victim)
8414                                         break;
8415
8416                         /* victim may be on the missing list */
8417                         if (!*dlp)
8418                                 for (dlp = &super->missing; *dlp;
8419                                      dlp = &(*dlp)->next)
8420                                         if ((*dlp)->index == victim)
8421                                                 break;
8422                         imsm_delete(super, dlp, victim);
8423                 }
8424         }
8425
8426         return 1;
8427 }
8428
8429 static int apply_reshape_container_disks_update(struct imsm_update_reshape *u,
8430                                                 struct intel_super *super,
8431                                                 void ***space_list)
8432 {
8433         struct dl *new_disk;
8434         struct intel_dev *id;
8435         int i;
8436         int delta_disks = u->new_raid_disks - u->old_raid_disks;
8437         int disk_count = u->old_raid_disks;
8438         void **tofree = NULL;
8439         int devices_to_reshape = 1;
8440         struct imsm_super *mpb = super->anchor;
8441         int ret_val = 0;
8442         unsigned int dev_id;
8443
8444         dprintf("(enter)\n");
8445
8446         /* enable spares to use in array */
8447         for (i = 0; i < delta_disks; i++) {
8448                 new_disk = get_disk_super(super,
8449                                           major(u->new_disks[i]),
8450                                           minor(u->new_disks[i]));
8451                 dprintf("imsm: new disk for reshape is: %i:%i (%p, index = %i)\n",
8452                         major(u->new_disks[i]), minor(u->new_disks[i]),
8453                         new_disk, new_disk->index);
8454                 if (new_disk == NULL ||
8455                     (new_disk->index >= 0 &&
8456                      new_disk->index < u->old_raid_disks))
8457                         goto update_reshape_exit;
8458                 new_disk->index = disk_count++;
8459                 /* slot to fill in autolayout
8460                  */
8461                 new_disk->raiddisk = new_disk->index;
8462                 new_disk->disk.status |=
8463                         CONFIGURED_DISK;
8464                 new_disk->disk.status &= ~SPARE_DISK;
8465         }
8466
8467         dprintf("imsm: volume set mpb->num_raid_devs = %i\n",
8468                 mpb->num_raid_devs);
8469         /* manage changes in volume
8470          */
8471         for (dev_id = 0; dev_id < mpb->num_raid_devs; dev_id++) {
8472                 void **sp = *space_list;
8473                 struct imsm_dev *newdev;
8474                 struct imsm_map *newmap, *oldmap;
8475
8476                 for (id = super->devlist ; id; id = id->next) {
8477                         if (id->index == dev_id)
8478                                 break;
8479                 }
8480                 if (id == NULL)
8481                         break;
8482                 if (!sp)
8483                         continue;
8484                 *space_list = *sp;
8485                 newdev = (void*)sp;
8486                 /* Copy the dev, but not (all of) the map */
8487                 memcpy(newdev, id->dev, sizeof(*newdev));
8488                 oldmap = get_imsm_map(id->dev, MAP_0);
8489                 newmap = get_imsm_map(newdev, MAP_0);
8490                 /* Copy the current map */
8491                 memcpy(newmap, oldmap, sizeof_imsm_map(oldmap));
8492                 /* update one device only
8493                  */
8494                 if (devices_to_reshape) {
8495                         dprintf("imsm: modifying subdev: %i\n",
8496                                 id->index);
8497                         devices_to_reshape--;
8498                         newdev->vol.migr_state = 1;
8499                         newdev->vol.curr_migr_unit = 0;
8500                         set_migr_type(newdev, MIGR_GEN_MIGR);
8501                         newmap->num_members = u->new_raid_disks;
8502                         for (i = 0; i < delta_disks; i++) {
8503                                 set_imsm_ord_tbl_ent(newmap,
8504                                                      u->old_raid_disks + i,
8505                                                      u->old_raid_disks + i);
8506                         }
8507                         /* New map is correct, now need to save old map
8508                          */
8509                         newmap = get_imsm_map(newdev, MAP_1);
8510                         memcpy(newmap, oldmap, sizeof_imsm_map(oldmap));
8511
8512                         imsm_set_array_size(newdev, -1);
8513                 }
8514
8515                 sp = (void **)id->dev;
8516                 id->dev = newdev;
8517                 *sp = tofree;
8518                 tofree = sp;
8519
8520                 /* Clear migration record */
8521                 memset(super->migr_rec, 0, sizeof(struct migr_record));
8522         }
8523         if (tofree)
8524                 *space_list = tofree;
8525         ret_val = 1;
8526
8527 update_reshape_exit:
8528
8529         return ret_val;
8530 }
8531
8532 static int apply_takeover_update(struct imsm_update_takeover *u,
8533                                  struct intel_super *super,
8534                                  void ***space_list)
8535 {
8536         struct imsm_dev *dev = NULL;
8537         struct intel_dev *dv;
8538         struct imsm_dev *dev_new;
8539         struct imsm_map *map;
8540         struct dl *dm, *du;
8541         int i;
8542
8543         for (dv = super->devlist; dv; dv = dv->next)
8544                 if (dv->index == (unsigned int)u->subarray) {
8545                         dev = dv->dev;
8546                         break;
8547                 }
8548
8549         if (dev == NULL)
8550                 return 0;
8551
8552         map = get_imsm_map(dev, MAP_0);
8553
8554         if (u->direction == R10_TO_R0) {
8555                 /* Number of failed disks must be half of initial disk number */
8556                 if (imsm_count_failed(super, dev, MAP_0) !=
8557                                 (map->num_members / 2))
8558                         return 0;
8559
8560                 /* iterate through devices to mark removed disks as spare */
8561                 for (dm = super->disks; dm; dm = dm->next) {
8562                         if (dm->disk.status & FAILED_DISK) {
8563                                 int idx = dm->index;
8564                                 /* update indexes on the disk list */
8565 /* FIXME this loop-with-the-loop looks wrong,  I'm not convinced
8566    the index values will end up being correct.... NB */
8567                                 for (du = super->disks; du; du = du->next)
8568                                         if (du->index > idx)
8569                                                 du->index--;
8570                                 /* mark as spare disk */
8571                                 mark_spare(dm);
8572                         }
8573                 }
8574                 /* update map */
8575                 map->num_members = map->num_members / 2;
8576                 map->map_state = IMSM_T_STATE_NORMAL;
8577                 map->num_domains = 1;
8578                 map->raid_level = 0;
8579                 map->failed_disk_num = -1;
8580         }
8581
8582         if (u->direction == R0_TO_R10) {
8583                 void **space;
8584                 /* update slots in current disk list */
8585                 for (dm = super->disks; dm; dm = dm->next) {
8586                         if (dm->index >= 0)
8587                                 dm->index *= 2;
8588                 }
8589                 /* create new *missing* disks */
8590                 for (i = 0; i < map->num_members; i++) {
8591                         space = *space_list;
8592                         if (!space)
8593                                 continue;
8594                         *space_list = *space;
8595                         du = (void *)space;
8596                         memcpy(du, super->disks, sizeof(*du));
8597                         du->fd = -1;
8598                         du->minor = 0;
8599                         du->major = 0;
8600                         du->index = (i * 2) + 1;
8601                         sprintf((char *)du->disk.serial,
8602                                 " MISSING_%d", du->index);
8603                         sprintf((char *)du->serial,
8604                                 "MISSING_%d", du->index);
8605                         du->next = super->missing;
8606                         super->missing = du;
8607                 }
8608                 /* create new dev and map */
8609                 space = *space_list;
8610                 if (!space)
8611                         return 0;
8612                 *space_list = *space;
8613                 dev_new = (void *)space;
8614                 memcpy(dev_new, dev, sizeof(*dev));
8615                 /* update new map */
8616                 map = get_imsm_map(dev_new, MAP_0);
8617                 map->num_members = map->num_members * 2;
8618                 map->map_state = IMSM_T_STATE_DEGRADED;
8619                 map->num_domains = 2;
8620                 map->raid_level = 1;
8621                 /* replace dev<->dev_new */
8622                 dv->dev = dev_new;
8623         }
8624         /* update disk order table */
8625         for (du = super->disks; du; du = du->next)
8626                 if (du->index >= 0)
8627                         set_imsm_ord_tbl_ent(map, du->index, du->index);
8628         for (du = super->missing; du; du = du->next)
8629                 if (du->index >= 0) {
8630                         set_imsm_ord_tbl_ent(map, du->index, du->index);
8631                         mark_missing(dv->dev, &du->disk, du->index);
8632                 }
8633
8634         return 1;
8635 }
8636
8637 static void imsm_process_update(struct supertype *st,
8638                                 struct metadata_update *update)
8639 {
8640         /**
8641          * crack open the metadata_update envelope to find the update record
8642          * update can be one of:
8643          *    update_reshape_container_disks - all the arrays in the container
8644          *      are being reshaped to have more devices.  We need to mark
8645          *      the arrays for general migration and convert selected spares
8646          *      into active devices.
8647          *    update_activate_spare - a spare device has replaced a failed
8648          *      device in an array, update the disk_ord_tbl.  If this disk is
8649          *      present in all member arrays then also clear the SPARE_DISK
8650          *      flag
8651          *    update_create_array
8652          *    update_kill_array
8653          *    update_rename_array
8654          *    update_add_remove_disk
8655          */
8656         struct intel_super *super = st->sb;
8657         struct imsm_super *mpb;
8658         enum imsm_update_type type = *(enum imsm_update_type *) update->buf;
8659
8660         /* update requires a larger buf but the allocation failed */
8661         if (super->next_len && !super->next_buf) {
8662                 super->next_len = 0;
8663                 return;
8664         }
8665
8666         if (super->next_buf) {
8667                 memcpy(super->next_buf, super->buf, super->len);
8668                 free(super->buf);
8669                 super->len = super->next_len;
8670                 super->buf = super->next_buf;
8671
8672                 super->next_len = 0;
8673                 super->next_buf = NULL;
8674         }
8675
8676         mpb = super->anchor;
8677
8678         switch (type) {
8679         case update_general_migration_checkpoint: {
8680                 struct intel_dev *id;
8681                 struct imsm_update_general_migration_checkpoint *u =
8682                                                         (void *)update->buf;
8683
8684                 dprintf("called for update_general_migration_checkpoint\n");
8685
8686                 /* find device under general migration */
8687                 for (id = super->devlist ; id; id = id->next) {
8688                         if (is_gen_migration(id->dev)) {
8689                                 id->dev->vol.curr_migr_unit =
8690                                         __cpu_to_le32(u->curr_migr_unit);
8691                                 super->updates_pending++;
8692                         }
8693                 }
8694                 break;
8695         }
8696         case update_takeover: {
8697                 struct imsm_update_takeover *u = (void *)update->buf;
8698                 if (apply_takeover_update(u, super, &update->space_list)) {
8699                         imsm_update_version_info(super);
8700                         super->updates_pending++;
8701                 }
8702                 break;
8703         }
8704
8705         case update_reshape_container_disks: {
8706                 struct imsm_update_reshape *u = (void *)update->buf;
8707                 if (apply_reshape_container_disks_update(
8708                             u, super, &update->space_list))
8709                         super->updates_pending++;
8710                 break;
8711         }
8712         case update_reshape_migration: {
8713                 struct imsm_update_reshape_migration *u = (void *)update->buf;
8714                 if (apply_reshape_migration_update(
8715                             u, super, &update->space_list))
8716                         super->updates_pending++;
8717                 break;
8718         }
8719         case update_size_change: {
8720                 struct imsm_update_size_change *u = (void *)update->buf;
8721                 if (apply_size_change_update(u, super))
8722                         super->updates_pending++;
8723                 break;
8724         }
8725         case update_activate_spare: {
8726                 struct imsm_update_activate_spare *u = (void *) update->buf;
8727                 if (apply_update_activate_spare(u, super, st->arrays))
8728                         super->updates_pending++;
8729                 break;
8730         }
8731         case update_create_array: {
8732                 /* someone wants to create a new array, we need to be aware of
8733                  * a few races/collisions:
8734                  * 1/ 'Create' called by two separate instances of mdadm
8735                  * 2/ 'Create' versus 'activate_spare': mdadm has chosen
8736                  *     devices that have since been assimilated via
8737                  *     activate_spare.
8738                  * In the event this update can not be carried out mdadm will
8739                  * (FIX ME) notice that its update did not take hold.
8740                  */
8741                 struct imsm_update_create_array *u = (void *) update->buf;
8742                 struct intel_dev *dv;
8743                 struct imsm_dev *dev;
8744                 struct imsm_map *map, *new_map;
8745                 unsigned long long start, end;
8746                 unsigned long long new_start, new_end;
8747                 int i;
8748                 struct disk_info *inf;
8749                 struct dl *dl;
8750
8751                 /* handle racing creates: first come first serve */
8752                 if (u->dev_idx < mpb->num_raid_devs) {
8753                         dprintf("subarray %d already defined\n", u->dev_idx);
8754                         goto create_error;
8755                 }
8756
8757                 /* check update is next in sequence */
8758                 if (u->dev_idx != mpb->num_raid_devs) {
8759                         dprintf("can not create array %d expected index %d\n",
8760                                 u->dev_idx, mpb->num_raid_devs);
8761                         goto create_error;
8762                 }
8763
8764                 new_map = get_imsm_map(&u->dev, MAP_0);
8765                 new_start = pba_of_lba0(new_map);
8766                 new_end = new_start + blocks_per_member(new_map);
8767                 inf = get_disk_info(u);
8768
8769                 /* handle activate_spare versus create race:
8770                  * check to make sure that overlapping arrays do not include
8771                  * overalpping disks
8772                  */
8773                 for (i = 0; i < mpb->num_raid_devs; i++) {
8774                         dev = get_imsm_dev(super, i);
8775                         map = get_imsm_map(dev, MAP_0);
8776                         start = pba_of_lba0(map);
8777                         end = start + blocks_per_member(map);
8778                         if ((new_start >= start && new_start <= end) ||
8779                             (start >= new_start && start <= new_end))
8780                                 /* overlap */;
8781                         else
8782                                 continue;
8783
8784                         if (disks_overlap(super, i, u)) {
8785                                 dprintf("arrays overlap\n");
8786                                 goto create_error;
8787                         }
8788                 }
8789
8790                 /* check that prepare update was successful */
8791                 if (!update->space) {
8792                         dprintf("prepare update failed\n");
8793                         goto create_error;
8794                 }
8795
8796                 /* check that all disks are still active before committing
8797                  * changes.  FIXME: could we instead handle this by creating a
8798                  * degraded array?  That's probably not what the user expects,
8799                  * so better to drop this update on the floor.
8800                  */
8801                 for (i = 0; i < new_map->num_members; i++) {
8802                         dl = serial_to_dl(inf[i].serial, super);
8803                         if (!dl) {
8804                                 dprintf("disk disappeared\n");
8805                                 goto create_error;
8806                         }
8807                 }
8808
8809                 super->updates_pending++;
8810
8811                 /* convert spares to members and fixup ord_tbl */
8812                 for (i = 0; i < new_map->num_members; i++) {
8813                         dl = serial_to_dl(inf[i].serial, super);
8814                         if (dl->index == -1) {
8815                                 dl->index = mpb->num_disks;
8816                                 mpb->num_disks++;
8817                                 dl->disk.status |= CONFIGURED_DISK;
8818                                 dl->disk.status &= ~SPARE_DISK;
8819                         }
8820                         set_imsm_ord_tbl_ent(new_map, i, dl->index);
8821                 }
8822
8823                 dv = update->space;
8824                 dev = dv->dev;
8825                 update->space = NULL;
8826                 imsm_copy_dev(dev, &u->dev);
8827                 dv->index = u->dev_idx;
8828                 dv->next = super->devlist;
8829                 super->devlist = dv;
8830                 mpb->num_raid_devs++;
8831
8832                 imsm_update_version_info(super);
8833                 break;
8834  create_error:
8835                 /* mdmon knows how to release update->space, but not
8836                  * ((struct intel_dev *) update->space)->dev
8837                  */
8838                 if (update->space) {
8839                         dv = update->space;
8840                         free(dv->dev);
8841                 }
8842                 break;
8843         }
8844         case update_kill_array: {
8845                 struct imsm_update_kill_array *u = (void *) update->buf;
8846                 int victim = u->dev_idx;
8847                 struct active_array *a;
8848                 struct intel_dev **dp;
8849                 struct imsm_dev *dev;
8850
8851                 /* sanity check that we are not affecting the uuid of
8852                  * active arrays, or deleting an active array
8853                  *
8854                  * FIXME when immutable ids are available, but note that
8855                  * we'll also need to fixup the invalidated/active
8856                  * subarray indexes in mdstat
8857                  */
8858                 for (a = st->arrays; a; a = a->next)
8859                         if (a->info.container_member >= victim)
8860                                 break;
8861                 /* by definition if mdmon is running at least one array
8862                  * is active in the container, so checking
8863                  * mpb->num_raid_devs is just extra paranoia
8864                  */
8865                 dev = get_imsm_dev(super, victim);
8866                 if (a || !dev || mpb->num_raid_devs == 1) {
8867                         dprintf("failed to delete subarray-%d\n", victim);
8868                         break;
8869                 }
8870
8871                 for (dp = &super->devlist; *dp;)
8872                         if ((*dp)->index == (unsigned)super->current_vol) {
8873                                 *dp = (*dp)->next;
8874                         } else {
8875                                 if ((*dp)->index > (unsigned)victim)
8876                                         (*dp)->index--;
8877                                 dp = &(*dp)->next;
8878                         }
8879                 mpb->num_raid_devs--;
8880                 super->updates_pending++;
8881                 break;
8882         }
8883         case update_rename_array: {
8884                 struct imsm_update_rename_array *u = (void *) update->buf;
8885                 char name[MAX_RAID_SERIAL_LEN+1];
8886                 int target = u->dev_idx;
8887                 struct active_array *a;
8888                 struct imsm_dev *dev;
8889
8890                 /* sanity check that we are not affecting the uuid of
8891                  * an active array
8892                  */
8893                 snprintf(name, MAX_RAID_SERIAL_LEN, "%s", (char *) u->name);
8894                 name[MAX_RAID_SERIAL_LEN] = '\0';
8895                 for (a = st->arrays; a; a = a->next)
8896                         if (a->info.container_member == target)
8897                                 break;
8898                 dev = get_imsm_dev(super, u->dev_idx);
8899                 if (a || !dev || !check_name(super, name, 1)) {
8900                         dprintf("failed to rename subarray-%d\n", target);
8901                         break;
8902                 }
8903
8904                 snprintf((char *) dev->volume, MAX_RAID_SERIAL_LEN, "%s", name);
8905                 super->updates_pending++;
8906                 break;
8907         }
8908         case update_add_remove_disk: {
8909                 /* we may be able to repair some arrays if disks are
8910                  * being added, check the status of add_remove_disk
8911                  * if discs has been added.
8912                  */
8913                 if (add_remove_disk_update(super)) {
8914                         struct active_array *a;
8915
8916                         super->updates_pending++;
8917                         for (a = st->arrays; a; a = a->next)
8918                                 a->check_degraded = 1;
8919                 }
8920                 break;
8921         }
8922         default:
8923                 pr_err("error: unsuported process update type:(type: %d)\n",    type);
8924         }
8925 }
8926
8927 static struct mdinfo *get_spares_for_grow(struct supertype *st);
8928
8929 static int imsm_prepare_update(struct supertype *st,
8930                                struct metadata_update *update)
8931 {
8932         /**
8933          * Allocate space to hold new disk entries, raid-device entries or a new
8934          * mpb if necessary.  The manager synchronously waits for updates to
8935          * complete in the monitor, so new mpb buffers allocated here can be
8936          * integrated by the monitor thread without worrying about live pointers
8937          * in the manager thread.
8938          */
8939         enum imsm_update_type type;
8940         struct intel_super *super = st->sb;
8941         unsigned int sector_size = super->sector_size;
8942         struct imsm_super *mpb = super->anchor;
8943         size_t buf_len;
8944         size_t len = 0;
8945
8946         if (update->len < (int)sizeof(type))
8947                 return 0;
8948
8949         type = *(enum imsm_update_type *) update->buf;
8950
8951         switch (type) {
8952         case update_general_migration_checkpoint:
8953                 if (update->len < (int)sizeof(struct imsm_update_general_migration_checkpoint))
8954                         return 0;
8955                 dprintf("called for update_general_migration_checkpoint\n");
8956                 break;
8957         case update_takeover: {
8958                 struct imsm_update_takeover *u = (void *)update->buf;
8959                 if (update->len < (int)sizeof(*u))
8960                         return 0;
8961                 if (u->direction == R0_TO_R10) {
8962                         void **tail = (void **)&update->space_list;
8963                         struct imsm_dev *dev = get_imsm_dev(super, u->subarray);
8964                         struct imsm_map *map = get_imsm_map(dev, MAP_0);
8965                         int num_members = map->num_members;
8966                         void *space;
8967                         int size, i;
8968                         /* allocate memory for added disks */
8969                         for (i = 0; i < num_members; i++) {
8970                                 size = sizeof(struct dl);
8971                                 space = xmalloc(size);
8972                                 *tail = space;
8973                                 tail = space;
8974                                 *tail = NULL;
8975                         }
8976                         /* allocate memory for new device */
8977                         size = sizeof_imsm_dev(super->devlist->dev, 0) +
8978                                 (num_members * sizeof(__u32));
8979                         space = xmalloc(size);
8980                         *tail = space;
8981                         tail = space;
8982                         *tail = NULL;
8983                         len = disks_to_mpb_size(num_members * 2);
8984                 }
8985
8986                 break;
8987         }
8988         case update_reshape_container_disks: {
8989                 /* Every raid device in the container is about to
8990                  * gain some more devices, and we will enter a
8991                  * reconfiguration.
8992                  * So each 'imsm_map' will be bigger, and the imsm_vol
8993                  * will now hold 2 of them.
8994                  * Thus we need new 'struct imsm_dev' allocations sized
8995                  * as sizeof_imsm_dev but with more devices in both maps.
8996                  */
8997                 struct imsm_update_reshape *u = (void *)update->buf;
8998                 struct intel_dev *dl;
8999                 void **space_tail = (void**)&update->space_list;
9000
9001                 if (update->len < (int)sizeof(*u))
9002                         return 0;
9003
9004                 dprintf("for update_reshape\n");
9005
9006                 for (dl = super->devlist; dl; dl = dl->next) {
9007                         int size = sizeof_imsm_dev(dl->dev, 1);
9008                         void *s;
9009                         if (u->new_raid_disks > u->old_raid_disks)
9010                                 size += sizeof(__u32)*2*
9011                                         (u->new_raid_disks - u->old_raid_disks);
9012                         s = xmalloc(size);
9013                         *space_tail = s;
9014                         space_tail = s;
9015                         *space_tail = NULL;
9016                 }
9017
9018                 len = disks_to_mpb_size(u->new_raid_disks);
9019                 dprintf("New anchor length is %llu\n", (unsigned long long)len);
9020                 break;
9021         }
9022         case update_reshape_migration: {
9023                 /* for migration level 0->5 we need to add disks
9024                  * so the same as for container operation we will copy
9025                  * device to the bigger location.
9026                  * in memory prepared device and new disk area are prepared
9027                  * for usage in process update
9028                  */
9029                 struct imsm_update_reshape_migration *u = (void *)update->buf;
9030                 struct intel_dev *id;
9031                 void **space_tail = (void **)&update->space_list;
9032                 int size;
9033                 void *s;
9034                 int current_level = -1;
9035
9036                 if (update->len < (int)sizeof(*u))
9037                         return 0;
9038
9039                 dprintf("for update_reshape\n");
9040
9041                 /* add space for bigger array in update
9042                  */
9043                 for (id = super->devlist; id; id = id->next) {
9044                         if (id->index == (unsigned)u->subdev) {
9045                                 size = sizeof_imsm_dev(id->dev, 1);
9046                                 if (u->new_raid_disks > u->old_raid_disks)
9047                                         size += sizeof(__u32)*2*
9048                                         (u->new_raid_disks - u->old_raid_disks);
9049                                 s = xmalloc(size);
9050                                 *space_tail = s;
9051                                 space_tail = s;
9052                                 *space_tail = NULL;
9053                                 break;
9054                         }
9055                 }
9056                 if (update->space_list == NULL)
9057                         break;
9058
9059                 /* add space for disk in update
9060                  */
9061                 size = sizeof(struct dl);
9062                 s = xmalloc(size);
9063                 *space_tail = s;
9064                 space_tail = s;
9065                 *space_tail = NULL;
9066
9067                 /* add spare device to update
9068                  */
9069                 for (id = super->devlist ; id; id = id->next)
9070                         if (id->index == (unsigned)u->subdev) {
9071                                 struct imsm_dev *dev;
9072                                 struct imsm_map *map;
9073
9074                                 dev = get_imsm_dev(super, u->subdev);
9075                                 map = get_imsm_map(dev, MAP_0);
9076                                 current_level = map->raid_level;
9077                                 break;
9078                         }
9079                 if (u->new_level == 5 && u->new_level != current_level) {
9080                         struct mdinfo *spares;
9081
9082                         spares = get_spares_for_grow(st);
9083                         if (spares) {
9084                                 struct dl *dl;
9085                                 struct mdinfo *dev;
9086
9087                                 dev = spares->devs;
9088                                 if (dev) {
9089                                         u->new_disks[0] =
9090                                                 makedev(dev->disk.major,
9091                                                         dev->disk.minor);
9092                                         dl = get_disk_super(super,
9093                                                             dev->disk.major,
9094                                                             dev->disk.minor);
9095                                         dl->index = u->old_raid_disks;
9096                                         dev = dev->next;
9097                                 }
9098                                 sysfs_free(spares);
9099                         }
9100                 }
9101                 len = disks_to_mpb_size(u->new_raid_disks);
9102                 dprintf("New anchor length is %llu\n", (unsigned long long)len);
9103                 break;
9104         }
9105         case update_size_change: {
9106                 if (update->len < (int)sizeof(struct imsm_update_size_change))
9107                         return 0;
9108                 break;
9109         }
9110         case update_activate_spare: {
9111                 if (update->len < (int)sizeof(struct imsm_update_activate_spare))
9112                         return 0;
9113                 break;
9114         }
9115         case update_create_array: {
9116                 struct imsm_update_create_array *u = (void *) update->buf;
9117                 struct intel_dev *dv;
9118                 struct imsm_dev *dev = &u->dev;
9119                 struct imsm_map *map = get_imsm_map(dev, MAP_0);
9120                 struct dl *dl;
9121                 struct disk_info *inf;
9122                 int i;
9123                 int activate = 0;
9124
9125                 if (update->len < (int)sizeof(*u))
9126                         return 0;
9127
9128                 inf = get_disk_info(u);
9129                 len = sizeof_imsm_dev(dev, 1);
9130                 /* allocate a new super->devlist entry */
9131                 dv = xmalloc(sizeof(*dv));
9132                 dv->dev = xmalloc(len);
9133                 update->space = dv;
9134
9135                 /* count how many spares will be converted to members */
9136                 for (i = 0; i < map->num_members; i++) {
9137                         dl = serial_to_dl(inf[i].serial, super);
9138                         if (!dl) {
9139                                 /* hmm maybe it failed?, nothing we can do about
9140                                  * it here
9141                                  */
9142                                 continue;
9143                         }
9144                         if (count_memberships(dl, super) == 0)
9145                                 activate++;
9146                 }
9147                 len += activate * sizeof(struct imsm_disk);
9148                 break;
9149         }
9150         case update_kill_array: {
9151                 if (update->len < (int)sizeof(struct imsm_update_kill_array))
9152                         return 0;
9153                 break;
9154         }
9155         case update_rename_array: {
9156                 if (update->len < (int)sizeof(struct imsm_update_rename_array))
9157                         return 0;
9158                 break;
9159         }
9160         case update_add_remove_disk:
9161                 /* no update->len needed */
9162                 break;
9163         default:
9164                 return 0;
9165         }
9166
9167         /* check if we need a larger metadata buffer */
9168         if (super->next_buf)
9169                 buf_len = super->next_len;
9170         else
9171                 buf_len = super->len;
9172
9173         if (__le32_to_cpu(mpb->mpb_size) + len > buf_len) {
9174                 /* ok we need a larger buf than what is currently allocated
9175                  * if this allocation fails process_update will notice that
9176                  * ->next_len is set and ->next_buf is NULL
9177                  */
9178                 buf_len = ROUND_UP(__le32_to_cpu(mpb->mpb_size) + len,
9179                                   sector_size);
9180                 if (super->next_buf)
9181                         free(super->next_buf);
9182
9183                 super->next_len = buf_len;
9184                 if (posix_memalign(&super->next_buf, sector_size, buf_len) == 0)
9185                         memset(super->next_buf, 0, buf_len);
9186                 else
9187                         super->next_buf = NULL;
9188         }
9189         return 1;
9190 }
9191
9192 /* must be called while manager is quiesced */
9193 static void imsm_delete(struct intel_super *super, struct dl **dlp, unsigned index)
9194 {
9195         struct imsm_super *mpb = super->anchor;
9196         struct dl *iter;
9197         struct imsm_dev *dev;
9198         struct imsm_map *map;
9199         int i, j, num_members;
9200         __u32 ord;
9201
9202         dprintf("deleting device[%d] from imsm_super\n", index);
9203
9204         /* shift all indexes down one */
9205         for (iter = super->disks; iter; iter = iter->next)
9206                 if (iter->index > (int)index)
9207                         iter->index--;
9208         for (iter = super->missing; iter; iter = iter->next)
9209                 if (iter->index > (int)index)
9210                         iter->index--;
9211
9212         for (i = 0; i < mpb->num_raid_devs; i++) {
9213                 dev = get_imsm_dev(super, i);
9214                 map = get_imsm_map(dev, MAP_0);
9215                 num_members = map->num_members;
9216                 for (j = 0; j < num_members; j++) {
9217                         /* update ord entries being careful not to propagate
9218                          * ord-flags to the first map
9219                          */
9220                         ord = get_imsm_ord_tbl_ent(dev, j, MAP_X);
9221
9222                         if (ord_to_idx(ord) <= index)
9223                                 continue;
9224
9225                         map = get_imsm_map(dev, MAP_0);
9226                         set_imsm_ord_tbl_ent(map, j, ord_to_idx(ord - 1));
9227                         map = get_imsm_map(dev, MAP_1);
9228                         if (map)
9229                                 set_imsm_ord_tbl_ent(map, j, ord - 1);
9230                 }
9231         }
9232
9233         mpb->num_disks--;
9234         super->updates_pending++;
9235         if (*dlp) {
9236                 struct dl *dl = *dlp;
9237
9238                 *dlp = (*dlp)->next;
9239                 __free_imsm_disk(dl);
9240         }
9241 }
9242 #endif /* MDASSEMBLE */
9243
9244 static void close_targets(int *targets, int new_disks)
9245 {
9246         int i;
9247
9248         if (!targets)
9249                 return;
9250
9251         for (i = 0; i < new_disks; i++) {
9252                 if (targets[i] >= 0) {
9253                         close(targets[i]);
9254                         targets[i] = -1;
9255                 }
9256         }
9257 }
9258
9259 static int imsm_get_allowed_degradation(int level, int raid_disks,
9260                                         struct intel_super *super,
9261                                         struct imsm_dev *dev)
9262 {
9263         switch (level) {
9264         case 1:
9265         case 10:{
9266                 int ret_val = 0;
9267                 struct imsm_map *map;
9268                 int i;
9269
9270                 ret_val = raid_disks/2;
9271                 /* check map if all disks pairs not failed
9272                  * in both maps
9273                  */
9274                 map = get_imsm_map(dev, MAP_0);
9275                 for (i = 0; i < ret_val; i++) {
9276                         int degradation = 0;
9277                         if (get_imsm_disk(super, i) == NULL)
9278                                 degradation++;
9279                         if (get_imsm_disk(super, i + 1) == NULL)
9280                                 degradation++;
9281                         if (degradation == 2)
9282                                 return 0;
9283                 }
9284                 map = get_imsm_map(dev, MAP_1);
9285                 /* if there is no second map
9286                  * result can be returned
9287                  */
9288                 if (map == NULL)
9289                         return ret_val;
9290                 /* check degradation in second map
9291                  */
9292                 for (i = 0; i < ret_val; i++) {
9293                         int degradation = 0;
9294                 if (get_imsm_disk(super, i) == NULL)
9295                                 degradation++;
9296                         if (get_imsm_disk(super, i + 1) == NULL)
9297                                 degradation++;
9298                         if (degradation == 2)
9299                                 return 0;
9300                 }
9301                 return ret_val;
9302         }
9303         case 5:
9304                 return 1;
9305         case 6:
9306                 return 2;
9307         default:
9308                 return 0;
9309         }
9310 }
9311
9312 /*******************************************************************************
9313  * Function:    open_backup_targets
9314  * Description: Function opens file descriptors for all devices given in
9315  *              info->devs
9316  * Parameters:
9317  *      info            : general array info
9318  *      raid_disks      : number of disks
9319  *      raid_fds        : table of device's file descriptors
9320  *      super           : intel super for raid10 degradation check
9321  *      dev             : intel device for raid10 degradation check
9322  * Returns:
9323  *       0 : success
9324  *      -1 : fail
9325  ******************************************************************************/
9326 int open_backup_targets(struct mdinfo *info, int raid_disks, int *raid_fds,
9327                         struct intel_super *super, struct imsm_dev *dev)
9328 {
9329         struct mdinfo *sd;
9330         int i;
9331         int opened = 0;
9332
9333         for (i = 0; i < raid_disks; i++)
9334                 raid_fds[i] = -1;
9335
9336         for (sd = info->devs ; sd ; sd = sd->next) {
9337                 char *dn;
9338
9339                 if (sd->disk.state & (1<<MD_DISK_FAULTY)) {
9340                         dprintf("disk is faulty!!\n");
9341                         continue;
9342                 }
9343
9344                 if (sd->disk.raid_disk >= raid_disks || sd->disk.raid_disk < 0)
9345                         continue;
9346
9347                 dn = map_dev(sd->disk.major,
9348                              sd->disk.minor, 1);
9349                 raid_fds[sd->disk.raid_disk] = dev_open(dn, O_RDWR);
9350                 if (raid_fds[sd->disk.raid_disk] < 0) {
9351                         pr_err("cannot open component\n");
9352                         continue;
9353                 }
9354                 opened++;
9355         }
9356         /* check if maximum array degradation level is not exceeded
9357         */
9358         if ((raid_disks - opened) >
9359             imsm_get_allowed_degradation(info->new_level, raid_disks,
9360                                          super, dev)) {
9361                 pr_err("Not enough disks can be opened.\n");
9362                 close_targets(raid_fds, raid_disks);
9363                 return -2;
9364         }
9365         return 0;
9366 }
9367
9368 /*******************************************************************************
9369  * Function:    validate_container_imsm
9370  * Description: This routine validates container after assemble,
9371  *              eg. if devices in container are under the same controller.
9372  *
9373  * Parameters:
9374  *      info    : linked list with info about devices used in array
9375  * Returns:
9376  *      1 : HBA mismatch
9377  *      0 : Success
9378  ******************************************************************************/
9379 int validate_container_imsm(struct mdinfo *info)
9380 {
9381         if (check_env("IMSM_NO_PLATFORM"))
9382                 return 0;
9383
9384         struct sys_dev *idev;
9385         struct sys_dev *hba = NULL;
9386         struct sys_dev *intel_devices = find_intel_devices();
9387         char *dev_path = devt_to_devpath(makedev(info->disk.major,
9388                                                                         info->disk.minor));
9389
9390         for (idev = intel_devices; idev; idev = idev->next) {
9391                 if (dev_path && strstr(dev_path, idev->path)) {
9392                         hba = idev;
9393                         break;
9394                 }
9395         }
9396         if (dev_path)
9397                 free(dev_path);
9398
9399         if (!hba) {
9400                 pr_err("WARNING - Cannot detect HBA for device %s!\n",
9401                                 devid2kname(makedev(info->disk.major, info->disk.minor)));
9402                 return 1;
9403         }
9404
9405         const struct imsm_orom *orom = get_orom_by_device_id(hba->dev_id);
9406         struct mdinfo *dev;
9407
9408         for (dev = info->next; dev; dev = dev->next) {
9409                 dev_path = devt_to_devpath(makedev(dev->disk.major, dev->disk.minor));
9410
9411                 struct sys_dev *hba2 = NULL;
9412                 for (idev = intel_devices; idev; idev = idev->next) {
9413                         if (dev_path && strstr(dev_path, idev->path)) {
9414                                 hba2 = idev;
9415                                 break;
9416                         }
9417                 }
9418                 if (dev_path)
9419                         free(dev_path);
9420
9421                 const struct imsm_orom *orom2 = hba2 == NULL ? NULL :
9422                                 get_orom_by_device_id(hba2->dev_id);
9423
9424                 if (hba2 && hba->type != hba2->type) {
9425                         pr_err("WARNING - HBAs of devices do not match %s != %s\n",
9426                                 get_sys_dev_type(hba->type), get_sys_dev_type(hba2->type));
9427                         return 1;
9428                 }
9429
9430                 if (orom != orom2) {
9431                         pr_err("WARNING - IMSM container assembled with disks under different HBAs!\n"
9432                                 "       This operation is not supported and can lead to data loss.\n");
9433                         return 1;
9434                 }
9435
9436                 if (!orom) {
9437                         pr_err("WARNING - IMSM container assembled with disks under HBAs without IMSM platform support!\n"
9438                                 "       This operation is not supported and can lead to data loss.\n");
9439                         return 1;
9440                 }
9441         }
9442
9443         return 0;
9444 }
9445 #ifndef MDASSEMBLE
9446 /*******************************************************************************
9447  * Function:    init_migr_record_imsm
9448  * Description: Function inits imsm migration record
9449  * Parameters:
9450  *      super   : imsm internal array info
9451  *      dev     : device under migration
9452  *      info    : general array info to find the smallest device
9453  * Returns:
9454  *      none
9455  ******************************************************************************/
9456 void init_migr_record_imsm(struct supertype *st, struct imsm_dev *dev,
9457                            struct mdinfo *info)
9458 {
9459         struct intel_super *super = st->sb;
9460         struct migr_record *migr_rec = super->migr_rec;
9461         int new_data_disks;
9462         unsigned long long dsize, dev_sectors;
9463         long long unsigned min_dev_sectors = -1LLU;
9464         struct mdinfo *sd;
9465         char nm[30];
9466         int fd;
9467         struct imsm_map *map_dest = get_imsm_map(dev, MAP_0);
9468         struct imsm_map *map_src = get_imsm_map(dev, MAP_1);
9469         unsigned long long num_migr_units;
9470         unsigned long long array_blocks;
9471
9472         memset(migr_rec, 0, sizeof(struct migr_record));
9473         migr_rec->family_num = __cpu_to_le32(super->anchor->family_num);
9474
9475         /* only ascending reshape supported now */
9476         migr_rec->ascending_migr = __cpu_to_le32(1);
9477
9478         migr_rec->dest_depth_per_unit = GEN_MIGR_AREA_SIZE /
9479                 max(map_dest->blocks_per_strip, map_src->blocks_per_strip);
9480         migr_rec->dest_depth_per_unit *=
9481                 max(map_dest->blocks_per_strip, map_src->blocks_per_strip);
9482         new_data_disks = imsm_num_data_members(dev, MAP_0);
9483         migr_rec->blocks_per_unit =
9484                 __cpu_to_le32(migr_rec->dest_depth_per_unit * new_data_disks);
9485         migr_rec->dest_depth_per_unit =
9486                 __cpu_to_le32(migr_rec->dest_depth_per_unit);
9487         array_blocks = info->component_size * new_data_disks;
9488         num_migr_units =
9489                 array_blocks / __le32_to_cpu(migr_rec->blocks_per_unit);
9490
9491         if (array_blocks % __le32_to_cpu(migr_rec->blocks_per_unit))
9492                 num_migr_units++;
9493         migr_rec->num_migr_units = __cpu_to_le32(num_migr_units);
9494
9495         migr_rec->post_migr_vol_cap =  dev->size_low;
9496         migr_rec->post_migr_vol_cap_hi = dev->size_high;
9497
9498         /* Find the smallest dev */
9499         for (sd = info->devs ; sd ; sd = sd->next) {
9500                 sprintf(nm, "%d:%d", sd->disk.major, sd->disk.minor);
9501                 fd = dev_open(nm, O_RDONLY);
9502                 if (fd < 0)
9503                         continue;
9504                 get_dev_size(fd, NULL, &dsize);
9505                 dev_sectors = dsize / 512;
9506                 if (dev_sectors < min_dev_sectors)
9507                         min_dev_sectors = dev_sectors;
9508                 close(fd);
9509         }
9510         migr_rec->ckpt_area_pba = __cpu_to_le32(min_dev_sectors -
9511                                         RAID_DISK_RESERVED_BLOCKS_IMSM_HI);
9512
9513         write_imsm_migr_rec(st);
9514
9515         return;
9516 }
9517
9518 /*******************************************************************************
9519  * Function:    save_backup_imsm
9520  * Description: Function saves critical data stripes to Migration Copy Area
9521  *              and updates the current migration unit status.
9522  *              Use restore_stripes() to form a destination stripe,
9523  *              and to write it to the Copy Area.
9524  * Parameters:
9525  *      st              : supertype information
9526  *      dev             : imsm device that backup is saved for
9527  *      info            : general array info
9528  *      buf             : input buffer
9529  *      length          : length of data to backup (blocks_per_unit)
9530  * Returns:
9531  *       0 : success
9532  *,     -1 : fail
9533  ******************************************************************************/
9534 int save_backup_imsm(struct supertype *st,
9535                      struct imsm_dev *dev,
9536                      struct mdinfo *info,
9537                      void *buf,
9538                      int length)
9539 {
9540         int rv = -1;
9541         struct intel_super *super = st->sb;
9542         unsigned long long *target_offsets;
9543         int *targets;
9544         int i;
9545         struct imsm_map *map_dest = get_imsm_map(dev, MAP_0);
9546         int new_disks = map_dest->num_members;
9547         int dest_layout = 0;
9548         int dest_chunk;
9549         unsigned long long start;
9550         int data_disks = imsm_num_data_members(dev, MAP_0);
9551
9552         targets = xmalloc(new_disks * sizeof(int));
9553
9554         for (i = 0; i < new_disks; i++)
9555                 targets[i] = -1;
9556
9557         target_offsets = xcalloc(new_disks, sizeof(unsigned long long));
9558
9559         start = info->reshape_progress * 512;
9560         for (i = 0; i < new_disks; i++) {
9561                 target_offsets[i] = (unsigned long long)
9562                   __le32_to_cpu(super->migr_rec->ckpt_area_pba) * 512;
9563                 /* move back copy area adderss, it will be moved forward
9564                  * in restore_stripes() using start input variable
9565                  */
9566                 target_offsets[i] -= start/data_disks;
9567         }
9568
9569         if (open_backup_targets(info, new_disks, targets,
9570                                 super, dev))
9571                 goto abort;
9572
9573         dest_layout = imsm_level_to_layout(map_dest->raid_level);
9574         dest_chunk = __le16_to_cpu(map_dest->blocks_per_strip) * 512;
9575
9576         if (restore_stripes(targets, /* list of dest devices */
9577                             target_offsets, /* migration record offsets */
9578                             new_disks,
9579                             dest_chunk,
9580                             map_dest->raid_level,
9581                             dest_layout,
9582                             -1,    /* source backup file descriptor */
9583                             0,     /* input buf offset
9584                                     * always 0 buf is already offseted */
9585                             start,
9586                             length,
9587                             buf) != 0) {
9588                 pr_err("Error restoring stripes\n");
9589                 goto abort;
9590         }
9591
9592         rv = 0;
9593
9594 abort:
9595         if (targets) {
9596                 close_targets(targets, new_disks);
9597                 free(targets);
9598         }
9599         free(target_offsets);
9600
9601         return rv;
9602 }
9603
9604 /*******************************************************************************
9605  * Function:    save_checkpoint_imsm
9606  * Description: Function called for current unit status update
9607  *              in the migration record. It writes it to disk.
9608  * Parameters:
9609  *      super   : imsm internal array info
9610  *      info    : general array info
9611  * Returns:
9612  *      0: success
9613  *      1: failure
9614  *      2: failure, means no valid migration record
9615  *                 / no general migration in progress /
9616  ******************************************************************************/
9617 int save_checkpoint_imsm(struct supertype *st, struct mdinfo *info, int state)
9618 {
9619         struct intel_super *super = st->sb;
9620         unsigned long long blocks_per_unit;
9621         unsigned long long curr_migr_unit;
9622
9623         if (load_imsm_migr_rec(super, info) != 0) {
9624                 dprintf("imsm: ERROR: Cannot read migration record for checkpoint save.\n");
9625                 return 1;
9626         }
9627
9628         blocks_per_unit = __le32_to_cpu(super->migr_rec->blocks_per_unit);
9629         if (blocks_per_unit == 0) {
9630                 dprintf("imsm: no migration in progress.\n");
9631                 return 2;
9632         }
9633         curr_migr_unit = info->reshape_progress / blocks_per_unit;
9634         /* check if array is alligned to copy area
9635          * if it is not alligned, add one to current migration unit value
9636          * this can happend on array reshape finish only
9637          */
9638         if (info->reshape_progress % blocks_per_unit)
9639                 curr_migr_unit++;
9640
9641         super->migr_rec->curr_migr_unit =
9642                 __cpu_to_le32(curr_migr_unit);
9643         super->migr_rec->rec_status = __cpu_to_le32(state);
9644         super->migr_rec->dest_1st_member_lba =
9645                 __cpu_to_le32(curr_migr_unit *
9646                               __le32_to_cpu(super->migr_rec->dest_depth_per_unit));
9647         if (write_imsm_migr_rec(st) < 0) {
9648                 dprintf("imsm: Cannot write migration record outside backup area\n");
9649                 return 1;
9650         }
9651
9652         return 0;
9653 }
9654
9655 /*******************************************************************************
9656  * Function:    recover_backup_imsm
9657  * Description: Function recovers critical data from the Migration Copy Area
9658  *              while assembling an array.
9659  * Parameters:
9660  *      super   : imsm internal array info
9661  *      info    : general array info
9662  * Returns:
9663  *      0 : success (or there is no data to recover)
9664  *      1 : fail
9665  ******************************************************************************/
9666 int recover_backup_imsm(struct supertype *st, struct mdinfo *info)
9667 {
9668         struct intel_super *super = st->sb;
9669         struct migr_record *migr_rec = super->migr_rec;
9670         struct imsm_map *map_dest;
9671         struct intel_dev *id = NULL;
9672         unsigned long long read_offset;
9673         unsigned long long write_offset;
9674         unsigned unit_len;
9675         int *targets = NULL;
9676         int new_disks, i, err;
9677         char *buf = NULL;
9678         int retval = 1;
9679         unsigned int sector_size = super->sector_size;
9680         unsigned long curr_migr_unit = __le32_to_cpu(migr_rec->curr_migr_unit);
9681         unsigned long num_migr_units = __le32_to_cpu(migr_rec->num_migr_units);
9682         char buffer[20];
9683         int skipped_disks = 0;
9684
9685         err = sysfs_get_str(info, NULL, "array_state", (char *)buffer, 20);
9686         if (err < 1)
9687                 return 1;
9688
9689         /* recover data only during assemblation */
9690         if (strncmp(buffer, "inactive", 8) != 0)
9691                 return 0;
9692         /* no data to recover */
9693         if (__le32_to_cpu(migr_rec->rec_status) == UNIT_SRC_NORMAL)
9694                 return 0;
9695         if (curr_migr_unit >= num_migr_units)
9696                 return 1;
9697
9698         /* find device during reshape */
9699         for (id = super->devlist; id; id = id->next)
9700                 if (is_gen_migration(id->dev))
9701                         break;
9702         if (id == NULL)
9703                 return 1;
9704
9705         map_dest = get_imsm_map(id->dev, MAP_0);
9706         new_disks = map_dest->num_members;
9707
9708         read_offset = (unsigned long long)
9709                         __le32_to_cpu(migr_rec->ckpt_area_pba) * 512;
9710
9711         write_offset = ((unsigned long long)
9712                         __le32_to_cpu(migr_rec->dest_1st_member_lba) +
9713                         pba_of_lba0(map_dest)) * 512;
9714
9715         unit_len = __le32_to_cpu(migr_rec->dest_depth_per_unit) * 512;
9716         if (posix_memalign((void **)&buf, sector_size, unit_len) != 0)
9717                 goto abort;
9718         targets = xcalloc(new_disks, sizeof(int));
9719
9720         if (open_backup_targets(info, new_disks, targets, super, id->dev)) {
9721                 pr_err("Cannot open some devices belonging to array.\n");
9722                 goto abort;
9723         }
9724
9725         for (i = 0; i < new_disks; i++) {
9726                 if (targets[i] < 0) {
9727                         skipped_disks++;
9728                         continue;
9729                 }
9730                 if (lseek64(targets[i], read_offset, SEEK_SET) < 0) {
9731                         pr_err("Cannot seek to block: %s\n",
9732                                strerror(errno));
9733                         skipped_disks++;
9734                         continue;
9735                 }
9736                 if ((unsigned)read(targets[i], buf, unit_len) != unit_len) {
9737                         pr_err("Cannot read copy area block: %s\n",
9738                                strerror(errno));
9739                         skipped_disks++;
9740                         continue;
9741                 }
9742                 if (lseek64(targets[i], write_offset, SEEK_SET) < 0) {
9743                         pr_err("Cannot seek to block: %s\n",
9744                                strerror(errno));
9745                         skipped_disks++;
9746                         continue;
9747                 }
9748                 if ((unsigned)write(targets[i], buf, unit_len) != unit_len) {
9749                         pr_err("Cannot restore block: %s\n",
9750                                strerror(errno));
9751                         skipped_disks++;
9752                         continue;
9753                 }
9754         }
9755
9756         if (skipped_disks > imsm_get_allowed_degradation(info->new_level,
9757                                                          new_disks,
9758                                                          super,
9759                                                          id->dev)) {
9760                 pr_err("Cannot restore data from backup. Too many failed disks\n");
9761                 goto abort;
9762         }
9763
9764         if (save_checkpoint_imsm(st, info, UNIT_SRC_NORMAL)) {
9765                 /* ignore error == 2, this can mean end of reshape here
9766                  */
9767                 dprintf("imsm: Cannot write checkpoint to migration record (UNIT_SRC_NORMAL) during restart\n");
9768         } else
9769                 retval = 0;
9770
9771 abort:
9772         if (targets) {
9773                 for (i = 0; i < new_disks; i++)
9774                         if (targets[i])
9775                                 close(targets[i]);
9776                 free(targets);
9777         }
9778         free(buf);
9779         return retval;
9780 }
9781
9782 static char disk_by_path[] = "/dev/disk/by-path/";
9783
9784 static const char *imsm_get_disk_controller_domain(const char *path)
9785 {
9786         char disk_path[PATH_MAX];
9787         char *drv=NULL;
9788         struct stat st;
9789
9790         strcpy(disk_path, disk_by_path);
9791         strncat(disk_path, path, PATH_MAX - strlen(disk_path) - 1);
9792         if (stat(disk_path, &st) == 0) {
9793                 struct sys_dev* hba;
9794                 char *path;
9795
9796                 path = devt_to_devpath(st.st_rdev);
9797                 if (path == NULL)
9798                         return "unknown";
9799                 hba = find_disk_attached_hba(-1, path);
9800                 if (hba && hba->type == SYS_DEV_SAS)
9801                         drv = "isci";
9802                 else if (hba && hba->type == SYS_DEV_SATA)
9803                         drv = "ahci";
9804                 else
9805                         drv = "unknown";
9806                 dprintf("path: %s hba: %s attached: %s\n",
9807                         path, (hba) ? hba->path : "NULL", drv);
9808                 free(path);
9809         }
9810         return drv;
9811 }
9812
9813 static char *imsm_find_array_devnm_by_subdev(int subdev, char *container)
9814 {
9815         static char devnm[32];
9816         char subdev_name[20];
9817         struct mdstat_ent *mdstat;
9818
9819         sprintf(subdev_name, "%d", subdev);
9820         mdstat = mdstat_by_subdev(subdev_name, container);
9821         if (!mdstat)
9822                 return NULL;
9823
9824         strcpy(devnm, mdstat->devnm);
9825         free_mdstat(mdstat);
9826         return devnm;
9827 }
9828
9829 static int imsm_reshape_is_allowed_on_container(struct supertype *st,
9830                                                 struct geo_params *geo,
9831                                                 int *old_raid_disks,
9832                                                 int direction)
9833 {
9834         /* currently we only support increasing the number of devices
9835          * for a container.  This increases the number of device for each
9836          * member array.  They must all be RAID0 or RAID5.
9837          */
9838         int ret_val = 0;
9839         struct mdinfo *info, *member;
9840         int devices_that_can_grow = 0;
9841
9842         dprintf("imsm: imsm_reshape_is_allowed_on_container(ENTER): st->devnm = (%s)\n", st->devnm);
9843
9844         if (geo->size > 0 ||
9845             geo->level != UnSet ||
9846             geo->layout != UnSet ||
9847             geo->chunksize != 0 ||
9848             geo->raid_disks == UnSet) {
9849                 dprintf("imsm: Container operation is allowed for raid disks number change only.\n");
9850                 return ret_val;
9851         }
9852
9853         if (direction == ROLLBACK_METADATA_CHANGES) {
9854                 dprintf("imsm: Metadata changes rollback is not supported for container operation.\n");
9855                 return ret_val;
9856         }
9857
9858         info = container_content_imsm(st, NULL);
9859         for (member = info; member; member = member->next) {
9860                 char *result;
9861
9862                 dprintf("imsm: checking device_num: %i\n",
9863                         member->container_member);
9864
9865                 if (geo->raid_disks <= member->array.raid_disks) {
9866                         /* we work on container for Online Capacity Expansion
9867                          * only so raid_disks has to grow
9868                          */
9869                         dprintf("imsm: for container operation raid disks increase is required\n");
9870                         break;
9871                 }
9872
9873                 if (info->array.level != 0 && info->array.level != 5) {
9874                         /* we cannot use this container with other raid level
9875                          */
9876                         dprintf("imsm: for container operation wrong raid level (%i) detected\n",
9877                                 info->array.level);
9878                         break;
9879                 } else {
9880                         /* check for platform support
9881                          * for this raid level configuration
9882                          */
9883                         struct intel_super *super = st->sb;
9884                         if (!is_raid_level_supported(super->orom,
9885                                                      member->array.level,
9886                                                      geo->raid_disks)) {
9887                                 dprintf("platform does not support raid%d with %d disk%s\n",
9888                                          info->array.level,
9889                                          geo->raid_disks,
9890                                          geo->raid_disks > 1 ? "s" : "");
9891                                 break;
9892                         }
9893                         /* check if component size is aligned to chunk size
9894                          */
9895                         if (info->component_size %
9896                             (info->array.chunk_size/512)) {
9897                                 dprintf("Component size is not aligned to chunk size\n");
9898                                 break;
9899                         }
9900                 }
9901
9902                 if (*old_raid_disks &&
9903                     info->array.raid_disks != *old_raid_disks)
9904                         break;
9905                 *old_raid_disks = info->array.raid_disks;
9906
9907                 /* All raid5 and raid0 volumes in container
9908                  * have to be ready for Online Capacity Expansion
9909                  * so they need to be assembled.  We have already
9910                  * checked that no recovery etc is happening.
9911                  */
9912                 result = imsm_find_array_devnm_by_subdev(member->container_member,
9913                                                          st->container_devnm);
9914                 if (result == NULL) {
9915                         dprintf("imsm: cannot find array\n");
9916                         break;
9917                 }
9918                 devices_that_can_grow++;
9919         }
9920         sysfs_free(info);
9921         if (!member && devices_that_can_grow)
9922                 ret_val = 1;
9923
9924         if (ret_val)
9925                 dprintf("Container operation allowed\n");
9926         else
9927                 dprintf("Error: %i\n", ret_val);
9928
9929         return ret_val;
9930 }
9931
9932 /* Function: get_spares_for_grow
9933  * Description: Allocates memory and creates list of spare devices
9934  *              avaliable in container. Checks if spare drive size is acceptable.
9935  * Parameters: Pointer to the supertype structure
9936  * Returns: Pointer to the list of spare devices (mdinfo structure) on success,
9937  *              NULL if fail
9938  */
9939 static struct mdinfo *get_spares_for_grow(struct supertype *st)
9940 {
9941         unsigned long long min_size = min_acceptable_spare_size_imsm(st);
9942         return container_choose_spares(st, min_size, NULL, NULL, NULL, 0);
9943 }
9944
9945 /******************************************************************************
9946  * function: imsm_create_metadata_update_for_reshape
9947  * Function creates update for whole IMSM container.
9948  *
9949  ******************************************************************************/
9950 static int imsm_create_metadata_update_for_reshape(
9951         struct supertype *st,
9952         struct geo_params *geo,
9953         int old_raid_disks,
9954         struct imsm_update_reshape **updatep)
9955 {
9956         struct intel_super *super = st->sb;
9957         struct imsm_super *mpb = super->anchor;
9958         int update_memory_size;
9959         struct imsm_update_reshape *u;
9960         struct mdinfo *spares;
9961         int i;
9962         int delta_disks;
9963         struct mdinfo *dev;
9964
9965         dprintf("(enter) raid_disks = %i\n", geo->raid_disks);
9966
9967         delta_disks = geo->raid_disks - old_raid_disks;
9968
9969         /* size of all update data without anchor */
9970         update_memory_size = sizeof(struct imsm_update_reshape);
9971
9972         /* now add space for spare disks that we need to add. */
9973         update_memory_size += sizeof(u->new_disks[0]) * (delta_disks - 1);
9974
9975         u = xcalloc(1, update_memory_size);
9976         u->type = update_reshape_container_disks;
9977         u->old_raid_disks = old_raid_disks;
9978         u->new_raid_disks = geo->raid_disks;
9979
9980         /* now get spare disks list
9981          */
9982         spares = get_spares_for_grow(st);
9983
9984         if (spares == NULL
9985             || delta_disks > spares->array.spare_disks) {
9986                 pr_err("imsm: ERROR: Cannot get spare devices for %s.\n", geo->dev_name);
9987                 i = -1;
9988                 goto abort;
9989         }
9990
9991         /* we have got spares
9992          * update disk list in imsm_disk list table in anchor
9993          */
9994         dprintf("imsm: %i spares are available.\n\n",
9995                 spares->array.spare_disks);
9996
9997         dev = spares->devs;
9998         for (i = 0; i < delta_disks; i++) {
9999                 struct dl *dl;
10000
10001                 if (dev == NULL)
10002                         break;
10003                 u->new_disks[i] = makedev(dev->disk.major,
10004                                           dev->disk.minor);
10005                 dl = get_disk_super(super, dev->disk.major, dev->disk.minor);
10006                 dl->index = mpb->num_disks;
10007                 mpb->num_disks++;
10008                 dev = dev->next;
10009         }
10010
10011 abort:
10012         /* free spares
10013          */
10014         sysfs_free(spares);
10015
10016         dprintf("imsm: reshape update preparation :");
10017         if (i == delta_disks) {
10018                 dprintf_cont(" OK\n");
10019                 *updatep = u;
10020                 return update_memory_size;
10021         }
10022         free(u);
10023         dprintf_cont(" Error\n");
10024
10025         return 0;
10026 }
10027
10028 /******************************************************************************
10029  * function: imsm_create_metadata_update_for_size_change()
10030  *           Creates update for IMSM array for array size change.
10031  *
10032  ******************************************************************************/
10033 static int imsm_create_metadata_update_for_size_change(
10034                                 struct supertype *st,
10035                                 struct geo_params *geo,
10036                                 struct imsm_update_size_change **updatep)
10037 {
10038         struct intel_super *super = st->sb;
10039         int update_memory_size;
10040         struct imsm_update_size_change *u;
10041
10042         dprintf("(enter) New size = %llu\n", geo->size);
10043
10044         /* size of all update data without anchor */
10045         update_memory_size = sizeof(struct imsm_update_size_change);
10046
10047         u = xcalloc(1, update_memory_size);
10048         u->type = update_size_change;
10049         u->subdev = super->current_vol;
10050         u->new_size = geo->size;
10051
10052         dprintf("imsm: reshape update preparation : OK\n");
10053         *updatep = u;
10054
10055         return update_memory_size;
10056 }
10057
10058 /******************************************************************************
10059  * function: imsm_create_metadata_update_for_migration()
10060  *           Creates update for IMSM array.
10061  *
10062  ******************************************************************************/
10063 static int imsm_create_metadata_update_for_migration(
10064                                         struct supertype *st,
10065                                         struct geo_params *geo,
10066                                         struct imsm_update_reshape_migration **updatep)
10067 {
10068         struct intel_super *super = st->sb;
10069         int update_memory_size;
10070         struct imsm_update_reshape_migration *u;
10071         struct imsm_dev *dev;
10072         int previous_level = -1;
10073
10074         dprintf("(enter) New Level = %i\n", geo->level);
10075
10076         /* size of all update data without anchor */
10077         update_memory_size = sizeof(struct imsm_update_reshape_migration);
10078
10079         u = xcalloc(1, update_memory_size);
10080         u->type = update_reshape_migration;
10081         u->subdev = super->current_vol;
10082         u->new_level = geo->level;
10083         u->new_layout = geo->layout;
10084         u->new_raid_disks = u->old_raid_disks = geo->raid_disks;
10085         u->new_disks[0] = -1;
10086         u->new_chunksize = -1;
10087
10088         dev = get_imsm_dev(super, u->subdev);
10089         if (dev) {
10090                 struct imsm_map *map;
10091
10092                 map = get_imsm_map(dev, MAP_0);
10093                 if (map) {
10094                         int current_chunk_size =
10095                                 __le16_to_cpu(map->blocks_per_strip) / 2;
10096
10097                         if (geo->chunksize != current_chunk_size) {
10098                                 u->new_chunksize = geo->chunksize / 1024;
10099                                 dprintf("imsm: chunk size change from %i to %i\n",
10100                                         current_chunk_size, u->new_chunksize);
10101                         }
10102                         previous_level = map->raid_level;
10103                 }
10104         }
10105         if (geo->level == 5 && previous_level == 0) {
10106                 struct mdinfo *spares = NULL;
10107
10108                 u->new_raid_disks++;
10109                 spares = get_spares_for_grow(st);
10110                 if (spares == NULL || spares->array.spare_disks < 1) {
10111                         free(u);
10112                         sysfs_free(spares);
10113                         update_memory_size = 0;
10114                         dprintf("error: cannot get spare device for requested migration");
10115                         return 0;
10116                 }
10117                 sysfs_free(spares);
10118         }
10119         dprintf("imsm: reshape update preparation : OK\n");
10120         *updatep = u;
10121
10122         return update_memory_size;
10123 }
10124
10125 static void imsm_update_metadata_locally(struct supertype *st,
10126                                          void *buf, int len)
10127 {
10128         struct metadata_update mu;
10129
10130         mu.buf = buf;
10131         mu.len = len;
10132         mu.space = NULL;
10133         mu.space_list = NULL;
10134         mu.next = NULL;
10135         if (imsm_prepare_update(st, &mu))
10136                 imsm_process_update(st, &mu);
10137
10138         while (mu.space_list) {
10139                 void **space = mu.space_list;
10140                 mu.space_list = *space;
10141                 free(space);
10142         }
10143 }
10144
10145 /***************************************************************************
10146 * Function:     imsm_analyze_change
10147 * Description:  Function analyze change for single volume
10148 *               and validate if transition is supported
10149 * Parameters:   Geometry parameters, supertype structure,
10150 *               metadata change direction (apply/rollback)
10151 * Returns:      Operation type code on success, -1 if fail
10152 ****************************************************************************/
10153 enum imsm_reshape_type imsm_analyze_change(struct supertype *st,
10154                                            struct geo_params *geo,
10155                                            int direction)
10156 {
10157         struct mdinfo info;
10158         int change = -1;
10159         int check_devs = 0;
10160         int chunk;
10161         /* number of added/removed disks in operation result */
10162         int devNumChange = 0;
10163         /* imsm compatible layout value for array geometry verification */
10164         int imsm_layout = -1;
10165         int data_disks;
10166         struct imsm_dev *dev;
10167         struct intel_super *super;
10168         unsigned long long current_size;
10169         unsigned long long free_size;
10170         unsigned long long max_size;
10171         int rv;
10172
10173         getinfo_super_imsm_volume(st, &info, NULL);
10174         if (geo->level != info.array.level && geo->level >= 0 &&
10175             geo->level != UnSet) {
10176                 switch (info.array.level) {
10177                 case 0:
10178                         if (geo->level == 5) {
10179                                 change = CH_MIGRATION;
10180                                 if (geo->layout != ALGORITHM_LEFT_ASYMMETRIC) {
10181                                         pr_err("Error. Requested Layout not supported (left-asymmetric layout is supported only)!\n");
10182                                         change = -1;
10183                                         goto analyse_change_exit;
10184                                 }
10185                                 imsm_layout =  geo->layout;
10186                                 check_devs = 1;
10187                                 devNumChange = 1; /* parity disk added */
10188                         } else if (geo->level == 10) {
10189                                 change = CH_TAKEOVER;
10190                                 check_devs = 1;
10191                                 devNumChange = 2; /* two mirrors added */
10192                                 imsm_layout = 0x102; /* imsm supported layout */
10193                         }
10194                         break;
10195                 case 1:
10196                 case 10:
10197                         if (geo->level == 0) {
10198                                 change = CH_TAKEOVER;
10199                                 check_devs = 1;
10200                                 devNumChange = -(geo->raid_disks/2);
10201                                 imsm_layout = 0; /* imsm raid0 layout */
10202                         }
10203                         break;
10204                 }
10205                 if (change == -1) {
10206                         pr_err("Error. Level Migration from %d to %d not supported!\n",
10207                                info.array.level, geo->level);
10208                         goto analyse_change_exit;
10209                 }
10210         } else
10211                 geo->level = info.array.level;
10212
10213         if (geo->layout != info.array.layout &&
10214             (geo->layout != UnSet && geo->layout != -1)) {
10215                 change = CH_MIGRATION;
10216                 if (info.array.layout == 0 && info.array.level == 5 &&
10217                     geo->layout == 5) {
10218                         /* reshape 5 -> 4 */
10219                 } else if (info.array.layout == 5 && info.array.level == 5 &&
10220                            geo->layout == 0) {
10221                         /* reshape 4 -> 5 */
10222                         geo->layout = 0;
10223                         geo->level = 5;
10224                 } else {
10225                         pr_err("Error. Layout Migration from %d to %d not supported!\n",
10226                                info.array.layout, geo->layout);
10227                         change = -1;
10228                         goto analyse_change_exit;
10229                 }
10230         } else {
10231                 geo->layout = info.array.layout;
10232                 if (imsm_layout == -1)
10233                         imsm_layout = info.array.layout;
10234         }
10235
10236         if (geo->chunksize > 0 && geo->chunksize != UnSet &&
10237             geo->chunksize != info.array.chunk_size) {
10238                 if (info.array.level == 10) {
10239                         pr_err("Error. Chunk size change for RAID 10 is not supported.\n");
10240                         change = -1;
10241                         goto analyse_change_exit;
10242                 }
10243                 change = CH_MIGRATION;
10244         } else {
10245                 geo->chunksize = info.array.chunk_size;
10246         }
10247
10248         chunk = geo->chunksize / 1024;
10249
10250         super = st->sb;
10251         dev = get_imsm_dev(super, super->current_vol);
10252         data_disks = imsm_num_data_members(dev , MAP_0);
10253         /* compute current size per disk member
10254          */
10255         current_size = info.custom_array_size / data_disks;
10256
10257         if (geo->size > 0 && geo->size != MAX_SIZE) {
10258                 /* align component size
10259                  */
10260                 geo->size = imsm_component_size_aligment_check(
10261                                     get_imsm_raid_level(dev->vol.map),
10262                                     chunk * 1024, super->sector_size,
10263                                     geo->size * 2);
10264                 if (geo->size == 0) {
10265                         pr_err("Error. Size expansion is supported only (current size is %llu, requested size /rounded/ is 0).\n",
10266                                    current_size);
10267                         goto analyse_change_exit;
10268                 }
10269         }
10270
10271         if (current_size != geo->size && geo->size > 0) {
10272                 if (change != -1) {
10273                         pr_err("Error. Size change should be the only one at a time.\n");
10274                         change = -1;
10275                         goto analyse_change_exit;
10276                 }
10277                 if ((super->current_vol + 1) != super->anchor->num_raid_devs) {
10278                         pr_err("Error. The last volume in container can be expanded only (%i/%s).\n",
10279                                super->current_vol, st->devnm);
10280                         goto analyse_change_exit;
10281                 }
10282                 /* check the maximum available size
10283                  */
10284                 rv =  imsm_get_free_size(st, dev->vol.map->num_members,
10285                                          0, chunk, &free_size);
10286                 if (rv == 0)
10287                         /* Cannot find maximum available space
10288                          */
10289                         max_size = 0;
10290                 else {
10291                         max_size = free_size + current_size;
10292                         /* align component size
10293                          */
10294                         max_size = imsm_component_size_aligment_check(
10295                                         get_imsm_raid_level(dev->vol.map),
10296                                         chunk * 1024, super->sector_size,
10297                                         max_size);
10298                 }
10299                 if (geo->size == MAX_SIZE) {
10300                         /* requested size change to the maximum available size
10301                          */
10302                         if (max_size == 0) {
10303                                 pr_err("Error. Cannot find maximum available space.\n");
10304                                 change = -1;
10305                                 goto analyse_change_exit;
10306                         } else
10307                                 geo->size = max_size;
10308                 }
10309
10310                 if (direction == ROLLBACK_METADATA_CHANGES) {
10311                         /* accept size for rollback only
10312                         */
10313                 } else {
10314                         /* round size due to metadata compatibility
10315                         */
10316                         geo->size = (geo->size >> SECT_PER_MB_SHIFT)
10317                                     << SECT_PER_MB_SHIFT;
10318                         dprintf("Prepare update for size change to %llu\n",
10319                                 geo->size );
10320                         if (current_size >= geo->size) {
10321                                 pr_err("Error. Size expansion is supported only (current size is %llu, requested size /rounded/ is %llu).\n",
10322                                        current_size, geo->size);
10323                                 goto analyse_change_exit;
10324                         }
10325                         if (max_size && geo->size > max_size) {
10326                                 pr_err("Error. Requested size is larger than maximum available size (maximum available size is %llu, requested size /rounded/ is %llu).\n",
10327                                        max_size, geo->size);
10328                                 goto analyse_change_exit;
10329                         }
10330                 }
10331                 geo->size *= data_disks;
10332                 geo->raid_disks = dev->vol.map->num_members;
10333                 change = CH_ARRAY_SIZE;
10334         }
10335         if (!validate_geometry_imsm(st,
10336                                     geo->level,
10337                                     imsm_layout,
10338                                     geo->raid_disks + devNumChange,
10339                                     &chunk,
10340                                     geo->size, INVALID_SECTORS,
10341                                     0, 0, 1))
10342                 change = -1;
10343
10344         if (check_devs) {
10345                 struct intel_super *super = st->sb;
10346                 struct imsm_super *mpb = super->anchor;
10347
10348                 if (mpb->num_raid_devs > 1) {
10349                         pr_err("Error. Cannot perform operation on %s- for this operation it MUST be single array in container\n",
10350                                geo->dev_name);
10351                         change = -1;
10352                 }
10353         }
10354
10355 analyse_change_exit:
10356         if (direction == ROLLBACK_METADATA_CHANGES &&
10357             (change == CH_MIGRATION || change == CH_TAKEOVER)) {
10358                 dprintf("imsm: Metadata changes rollback is not supported for migration and takeover operations.\n");
10359                 change = -1;
10360         }
10361         return change;
10362 }
10363
10364 int imsm_takeover(struct supertype *st, struct geo_params *geo)
10365 {
10366         struct intel_super *super = st->sb;
10367         struct imsm_update_takeover *u;
10368
10369         u = xmalloc(sizeof(struct imsm_update_takeover));
10370
10371         u->type = update_takeover;
10372         u->subarray = super->current_vol;
10373
10374         /* 10->0 transition */
10375         if (geo->level == 0)
10376                 u->direction = R10_TO_R0;
10377
10378         /* 0->10 transition */
10379         if (geo->level == 10)
10380                 u->direction = R0_TO_R10;
10381
10382         /* update metadata locally */
10383         imsm_update_metadata_locally(st, u,
10384                                         sizeof(struct imsm_update_takeover));
10385         /* and possibly remotely */
10386         if (st->update_tail)
10387                 append_metadata_update(st, u,
10388                                         sizeof(struct imsm_update_takeover));
10389         else
10390                 free(u);
10391
10392         return 0;
10393 }
10394
10395 static int imsm_reshape_super(struct supertype *st, unsigned long long size,
10396                               int level,
10397                               int layout, int chunksize, int raid_disks,
10398                               int delta_disks, char *backup, char *dev,
10399                               int direction, int verbose)
10400 {
10401         int ret_val = 1;
10402         struct geo_params geo;
10403
10404         dprintf("(enter)\n");
10405
10406         memset(&geo, 0, sizeof(struct geo_params));
10407
10408         geo.dev_name = dev;
10409         strcpy(geo.devnm, st->devnm);
10410         geo.size = size;
10411         geo.level = level;
10412         geo.layout = layout;
10413         geo.chunksize = chunksize;
10414         geo.raid_disks = raid_disks;
10415         if (delta_disks != UnSet)
10416                 geo.raid_disks += delta_disks;
10417
10418         dprintf("for level      : %i\n", geo.level);
10419         dprintf("for raid_disks : %i\n", geo.raid_disks);
10420
10421         if (experimental() == 0)
10422                 return ret_val;
10423
10424         if (strcmp(st->container_devnm, st->devnm) == 0) {
10425                 /* On container level we can only increase number of devices. */
10426                 dprintf("imsm: info: Container operation\n");
10427                 int old_raid_disks = 0;
10428
10429                 if (imsm_reshape_is_allowed_on_container(
10430                             st, &geo, &old_raid_disks, direction)) {
10431                         struct imsm_update_reshape *u = NULL;
10432                         int len;
10433
10434                         len = imsm_create_metadata_update_for_reshape(
10435                                 st, &geo, old_raid_disks, &u);
10436
10437                         if (len <= 0) {
10438                                 dprintf("imsm: Cannot prepare update\n");
10439                                 goto exit_imsm_reshape_super;
10440                         }
10441
10442                         ret_val = 0;
10443                         /* update metadata locally */
10444                         imsm_update_metadata_locally(st, u, len);
10445                         /* and possibly remotely */
10446                         if (st->update_tail)
10447                                 append_metadata_update(st, u, len);
10448                         else
10449                                 free(u);
10450
10451                 } else {
10452                         pr_err("(imsm) Operation is not allowed on this container\n");
10453                 }
10454         } else {
10455                 /* On volume level we support following operations
10456                  * - takeover: raid10 -> raid0; raid0 -> raid10
10457                  * - chunk size migration
10458                  * - migration: raid5 -> raid0; raid0 -> raid5
10459                  */
10460                 struct intel_super *super = st->sb;
10461                 struct intel_dev *dev = super->devlist;
10462                 int change;
10463                 dprintf("imsm: info: Volume operation\n");
10464                 /* find requested device */
10465                 while (dev) {
10466                         char *devnm =
10467                                 imsm_find_array_devnm_by_subdev(
10468                                         dev->index, st->container_devnm);
10469                         if (devnm && strcmp(devnm, geo.devnm) == 0)
10470                                 break;
10471                         dev = dev->next;
10472                 }
10473                 if (dev == NULL) {
10474                         pr_err("Cannot find %s (%s) subarray\n",
10475                                 geo.dev_name, geo.devnm);
10476                         goto exit_imsm_reshape_super;
10477                 }
10478                 super->current_vol = dev->index;
10479                 change = imsm_analyze_change(st, &geo, direction);
10480                 switch (change) {
10481                 case CH_TAKEOVER:
10482                         ret_val = imsm_takeover(st, &geo);
10483                         break;
10484                 case CH_MIGRATION: {
10485                         struct imsm_update_reshape_migration *u = NULL;
10486                         int len =
10487                                 imsm_create_metadata_update_for_migration(
10488                                         st, &geo, &u);
10489                         if (len < 1) {
10490                                 dprintf("imsm: Cannot prepare update\n");
10491                                 break;
10492                         }
10493                         ret_val = 0;
10494                         /* update metadata locally */
10495                         imsm_update_metadata_locally(st, u, len);
10496                         /* and possibly remotely */
10497                         if (st->update_tail)
10498                                 append_metadata_update(st, u, len);
10499                         else
10500                                 free(u);
10501                 }
10502                 break;
10503                 case CH_ARRAY_SIZE: {
10504                         struct imsm_update_size_change *u = NULL;
10505                         int len =
10506                                 imsm_create_metadata_update_for_size_change(
10507                                         st, &geo, &u);
10508                         if (len < 1) {
10509                                 dprintf("imsm: Cannot prepare update\n");
10510                                 break;
10511                         }
10512                         ret_val = 0;
10513                         /* update metadata locally */
10514                         imsm_update_metadata_locally(st, u, len);
10515                         /* and possibly remotely */
10516                         if (st->update_tail)
10517                                 append_metadata_update(st, u, len);
10518                         else
10519                                 free(u);
10520                 }
10521                 break;
10522                 default:
10523                         ret_val = 1;
10524                 }
10525         }
10526
10527 exit_imsm_reshape_super:
10528         dprintf("imsm: reshape_super Exit code = %i\n", ret_val);
10529         return ret_val;
10530 }
10531
10532 #define COMPLETED_OK            0
10533 #define COMPLETED_NONE          1
10534 #define COMPLETED_DELAYED       2
10535
10536 static int read_completed(int fd, unsigned long long *val)
10537 {
10538         int ret;
10539         char buf[50];
10540
10541         ret = sysfs_fd_get_str(fd, buf, 50);
10542         if (ret < 0)
10543                 return ret;
10544
10545         ret = COMPLETED_OK;
10546         if (strncmp(buf, "none", 4) == 0) {
10547                 ret = COMPLETED_NONE;
10548         } else if (strncmp(buf, "delayed", 7) == 0) {
10549                 ret = COMPLETED_DELAYED;
10550         } else {
10551                 char *ep;
10552                 *val = strtoull(buf, &ep, 0);
10553                 if (ep == buf || (*ep != 0 && *ep != '\n' && *ep != ' '))
10554                         ret = -1;
10555         }
10556         return ret;
10557 }
10558
10559 /*******************************************************************************
10560  * Function:    wait_for_reshape_imsm
10561  * Description: Function writes new sync_max value and waits until
10562  *              reshape process reach new position
10563  * Parameters:
10564  *      sra             : general array info
10565  *      ndata           : number of disks in new array's layout
10566  * Returns:
10567  *       0 : success,
10568  *       1 : there is no reshape in progress,
10569  *      -1 : fail
10570  ******************************************************************************/
10571 int wait_for_reshape_imsm(struct mdinfo *sra, int ndata)
10572 {
10573         int fd = sysfs_get_fd(sra, NULL, "sync_completed");
10574         int retry = 3;
10575         unsigned long long completed;
10576         /* to_complete : new sync_max position */
10577         unsigned long long to_complete = sra->reshape_progress;
10578         unsigned long long position_to_set = to_complete / ndata;
10579
10580         if (fd < 0) {
10581                 dprintf("cannot open reshape_position\n");
10582                 return 1;
10583         }
10584
10585         do {
10586                 if (sysfs_fd_get_ll(fd, &completed) < 0) {
10587                         if (!retry) {
10588                                 dprintf("cannot read reshape_position (no reshape in progres)\n");
10589                                 close(fd);
10590                                 return 1;
10591                         }
10592                         usleep(30000);
10593                 } else
10594                         break;
10595         } while (retry--);
10596
10597         if (completed > position_to_set) {
10598                 dprintf("wrong next position to set %llu (%llu)\n",
10599                         to_complete, position_to_set);
10600                 close(fd);
10601                 return -1;
10602         }
10603         dprintf("Position set: %llu\n", position_to_set);
10604         if (sysfs_set_num(sra, NULL, "sync_max",
10605                           position_to_set) != 0) {
10606                 dprintf("cannot set reshape position to %llu\n",
10607                         position_to_set);
10608                 close(fd);
10609                 return -1;
10610         }
10611
10612         do {
10613                 int rc;
10614                 char action[20];
10615                 int timeout = 3000;
10616
10617                 sysfs_wait(fd, &timeout);
10618                 if (sysfs_get_str(sra, NULL, "sync_action",
10619                                   action, 20) > 0 &&
10620                                 strncmp(action, "reshape", 7) != 0) {
10621                         if (strncmp(action, "idle", 4) == 0)
10622                                 break;
10623                         close(fd);
10624                         return -1;
10625                 }
10626
10627                 rc = read_completed(fd, &completed);
10628                 if (rc < 0) {
10629                         dprintf("cannot read reshape_position (in loop)\n");
10630                         close(fd);
10631                         return 1;
10632                 } else if (rc == COMPLETED_NONE)
10633                         break;
10634         } while (completed < position_to_set);
10635
10636         close(fd);
10637         return 0;
10638 }
10639
10640 /*******************************************************************************
10641  * Function:    check_degradation_change
10642  * Description: Check that array hasn't become failed.
10643  * Parameters:
10644  *      info    : for sysfs access
10645  *      sources : source disks descriptors
10646  *      degraded: previous degradation level
10647  * Returns:
10648  *      degradation level
10649  ******************************************************************************/
10650 int check_degradation_change(struct mdinfo *info,
10651                              int *sources,
10652                              int degraded)
10653 {
10654         unsigned long long new_degraded;
10655         int rv;
10656
10657         rv = sysfs_get_ll(info, NULL, "degraded", &new_degraded);
10658         if (rv == -1 || (new_degraded != (unsigned long long)degraded)) {
10659                 /* check each device to ensure it is still working */
10660                 struct mdinfo *sd;
10661                 new_degraded = 0;
10662                 for (sd = info->devs ; sd ; sd = sd->next) {
10663                         if (sd->disk.state & (1<<MD_DISK_FAULTY))
10664                                 continue;
10665                         if (sd->disk.state & (1<<MD_DISK_SYNC)) {
10666                                 char sbuf[20];
10667                                 if (sysfs_get_str(info,
10668                                         sd, "state", sbuf, 20) < 0 ||
10669                                         strstr(sbuf, "faulty") ||
10670                                         strstr(sbuf, "in_sync") == NULL) {
10671                                         /* this device is dead */
10672                                         sd->disk.state = (1<<MD_DISK_FAULTY);
10673                                         if (sd->disk.raid_disk >= 0 &&
10674                                             sources[sd->disk.raid_disk] >= 0) {
10675                                                 close(sources[
10676                                                         sd->disk.raid_disk]);
10677                                                 sources[sd->disk.raid_disk] =
10678                                                         -1;
10679                                         }
10680                                         new_degraded++;
10681                                 }
10682                         }
10683                 }
10684         }
10685
10686         return new_degraded;
10687 }
10688
10689 /*******************************************************************************
10690  * Function:    imsm_manage_reshape
10691  * Description: Function finds array under reshape and it manages reshape
10692  *              process. It creates stripes backups (if required) and sets
10693  *              checkpoints.
10694  * Parameters:
10695  *      afd             : Backup handle (nattive) - not used
10696  *      sra             : general array info
10697  *      reshape         : reshape parameters - not used
10698  *      st              : supertype structure
10699  *      blocks          : size of critical section [blocks]
10700  *      fds             : table of source device descriptor
10701  *      offsets         : start of array (offest per devices)
10702  *      dests           : not used
10703  *      destfd          : table of destination device descriptor
10704  *      destoffsets     : table of destination offsets (per device)
10705  * Returns:
10706  *      1 : success, reshape is done
10707  *      0 : fail
10708  ******************************************************************************/
10709 static int imsm_manage_reshape(
10710         int afd, struct mdinfo *sra, struct reshape *reshape,
10711         struct supertype *st, unsigned long backup_blocks,
10712         int *fds, unsigned long long *offsets,
10713         int dests, int *destfd, unsigned long long *destoffsets)
10714 {
10715         int ret_val = 0;
10716         struct intel_super *super = st->sb;
10717         struct intel_dev *dv;
10718         struct imsm_dev *dev = NULL;
10719         struct imsm_map *map_src;
10720         int migr_vol_qan = 0;
10721         int ndata, odata; /* [bytes] */
10722         int chunk; /* [bytes] */
10723         struct migr_record *migr_rec;
10724         char *buf = NULL;
10725         unsigned int buf_size; /* [bytes] */
10726         unsigned long long max_position; /* array size [bytes] */
10727         unsigned long long next_step; /* [blocks]/[bytes] */
10728         unsigned long long old_data_stripe_length;
10729         unsigned long long start_src; /* [bytes] */
10730         unsigned long long start; /* [bytes] */
10731         unsigned long long start_buf_shift; /* [bytes] */
10732         int degraded = 0;
10733         int source_layout = 0;
10734
10735         if (!sra)
10736                 return ret_val;
10737
10738         if (!fds || !offsets)
10739                 goto abort;
10740
10741         /* Find volume during the reshape */
10742         for (dv = super->devlist; dv; dv = dv->next) {
10743                 if (dv->dev->vol.migr_type == MIGR_GEN_MIGR
10744                     && dv->dev->vol.migr_state == 1) {
10745                         dev = dv->dev;
10746                         migr_vol_qan++;
10747                 }
10748         }
10749         /* Only one volume can migrate at the same time */
10750         if (migr_vol_qan != 1) {
10751                 pr_err("%s", migr_vol_qan ?
10752                         "Number of migrating volumes greater than 1\n" :
10753                         "There is no volume during migrationg\n");
10754                 goto abort;
10755         }
10756
10757         map_src = get_imsm_map(dev, MAP_1);
10758         if (map_src == NULL)
10759                 goto abort;
10760
10761         ndata = imsm_num_data_members(dev, MAP_0);
10762         odata = imsm_num_data_members(dev, MAP_1);
10763
10764         chunk = __le16_to_cpu(map_src->blocks_per_strip) * 512;
10765         old_data_stripe_length = odata * chunk;
10766
10767         migr_rec = super->migr_rec;
10768
10769         /* initialize migration record for start condition */
10770         if (sra->reshape_progress == 0)
10771                 init_migr_record_imsm(st, dev, sra);
10772         else {
10773                 if (__le32_to_cpu(migr_rec->rec_status) != UNIT_SRC_NORMAL) {
10774                         dprintf("imsm: cannot restart migration when data are present in copy area.\n");
10775                         goto abort;
10776                 }
10777                 /* Save checkpoint to update migration record for current
10778                  * reshape position (in md). It can be farther than current
10779                  * reshape position in metadata.
10780                  */
10781                 if (save_checkpoint_imsm(st, sra, UNIT_SRC_NORMAL) == 1) {
10782                         /* ignore error == 2, this can mean end of reshape here
10783                          */
10784                         dprintf("imsm: Cannot write checkpoint to migration record (UNIT_SRC_NORMAL, initial save)\n");
10785                         goto abort;
10786                 }
10787         }
10788
10789         /* size for data */
10790         buf_size = __le32_to_cpu(migr_rec->blocks_per_unit) * 512;
10791         /* extend  buffer size for parity disk */
10792         buf_size += __le32_to_cpu(migr_rec->dest_depth_per_unit) * 512;
10793         /* add space for stripe aligment */
10794         buf_size += old_data_stripe_length;
10795         if (posix_memalign((void **)&buf, 4096, buf_size)) {
10796                 dprintf("imsm: Cannot allocate checpoint buffer\n");
10797                 goto abort;
10798         }
10799
10800         max_position = sra->component_size * ndata;
10801         source_layout = imsm_level_to_layout(map_src->raid_level);
10802
10803         while (__le32_to_cpu(migr_rec->curr_migr_unit) <
10804                __le32_to_cpu(migr_rec->num_migr_units)) {
10805                 /* current reshape position [blocks] */
10806                 unsigned long long current_position =
10807                         __le32_to_cpu(migr_rec->blocks_per_unit)
10808                         * __le32_to_cpu(migr_rec->curr_migr_unit);
10809                 unsigned long long border;
10810
10811                 /* Check that array hasn't become failed.
10812                  */
10813                 degraded = check_degradation_change(sra, fds, degraded);
10814                 if (degraded > 1) {
10815                         dprintf("imsm: Abort reshape due to degradation level (%i)\n", degraded);
10816                         goto abort;
10817                 }
10818
10819                 next_step = __le32_to_cpu(migr_rec->blocks_per_unit);
10820
10821                 if ((current_position + next_step) > max_position)
10822                         next_step = max_position - current_position;
10823
10824                 start = current_position * 512;
10825
10826                 /* align reading start to old geometry */
10827                 start_buf_shift = start % old_data_stripe_length;
10828                 start_src = start - start_buf_shift;
10829
10830                 border = (start_src / odata) - (start / ndata);
10831                 border /= 512;
10832                 if (border <= __le32_to_cpu(migr_rec->dest_depth_per_unit)) {
10833                         /* save critical stripes to buf
10834                          * start     - start address of current unit
10835                          *             to backup [bytes]
10836                          * start_src - start address of current unit
10837                          *             to backup alligned to source array
10838                          *             [bytes]
10839                          */
10840                         unsigned long long next_step_filler;
10841                         unsigned long long copy_length = next_step * 512;
10842
10843                         /* allign copy area length to stripe in old geometry */
10844                         next_step_filler = ((copy_length + start_buf_shift)
10845                                             % old_data_stripe_length);
10846                         if (next_step_filler)
10847                                 next_step_filler = (old_data_stripe_length
10848                                                     - next_step_filler);
10849                         dprintf("save_stripes() parameters: start = %llu,\tstart_src = %llu,\tnext_step*512 = %llu,\tstart_in_buf_shift = %llu,\tnext_step_filler = %llu\n",
10850                                 start, start_src, copy_length,
10851                                 start_buf_shift, next_step_filler);
10852
10853                         if (save_stripes(fds, offsets, map_src->num_members,
10854                                          chunk, map_src->raid_level,
10855                                          source_layout, 0, NULL, start_src,
10856                                          copy_length +
10857                                          next_step_filler + start_buf_shift,
10858                                          buf)) {
10859                                 dprintf("imsm: Cannot save stripes to buffer\n");
10860                                 goto abort;
10861                         }
10862                         /* Convert data to destination format and store it
10863                          * in backup general migration area
10864                          */
10865                         if (save_backup_imsm(st, dev, sra,
10866                                 buf + start_buf_shift, copy_length)) {
10867                                 dprintf("imsm: Cannot save stripes to target devices\n");
10868                                 goto abort;
10869                         }
10870                         if (save_checkpoint_imsm(st, sra,
10871                                                  UNIT_SRC_IN_CP_AREA)) {
10872                                 dprintf("imsm: Cannot write checkpoint to migration record (UNIT_SRC_IN_CP_AREA)\n");
10873                                 goto abort;
10874                         }
10875                 } else {
10876                         /* set next step to use whole border area */
10877                         border /= next_step;
10878                         if (border > 1)
10879                                 next_step *= border;
10880                 }
10881                 /* When data backed up, checkpoint stored,
10882                  * kick the kernel to reshape unit of data
10883                  */
10884                 next_step = next_step + sra->reshape_progress;
10885                 /* limit next step to array max position */
10886                 if (next_step > max_position)
10887                         next_step = max_position;
10888                 sysfs_set_num(sra, NULL, "suspend_lo", sra->reshape_progress);
10889                 sysfs_set_num(sra, NULL, "suspend_hi", next_step);
10890                 sra->reshape_progress = next_step;
10891
10892                 /* wait until reshape finish */
10893                 if (wait_for_reshape_imsm(sra, ndata)) {
10894                         dprintf("wait_for_reshape_imsm returned error!\n");
10895                         goto abort;
10896                 }
10897                 if (sigterm)
10898                         goto abort;
10899
10900                 if (save_checkpoint_imsm(st, sra, UNIT_SRC_NORMAL) == 1) {
10901                         /* ignore error == 2, this can mean end of reshape here
10902                          */
10903                         dprintf("imsm: Cannot write checkpoint to migration record (UNIT_SRC_NORMAL)\n");
10904                         goto abort;
10905                 }
10906
10907         }
10908
10909         /* clear migr_rec on disks after successful migration */
10910         struct dl *d;
10911
10912         memset(super->migr_rec_buf, 0, MIGR_REC_BUF_SIZE);
10913         for (d = super->disks; d; d = d->next) {
10914                 if (d->index < 0 || is_failed(&d->disk))
10915                         continue;
10916                 unsigned long long dsize;
10917
10918                 get_dev_size(d->fd, NULL, &dsize);
10919                 if (lseek64(d->fd, dsize - MIGR_REC_POSITION,
10920                             SEEK_SET) >= 0) {
10921                         if (write(d->fd, super->migr_rec_buf,
10922                                 MIGR_REC_BUF_SIZE) != MIGR_REC_BUF_SIZE)
10923                                 perror("Write migr_rec failed");
10924                 }
10925         }
10926
10927         /* return '1' if done */
10928         ret_val = 1;
10929 abort:
10930         free(buf);
10931         /* See Grow.c: abort_reshape() for further explanation */
10932         sysfs_set_num(sra, NULL, "suspend_lo", 0x7FFFFFFFFFFFFFFFULL);
10933         sysfs_set_num(sra, NULL, "suspend_hi", 0);
10934         sysfs_set_num(sra, NULL, "suspend_lo", 0);
10935
10936         return ret_val;
10937 }
10938
10939 #endif /* MDASSEMBLE */
10940
10941 struct superswitch super_imsm = {
10942 #ifndef MDASSEMBLE
10943         .examine_super  = examine_super_imsm,
10944         .brief_examine_super = brief_examine_super_imsm,
10945         .brief_examine_subarrays = brief_examine_subarrays_imsm,
10946         .export_examine_super = export_examine_super_imsm,
10947         .detail_super   = detail_super_imsm,
10948         .brief_detail_super = brief_detail_super_imsm,
10949         .write_init_super = write_init_super_imsm,
10950         .validate_geometry = validate_geometry_imsm,
10951         .add_to_super   = add_to_super_imsm,
10952         .remove_from_super = remove_from_super_imsm,
10953         .detail_platform = detail_platform_imsm,
10954         .export_detail_platform = export_detail_platform_imsm,
10955         .kill_subarray = kill_subarray_imsm,
10956         .update_subarray = update_subarray_imsm,
10957         .load_container = load_container_imsm,
10958         .default_geometry = default_geometry_imsm,
10959         .get_disk_controller_domain = imsm_get_disk_controller_domain,
10960         .reshape_super  = imsm_reshape_super,
10961         .manage_reshape = imsm_manage_reshape,
10962         .recover_backup = recover_backup_imsm,
10963         .copy_metadata = copy_metadata_imsm,
10964 #endif
10965         .match_home     = match_home_imsm,
10966         .uuid_from_super= uuid_from_super_imsm,
10967         .getinfo_super  = getinfo_super_imsm,
10968         .getinfo_super_disks = getinfo_super_disks_imsm,
10969         .update_super   = update_super_imsm,
10970
10971         .avail_size     = avail_size_imsm,
10972         .min_acceptable_spare_size = min_acceptable_spare_size_imsm,
10973
10974         .compare_super  = compare_super_imsm,
10975
10976         .load_super     = load_super_imsm,
10977         .init_super     = init_super_imsm,
10978         .store_super    = store_super_imsm,
10979         .free_super     = free_super_imsm,
10980         .match_metadata_desc = match_metadata_desc_imsm,
10981         .container_content = container_content_imsm,
10982         .validate_container = validate_container_imsm,
10983
10984         .external       = 1,
10985         .name = "imsm",
10986
10987 #ifndef MDASSEMBLE
10988 /* for mdmon */
10989         .open_new       = imsm_open_new,
10990         .set_array_state= imsm_set_array_state,
10991         .set_disk       = imsm_set_disk,
10992         .sync_metadata  = imsm_sync_metadata,
10993         .activate_spare = imsm_activate_spare,
10994         .process_update = imsm_process_update,
10995         .prepare_update = imsm_prepare_update,
10996 #endif /* MDASSEMBLE */
10997 };