]> git.neil.brown.name Git - md.git/blob - drivers/md/md.c
md/raid: only permit hot-add of compatible integrity profiles
[md.git] / drivers / md / md.c
1 /*
2    md.c : Multiple Devices driver for Linux
3      Copyright (C) 1998, 1999, 2000 Ingo Molnar
4
5      completely rewritten, based on the MD driver code from Marc Zyngier
6
7    Changes:
8
9    - RAID-1/RAID-5 extensions by Miguel de Icaza, Gadi Oxman, Ingo Molnar
10    - RAID-6 extensions by H. Peter Anvin <hpa@zytor.com>
11    - boot support for linear and striped mode by Harald Hoyer <HarryH@Royal.Net>
12    - kerneld support by Boris Tobotras <boris@xtalk.msk.su>
13    - kmod support by: Cyrus Durgin
14    - RAID0 bugfixes: Mark Anthony Lisher <markal@iname.com>
15    - Devfs support by Richard Gooch <rgooch@atnf.csiro.au>
16
17    - lots of fixes and improvements to the RAID1/RAID5 and generic
18      RAID code (such as request based resynchronization):
19
20      Neil Brown <neilb@cse.unsw.edu.au>.
21
22    - persistent bitmap code
23      Copyright (C) 2003-2004, Paul Clements, SteelEye Technology, Inc.
24
25    This program is free software; you can redistribute it and/or modify
26    it under the terms of the GNU General Public License as published by
27    the Free Software Foundation; either version 2, or (at your option)
28    any later version.
29
30    You should have received a copy of the GNU General Public License
31    (for example /usr/src/linux/COPYING); if not, write to the Free
32    Software Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
33 */
34
35 #include <linux/kthread.h>
36 #include <linux/blkdev.h>
37 #include <linux/sysctl.h>
38 #include <linux/seq_file.h>
39 #include <linux/fs.h>
40 #include <linux/poll.h>
41 #include <linux/ctype.h>
42 #include <linux/string.h>
43 #include <linux/hdreg.h>
44 #include <linux/proc_fs.h>
45 #include <linux/random.h>
46 #include <linux/module.h>
47 #include <linux/reboot.h>
48 #include <linux/file.h>
49 #include <linux/compat.h>
50 #include <linux/delay.h>
51 #include <linux/raid/md_p.h>
52 #include <linux/raid/md_u.h>
53 #include <linux/slab.h>
54 #include "md.h"
55 #include "bitmap.h"
56 #include "md-cluster.h"
57
58 #ifndef MODULE
59 static void autostart_arrays(int part);
60 #endif
61
62 /* pers_list is a list of registered personalities protected
63  * by pers_lock.
64  * pers_lock does extra service to protect accesses to
65  * mddev->thread when the mutex cannot be held.
66  */
67 static LIST_HEAD(pers_list);
68 static DEFINE_SPINLOCK(pers_lock);
69
70 struct md_cluster_operations *md_cluster_ops;
71 EXPORT_SYMBOL(md_cluster_ops);
72 struct module *md_cluster_mod;
73 EXPORT_SYMBOL(md_cluster_mod);
74
75 static DECLARE_WAIT_QUEUE_HEAD(resync_wait);
76 static struct workqueue_struct *md_wq;
77 static struct workqueue_struct *md_misc_wq;
78
79 static int remove_and_add_spares(struct mddev *mddev,
80                                  struct md_rdev *this);
81 static void mddev_detach(struct mddev *mddev);
82
83 /*
84  * Default number of read corrections we'll attempt on an rdev
85  * before ejecting it from the array. We divide the read error
86  * count by 2 for every hour elapsed between read errors.
87  */
88 #define MD_DEFAULT_MAX_CORRECTED_READ_ERRORS 20
89 /*
90  * Current RAID-1,4,5 parallel reconstruction 'guaranteed speed limit'
91  * is 1000 KB/sec, so the extra system load does not show up that much.
92  * Increase it if you want to have more _guaranteed_ speed. Note that
93  * the RAID driver will use the maximum available bandwidth if the IO
94  * subsystem is idle. There is also an 'absolute maximum' reconstruction
95  * speed limit - in case reconstruction slows down your system despite
96  * idle IO detection.
97  *
98  * you can change it via /proc/sys/dev/raid/speed_limit_min and _max.
99  * or /sys/block/mdX/md/sync_speed_{min,max}
100  */
101
102 static int sysctl_speed_limit_min = 1000;
103 static int sysctl_speed_limit_max = 200000;
104 static inline int speed_min(struct mddev *mddev)
105 {
106         return mddev->sync_speed_min ?
107                 mddev->sync_speed_min : sysctl_speed_limit_min;
108 }
109
110 static inline int speed_max(struct mddev *mddev)
111 {
112         return mddev->sync_speed_max ?
113                 mddev->sync_speed_max : sysctl_speed_limit_max;
114 }
115
116 static struct ctl_table_header *raid_table_header;
117
118 static struct ctl_table raid_table[] = {
119         {
120                 .procname       = "speed_limit_min",
121                 .data           = &sysctl_speed_limit_min,
122                 .maxlen         = sizeof(int),
123                 .mode           = S_IRUGO|S_IWUSR,
124                 .proc_handler   = proc_dointvec,
125         },
126         {
127                 .procname       = "speed_limit_max",
128                 .data           = &sysctl_speed_limit_max,
129                 .maxlen         = sizeof(int),
130                 .mode           = S_IRUGO|S_IWUSR,
131                 .proc_handler   = proc_dointvec,
132         },
133         { }
134 };
135
136 static struct ctl_table raid_dir_table[] = {
137         {
138                 .procname       = "raid",
139                 .maxlen         = 0,
140                 .mode           = S_IRUGO|S_IXUGO,
141                 .child          = raid_table,
142         },
143         { }
144 };
145
146 static struct ctl_table raid_root_table[] = {
147         {
148                 .procname       = "dev",
149                 .maxlen         = 0,
150                 .mode           = 0555,
151                 .child          = raid_dir_table,
152         },
153         {  }
154 };
155
156 static const struct block_device_operations md_fops;
157
158 static int start_readonly;
159
160 /* bio_clone_mddev
161  * like bio_clone, but with a local bio set
162  */
163
164 struct bio *bio_alloc_mddev(gfp_t gfp_mask, int nr_iovecs,
165                             struct mddev *mddev)
166 {
167         struct bio *b;
168
169         if (!mddev || !mddev->bio_set)
170                 return bio_alloc(gfp_mask, nr_iovecs);
171
172         b = bio_alloc_bioset(gfp_mask, nr_iovecs, mddev->bio_set);
173         if (!b)
174                 return NULL;
175         return b;
176 }
177 EXPORT_SYMBOL_GPL(bio_alloc_mddev);
178
179 struct bio *bio_clone_mddev(struct bio *bio, gfp_t gfp_mask,
180                             struct mddev *mddev)
181 {
182         if (!mddev || !mddev->bio_set)
183                 return bio_clone(bio, gfp_mask);
184
185         return bio_clone_bioset(bio, gfp_mask, mddev->bio_set);
186 }
187 EXPORT_SYMBOL_GPL(bio_clone_mddev);
188
189 /*
190  * We have a system wide 'event count' that is incremented
191  * on any 'interesting' event, and readers of /proc/mdstat
192  * can use 'poll' or 'select' to find out when the event
193  * count increases.
194  *
195  * Events are:
196  *  start array, stop array, error, add device, remove device,
197  *  start build, activate spare
198  */
199 static DECLARE_WAIT_QUEUE_HEAD(md_event_waiters);
200 static atomic_t md_event_count;
201 void md_new_event(struct mddev *mddev)
202 {
203         atomic_inc(&md_event_count);
204         wake_up(&md_event_waiters);
205 }
206 EXPORT_SYMBOL_GPL(md_new_event);
207
208 /*
209  * Enables to iterate over all existing md arrays
210  * all_mddevs_lock protects this list.
211  */
212 static LIST_HEAD(all_mddevs);
213 static DEFINE_SPINLOCK(all_mddevs_lock);
214
215 /*
216  * iterates through all used mddevs in the system.
217  * We take care to grab the all_mddevs_lock whenever navigating
218  * the list, and to always hold a refcount when unlocked.
219  * Any code which breaks out of this loop while own
220  * a reference to the current mddev and must mddev_put it.
221  */
222 #define for_each_mddev(_mddev,_tmp)                                     \
223                                                                         \
224         for (({ spin_lock(&all_mddevs_lock);                            \
225                 _tmp = all_mddevs.next;                                 \
226                 _mddev = NULL;});                                       \
227              ({ if (_tmp != &all_mddevs)                                \
228                         mddev_get(list_entry(_tmp, struct mddev, all_mddevs));\
229                 spin_unlock(&all_mddevs_lock);                          \
230                 if (_mddev) mddev_put(_mddev);                          \
231                 _mddev = list_entry(_tmp, struct mddev, all_mddevs);    \
232                 _tmp != &all_mddevs;});                                 \
233              ({ spin_lock(&all_mddevs_lock);                            \
234                 _tmp = _tmp->next;})                                    \
235                 )
236
237 /* Rather than calling directly into the personality make_request function,
238  * IO requests come here first so that we can check if the device is
239  * being suspended pending a reconfiguration.
240  * We hold a refcount over the call to ->make_request.  By the time that
241  * call has finished, the bio has been linked into some internal structure
242  * and so is visible to ->quiesce(), so we don't need the refcount any more.
243  */
244 static blk_qc_t md_make_request(struct request_queue *q, struct bio *bio)
245 {
246         const int rw = bio_data_dir(bio);
247         struct mddev *mddev = q->queuedata;
248         unsigned int sectors;
249         int cpu;
250
251         blk_queue_split(q, &bio, q->bio_split);
252
253         if (mddev == NULL || mddev->pers == NULL) {
254                 bio_io_error(bio);
255                 return BLK_QC_T_NONE;
256         }
257         if (mddev->ro == 1 && unlikely(rw == WRITE)) {
258                 if (bio_sectors(bio) != 0)
259                         bio->bi_error = -EROFS;
260                 bio_endio(bio);
261                 return BLK_QC_T_NONE;
262         }
263         smp_rmb(); /* Ensure implications of  'active' are visible */
264         rcu_read_lock();
265         if (mddev->suspended) {
266                 DEFINE_WAIT(__wait);
267                 for (;;) {
268                         prepare_to_wait(&mddev->sb_wait, &__wait,
269                                         TASK_UNINTERRUPTIBLE);
270                         if (!mddev->suspended)
271                                 break;
272                         rcu_read_unlock();
273                         schedule();
274                         rcu_read_lock();
275                 }
276                 finish_wait(&mddev->sb_wait, &__wait);
277         }
278         atomic_inc(&mddev->active_io);
279         rcu_read_unlock();
280
281         /*
282          * save the sectors now since our bio can
283          * go away inside make_request
284          */
285         sectors = bio_sectors(bio);
286         mddev->pers->make_request(mddev, bio);
287
288         cpu = part_stat_lock();
289         part_stat_inc(cpu, &mddev->gendisk->part0, ios[rw]);
290         part_stat_add(cpu, &mddev->gendisk->part0, sectors[rw], sectors);
291         part_stat_unlock();
292
293         if (atomic_dec_and_test(&mddev->active_io) && mddev->suspended)
294                 wake_up(&mddev->sb_wait);
295
296         return BLK_QC_T_NONE;
297 }
298
299 /* mddev_suspend makes sure no new requests are submitted
300  * to the device, and that any requests that have been submitted
301  * are completely handled.
302  * Once mddev_detach() is called and completes, the module will be
303  * completely unused.
304  */
305 void mddev_suspend(struct mddev *mddev)
306 {
307         if (mddev->suspended++)
308                 return;
309         synchronize_rcu();
310         wait_event(mddev->sb_wait, atomic_read(&mddev->active_io) == 0);
311         mddev->pers->quiesce(mddev, 1);
312
313         del_timer_sync(&mddev->safemode_timer);
314 }
315 EXPORT_SYMBOL_GPL(mddev_suspend);
316
317 void mddev_resume(struct mddev *mddev)
318 {
319         if (--mddev->suspended)
320                 return;
321         wake_up(&mddev->sb_wait);
322         mddev->pers->quiesce(mddev, 0);
323
324         set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
325         md_wakeup_thread(mddev->thread);
326         md_wakeup_thread(mddev->sync_thread); /* possibly kick off a reshape */
327 }
328 EXPORT_SYMBOL_GPL(mddev_resume);
329
330 int mddev_congested(struct mddev *mddev, int bits)
331 {
332         struct md_personality *pers = mddev->pers;
333         int ret = 0;
334
335         rcu_read_lock();
336         if (mddev->suspended)
337                 ret = 1;
338         else if (pers && pers->congested)
339                 ret = pers->congested(mddev, bits);
340         rcu_read_unlock();
341         return ret;
342 }
343 EXPORT_SYMBOL_GPL(mddev_congested);
344 static int md_congested(void *data, int bits)
345 {
346         struct mddev *mddev = data;
347         return mddev_congested(mddev, bits);
348 }
349
350 /*
351  * Generic flush handling for md
352  */
353
354 static void md_end_flush(struct bio *bio)
355 {
356         struct md_rdev *rdev = bio->bi_private;
357         struct mddev *mddev = rdev->mddev;
358
359         rdev_dec_pending(rdev, mddev);
360
361         if (atomic_dec_and_test(&mddev->flush_pending)) {
362                 /* The pre-request flush has finished */
363                 queue_work(md_wq, &mddev->flush_work);
364         }
365         bio_put(bio);
366 }
367
368 static void md_submit_flush_data(struct work_struct *ws);
369
370 static void submit_flushes(struct work_struct *ws)
371 {
372         struct mddev *mddev = container_of(ws, struct mddev, flush_work);
373         struct md_rdev *rdev;
374
375         INIT_WORK(&mddev->flush_work, md_submit_flush_data);
376         atomic_set(&mddev->flush_pending, 1);
377         rcu_read_lock();
378         rdev_for_each_rcu(rdev, mddev)
379                 if (rdev->raid_disk >= 0 &&
380                     !test_bit(Faulty, &rdev->flags)) {
381                         /* Take two references, one is dropped
382                          * when request finishes, one after
383                          * we reclaim rcu_read_lock
384                          */
385                         struct bio *bi;
386                         atomic_inc(&rdev->nr_pending);
387                         atomic_inc(&rdev->nr_pending);
388                         rcu_read_unlock();
389                         bi = bio_alloc_mddev(GFP_NOIO, 0, mddev);
390                         bi->bi_end_io = md_end_flush;
391                         bi->bi_private = rdev;
392                         bi->bi_bdev = rdev->bdev;
393                         atomic_inc(&mddev->flush_pending);
394                         submit_bio(WRITE_FLUSH, bi);
395                         rcu_read_lock();
396                         rdev_dec_pending(rdev, mddev);
397                 }
398         rcu_read_unlock();
399         if (atomic_dec_and_test(&mddev->flush_pending))
400                 queue_work(md_wq, &mddev->flush_work);
401 }
402
403 static void md_submit_flush_data(struct work_struct *ws)
404 {
405         struct mddev *mddev = container_of(ws, struct mddev, flush_work);
406         struct bio *bio = mddev->flush_bio;
407
408         if (bio->bi_iter.bi_size == 0)
409                 /* an empty barrier - all done */
410                 bio_endio(bio);
411         else {
412                 bio->bi_rw &= ~REQ_FLUSH;
413                 mddev->pers->make_request(mddev, bio);
414         }
415
416         mddev->flush_bio = NULL;
417         wake_up(&mddev->sb_wait);
418 }
419
420 void md_flush_request(struct mddev *mddev, struct bio *bio)
421 {
422         spin_lock_irq(&mddev->lock);
423         wait_event_lock_irq(mddev->sb_wait,
424                             !mddev->flush_bio,
425                             mddev->lock);
426         mddev->flush_bio = bio;
427         spin_unlock_irq(&mddev->lock);
428
429         INIT_WORK(&mddev->flush_work, submit_flushes);
430         queue_work(md_wq, &mddev->flush_work);
431 }
432 EXPORT_SYMBOL(md_flush_request);
433
434 void md_unplug(struct blk_plug_cb *cb, bool from_schedule)
435 {
436         struct mddev *mddev = cb->data;
437         md_wakeup_thread(mddev->thread);
438         kfree(cb);
439 }
440 EXPORT_SYMBOL(md_unplug);
441
442 static inline struct mddev *mddev_get(struct mddev *mddev)
443 {
444         atomic_inc(&mddev->active);
445         return mddev;
446 }
447
448 static void mddev_delayed_delete(struct work_struct *ws);
449
450 static void mddev_put(struct mddev *mddev)
451 {
452         struct bio_set *bs = NULL;
453
454         if (!atomic_dec_and_lock(&mddev->active, &all_mddevs_lock))
455                 return;
456         if (!mddev->raid_disks && list_empty(&mddev->disks) &&
457             mddev->ctime == 0 && !mddev->hold_active) {
458                 /* Array is not configured at all, and not held active,
459                  * so destroy it */
460                 list_del_init(&mddev->all_mddevs);
461                 bs = mddev->bio_set;
462                 mddev->bio_set = NULL;
463                 if (mddev->gendisk) {
464                         /* We did a probe so need to clean up.  Call
465                          * queue_work inside the spinlock so that
466                          * flush_workqueue() after mddev_find will
467                          * succeed in waiting for the work to be done.
468                          */
469                         INIT_WORK(&mddev->del_work, mddev_delayed_delete);
470                         queue_work(md_misc_wq, &mddev->del_work);
471                 } else
472                         kfree(mddev);
473         }
474         spin_unlock(&all_mddevs_lock);
475         if (bs)
476                 bioset_free(bs);
477 }
478
479 static void md_safemode_timeout(unsigned long data);
480
481 void mddev_init(struct mddev *mddev)
482 {
483         mutex_init(&mddev->open_mutex);
484         mutex_init(&mddev->reconfig_mutex);
485         mutex_init(&mddev->bitmap_info.mutex);
486         INIT_LIST_HEAD(&mddev->disks);
487         INIT_LIST_HEAD(&mddev->all_mddevs);
488         setup_timer(&mddev->safemode_timer, md_safemode_timeout,
489                     (unsigned long) mddev);
490         atomic_set(&mddev->active, 1);
491         atomic_set(&mddev->openers, 0);
492         atomic_set(&mddev->active_io, 0);
493         spin_lock_init(&mddev->lock);
494         atomic_set(&mddev->flush_pending, 0);
495         init_waitqueue_head(&mddev->sb_wait);
496         init_waitqueue_head(&mddev->recovery_wait);
497         mddev->reshape_position = MaxSector;
498         mddev->reshape_backwards = 0;
499         mddev->last_sync_action = "none";
500         mddev->resync_min = 0;
501         mddev->resync_max = MaxSector;
502         mddev->level = LEVEL_NONE;
503 }
504 EXPORT_SYMBOL_GPL(mddev_init);
505
506 static struct mddev *mddev_find(dev_t unit)
507 {
508         struct mddev *mddev, *new = NULL;
509
510         if (unit && MAJOR(unit) != MD_MAJOR)
511                 unit &= ~((1<<MdpMinorShift)-1);
512
513  retry:
514         spin_lock(&all_mddevs_lock);
515
516         if (unit) {
517                 list_for_each_entry(mddev, &all_mddevs, all_mddevs)
518                         if (mddev->unit == unit) {
519                                 mddev_get(mddev);
520                                 spin_unlock(&all_mddevs_lock);
521                                 kfree(new);
522                                 return mddev;
523                         }
524
525                 if (new) {
526                         list_add(&new->all_mddevs, &all_mddevs);
527                         spin_unlock(&all_mddevs_lock);
528                         new->hold_active = UNTIL_IOCTL;
529                         return new;
530                 }
531         } else if (new) {
532                 /* find an unused unit number */
533                 static int next_minor = 512;
534                 int start = next_minor;
535                 int is_free = 0;
536                 int dev = 0;
537                 while (!is_free) {
538                         dev = MKDEV(MD_MAJOR, next_minor);
539                         next_minor++;
540                         if (next_minor > MINORMASK)
541                                 next_minor = 0;
542                         if (next_minor == start) {
543                                 /* Oh dear, all in use. */
544                                 spin_unlock(&all_mddevs_lock);
545                                 kfree(new);
546                                 return NULL;
547                         }
548
549                         is_free = 1;
550                         list_for_each_entry(mddev, &all_mddevs, all_mddevs)
551                                 if (mddev->unit == dev) {
552                                         is_free = 0;
553                                         break;
554                                 }
555                 }
556                 new->unit = dev;
557                 new->md_minor = MINOR(dev);
558                 new->hold_active = UNTIL_STOP;
559                 list_add(&new->all_mddevs, &all_mddevs);
560                 spin_unlock(&all_mddevs_lock);
561                 return new;
562         }
563         spin_unlock(&all_mddevs_lock);
564
565         new = kzalloc(sizeof(*new), GFP_KERNEL);
566         if (!new)
567                 return NULL;
568
569         new->unit = unit;
570         if (MAJOR(unit) == MD_MAJOR)
571                 new->md_minor = MINOR(unit);
572         else
573                 new->md_minor = MINOR(unit) >> MdpMinorShift;
574
575         mddev_init(new);
576
577         goto retry;
578 }
579
580 static struct attribute_group md_redundancy_group;
581
582 void mddev_unlock(struct mddev *mddev)
583 {
584         if (mddev->to_remove) {
585                 /* These cannot be removed under reconfig_mutex as
586                  * an access to the files will try to take reconfig_mutex
587                  * while holding the file unremovable, which leads to
588                  * a deadlock.
589                  * So hold set sysfs_active while the remove in happeing,
590                  * and anything else which might set ->to_remove or my
591                  * otherwise change the sysfs namespace will fail with
592                  * -EBUSY if sysfs_active is still set.
593                  * We set sysfs_active under reconfig_mutex and elsewhere
594                  * test it under the same mutex to ensure its correct value
595                  * is seen.
596                  */
597                 struct attribute_group *to_remove = mddev->to_remove;
598                 mddev->to_remove = NULL;
599                 mddev->sysfs_active = 1;
600                 mutex_unlock(&mddev->reconfig_mutex);
601
602                 if (mddev->kobj.sd) {
603                         if (to_remove != &md_redundancy_group)
604                                 sysfs_remove_group(&mddev->kobj, to_remove);
605                         if (mddev->pers == NULL ||
606                             mddev->pers->sync_request == NULL) {
607                                 sysfs_remove_group(&mddev->kobj, &md_redundancy_group);
608                                 if (mddev->sysfs_action)
609                                         sysfs_put(mddev->sysfs_action);
610                                 mddev->sysfs_action = NULL;
611                         }
612                 }
613                 mddev->sysfs_active = 0;
614         } else
615                 mutex_unlock(&mddev->reconfig_mutex);
616
617         /* As we've dropped the mutex we need a spinlock to
618          * make sure the thread doesn't disappear
619          */
620         spin_lock(&pers_lock);
621         md_wakeup_thread(mddev->thread);
622         spin_unlock(&pers_lock);
623 }
624 EXPORT_SYMBOL_GPL(mddev_unlock);
625
626 struct md_rdev *md_find_rdev_nr_rcu(struct mddev *mddev, int nr)
627 {
628         struct md_rdev *rdev;
629
630         rdev_for_each_rcu(rdev, mddev)
631                 if (rdev->desc_nr == nr)
632                         return rdev;
633
634         return NULL;
635 }
636 EXPORT_SYMBOL_GPL(md_find_rdev_nr_rcu);
637
638 static struct md_rdev *find_rdev(struct mddev *mddev, dev_t dev)
639 {
640         struct md_rdev *rdev;
641
642         rdev_for_each(rdev, mddev)
643                 if (rdev->bdev->bd_dev == dev)
644                         return rdev;
645
646         return NULL;
647 }
648
649 static struct md_rdev *find_rdev_rcu(struct mddev *mddev, dev_t dev)
650 {
651         struct md_rdev *rdev;
652
653         rdev_for_each_rcu(rdev, mddev)
654                 if (rdev->bdev->bd_dev == dev)
655                         return rdev;
656
657         return NULL;
658 }
659
660 static struct md_personality *find_pers(int level, char *clevel)
661 {
662         struct md_personality *pers;
663         list_for_each_entry(pers, &pers_list, list) {
664                 if (level != LEVEL_NONE && pers->level == level)
665                         return pers;
666                 if (strcmp(pers->name, clevel)==0)
667                         return pers;
668         }
669         return NULL;
670 }
671
672 /* return the offset of the super block in 512byte sectors */
673 static inline sector_t calc_dev_sboffset(struct md_rdev *rdev)
674 {
675         sector_t num_sectors = i_size_read(rdev->bdev->bd_inode) / 512;
676         return MD_NEW_SIZE_SECTORS(num_sectors);
677 }
678
679 static int alloc_disk_sb(struct md_rdev *rdev)
680 {
681         rdev->sb_page = alloc_page(GFP_KERNEL);
682         if (!rdev->sb_page) {
683                 printk(KERN_ALERT "md: out of memory.\n");
684                 return -ENOMEM;
685         }
686
687         return 0;
688 }
689
690 void md_rdev_clear(struct md_rdev *rdev)
691 {
692         if (rdev->sb_page) {
693                 put_page(rdev->sb_page);
694                 rdev->sb_loaded = 0;
695                 rdev->sb_page = NULL;
696                 rdev->sb_start = 0;
697                 rdev->sectors = 0;
698         }
699         if (rdev->bb_page) {
700                 put_page(rdev->bb_page);
701                 rdev->bb_page = NULL;
702         }
703         kfree(rdev->badblocks.page);
704         rdev->badblocks.page = NULL;
705 }
706 EXPORT_SYMBOL_GPL(md_rdev_clear);
707
708 static void super_written(struct bio *bio)
709 {
710         struct md_rdev *rdev = bio->bi_private;
711         struct mddev *mddev = rdev->mddev;
712
713         if (bio->bi_error) {
714                 printk("md: super_written gets error=%d\n", bio->bi_error);
715                 md_error(mddev, rdev);
716         }
717
718         if (atomic_dec_and_test(&mddev->pending_writes))
719                 wake_up(&mddev->sb_wait);
720         bio_put(bio);
721 }
722
723 void md_super_write(struct mddev *mddev, struct md_rdev *rdev,
724                    sector_t sector, int size, struct page *page)
725 {
726         /* write first size bytes of page to sector of rdev
727          * Increment mddev->pending_writes before returning
728          * and decrement it on completion, waking up sb_wait
729          * if zero is reached.
730          * If an error occurred, call md_error
731          */
732         struct bio *bio = bio_alloc_mddev(GFP_NOIO, 1, mddev);
733
734         bio->bi_bdev = rdev->meta_bdev ? rdev->meta_bdev : rdev->bdev;
735         bio->bi_iter.bi_sector = sector;
736         bio_add_page(bio, page, size, 0);
737         bio->bi_private = rdev;
738         bio->bi_end_io = super_written;
739
740         atomic_inc(&mddev->pending_writes);
741         submit_bio(WRITE_FLUSH_FUA, bio);
742 }
743
744 void md_super_wait(struct mddev *mddev)
745 {
746         /* wait for all superblock writes that were scheduled to complete */
747         wait_event(mddev->sb_wait, atomic_read(&mddev->pending_writes)==0);
748 }
749
750 int sync_page_io(struct md_rdev *rdev, sector_t sector, int size,
751                  struct page *page, int rw, bool metadata_op)
752 {
753         struct bio *bio = bio_alloc_mddev(GFP_NOIO, 1, rdev->mddev);
754         int ret;
755
756         bio->bi_bdev = (metadata_op && rdev->meta_bdev) ?
757                 rdev->meta_bdev : rdev->bdev;
758         if (metadata_op)
759                 bio->bi_iter.bi_sector = sector + rdev->sb_start;
760         else if (rdev->mddev->reshape_position != MaxSector &&
761                  (rdev->mddev->reshape_backwards ==
762                   (sector >= rdev->mddev->reshape_position)))
763                 bio->bi_iter.bi_sector = sector + rdev->new_data_offset;
764         else
765                 bio->bi_iter.bi_sector = sector + rdev->data_offset;
766         bio_add_page(bio, page, size, 0);
767         submit_bio_wait(rw, bio);
768
769         ret = !bio->bi_error;
770         bio_put(bio);
771         return ret;
772 }
773 EXPORT_SYMBOL_GPL(sync_page_io);
774
775 static int read_disk_sb(struct md_rdev *rdev, int size)
776 {
777         char b[BDEVNAME_SIZE];
778
779         if (rdev->sb_loaded)
780                 return 0;
781
782         if (!sync_page_io(rdev, 0, size, rdev->sb_page, READ, true))
783                 goto fail;
784         rdev->sb_loaded = 1;
785         return 0;
786
787 fail:
788         printk(KERN_WARNING "md: disabled device %s, could not read superblock.\n",
789                 bdevname(rdev->bdev,b));
790         return -EINVAL;
791 }
792
793 static int uuid_equal(mdp_super_t *sb1, mdp_super_t *sb2)
794 {
795         return  sb1->set_uuid0 == sb2->set_uuid0 &&
796                 sb1->set_uuid1 == sb2->set_uuid1 &&
797                 sb1->set_uuid2 == sb2->set_uuid2 &&
798                 sb1->set_uuid3 == sb2->set_uuid3;
799 }
800
801 static int sb_equal(mdp_super_t *sb1, mdp_super_t *sb2)
802 {
803         int ret;
804         mdp_super_t *tmp1, *tmp2;
805
806         tmp1 = kmalloc(sizeof(*tmp1),GFP_KERNEL);
807         tmp2 = kmalloc(sizeof(*tmp2),GFP_KERNEL);
808
809         if (!tmp1 || !tmp2) {
810                 ret = 0;
811                 printk(KERN_INFO "md.c sb_equal(): failed to allocate memory!\n");
812                 goto abort;
813         }
814
815         *tmp1 = *sb1;
816         *tmp2 = *sb2;
817
818         /*
819          * nr_disks is not constant
820          */
821         tmp1->nr_disks = 0;
822         tmp2->nr_disks = 0;
823
824         ret = (memcmp(tmp1, tmp2, MD_SB_GENERIC_CONSTANT_WORDS * 4) == 0);
825 abort:
826         kfree(tmp1);
827         kfree(tmp2);
828         return ret;
829 }
830
831 static u32 md_csum_fold(u32 csum)
832 {
833         csum = (csum & 0xffff) + (csum >> 16);
834         return (csum & 0xffff) + (csum >> 16);
835 }
836
837 static unsigned int calc_sb_csum(mdp_super_t *sb)
838 {
839         u64 newcsum = 0;
840         u32 *sb32 = (u32*)sb;
841         int i;
842         unsigned int disk_csum, csum;
843
844         disk_csum = sb->sb_csum;
845         sb->sb_csum = 0;
846
847         for (i = 0; i < MD_SB_BYTES/4 ; i++)
848                 newcsum += sb32[i];
849         csum = (newcsum & 0xffffffff) + (newcsum>>32);
850
851 #ifdef CONFIG_ALPHA
852         /* This used to use csum_partial, which was wrong for several
853          * reasons including that different results are returned on
854          * different architectures.  It isn't critical that we get exactly
855          * the same return value as before (we always csum_fold before
856          * testing, and that removes any differences).  However as we
857          * know that csum_partial always returned a 16bit value on
858          * alphas, do a fold to maximise conformity to previous behaviour.
859          */
860         sb->sb_csum = md_csum_fold(disk_csum);
861 #else
862         sb->sb_csum = disk_csum;
863 #endif
864         return csum;
865 }
866
867 /*
868  * Handle superblock details.
869  * We want to be able to handle multiple superblock formats
870  * so we have a common interface to them all, and an array of
871  * different handlers.
872  * We rely on user-space to write the initial superblock, and support
873  * reading and updating of superblocks.
874  * Interface methods are:
875  *   int load_super(struct md_rdev *dev, struct md_rdev *refdev, int minor_version)
876  *      loads and validates a superblock on dev.
877  *      if refdev != NULL, compare superblocks on both devices
878  *    Return:
879  *      0 - dev has a superblock that is compatible with refdev
880  *      1 - dev has a superblock that is compatible and newer than refdev
881  *          so dev should be used as the refdev in future
882  *     -EINVAL superblock incompatible or invalid
883  *     -othererror e.g. -EIO
884  *
885  *   int validate_super(struct mddev *mddev, struct md_rdev *dev)
886  *      Verify that dev is acceptable into mddev.
887  *       The first time, mddev->raid_disks will be 0, and data from
888  *       dev should be merged in.  Subsequent calls check that dev
889  *       is new enough.  Return 0 or -EINVAL
890  *
891  *   void sync_super(struct mddev *mddev, struct md_rdev *dev)
892  *     Update the superblock for rdev with data in mddev
893  *     This does not write to disc.
894  *
895  */
896
897 struct super_type  {
898         char                *name;
899         struct module       *owner;
900         int                 (*load_super)(struct md_rdev *rdev,
901                                           struct md_rdev *refdev,
902                                           int minor_version);
903         int                 (*validate_super)(struct mddev *mddev,
904                                               struct md_rdev *rdev);
905         void                (*sync_super)(struct mddev *mddev,
906                                           struct md_rdev *rdev);
907         unsigned long long  (*rdev_size_change)(struct md_rdev *rdev,
908                                                 sector_t num_sectors);
909         int                 (*allow_new_offset)(struct md_rdev *rdev,
910                                                 unsigned long long new_offset);
911 };
912
913 /*
914  * Check that the given mddev has no bitmap.
915  *
916  * This function is called from the run method of all personalities that do not
917  * support bitmaps. It prints an error message and returns non-zero if mddev
918  * has a bitmap. Otherwise, it returns 0.
919  *
920  */
921 int md_check_no_bitmap(struct mddev *mddev)
922 {
923         if (!mddev->bitmap_info.file && !mddev->bitmap_info.offset)
924                 return 0;
925         printk(KERN_ERR "%s: bitmaps are not supported for %s\n",
926                 mdname(mddev), mddev->pers->name);
927         return 1;
928 }
929 EXPORT_SYMBOL(md_check_no_bitmap);
930
931 /*
932  * load_super for 0.90.0
933  */
934 static int super_90_load(struct md_rdev *rdev, struct md_rdev *refdev, int minor_version)
935 {
936         char b[BDEVNAME_SIZE], b2[BDEVNAME_SIZE];
937         mdp_super_t *sb;
938         int ret;
939
940         /*
941          * Calculate the position of the superblock (512byte sectors),
942          * it's at the end of the disk.
943          *
944          * It also happens to be a multiple of 4Kb.
945          */
946         rdev->sb_start = calc_dev_sboffset(rdev);
947
948         ret = read_disk_sb(rdev, MD_SB_BYTES);
949         if (ret) return ret;
950
951         ret = -EINVAL;
952
953         bdevname(rdev->bdev, b);
954         sb = page_address(rdev->sb_page);
955
956         if (sb->md_magic != MD_SB_MAGIC) {
957                 printk(KERN_ERR "md: invalid raid superblock magic on %s\n",
958                        b);
959                 goto abort;
960         }
961
962         if (sb->major_version != 0 ||
963             sb->minor_version < 90 ||
964             sb->minor_version > 91) {
965                 printk(KERN_WARNING "Bad version number %d.%d on %s\n",
966                         sb->major_version, sb->minor_version,
967                         b);
968                 goto abort;
969         }
970
971         if (sb->raid_disks <= 0)
972                 goto abort;
973
974         if (md_csum_fold(calc_sb_csum(sb)) != md_csum_fold(sb->sb_csum)) {
975                 printk(KERN_WARNING "md: invalid superblock checksum on %s\n",
976                         b);
977                 goto abort;
978         }
979
980         rdev->preferred_minor = sb->md_minor;
981         rdev->data_offset = 0;
982         rdev->new_data_offset = 0;
983         rdev->sb_size = MD_SB_BYTES;
984         rdev->badblocks.shift = -1;
985
986         if (sb->level == LEVEL_MULTIPATH)
987                 rdev->desc_nr = -1;
988         else
989                 rdev->desc_nr = sb->this_disk.number;
990
991         if (!refdev) {
992                 ret = 1;
993         } else {
994                 __u64 ev1, ev2;
995                 mdp_super_t *refsb = page_address(refdev->sb_page);
996                 if (!uuid_equal(refsb, sb)) {
997                         printk(KERN_WARNING "md: %s has different UUID to %s\n",
998                                 b, bdevname(refdev->bdev,b2));
999                         goto abort;
1000                 }
1001                 if (!sb_equal(refsb, sb)) {
1002                         printk(KERN_WARNING "md: %s has same UUID"
1003                                " but different superblock to %s\n",
1004                                b, bdevname(refdev->bdev, b2));
1005                         goto abort;
1006                 }
1007                 ev1 = md_event(sb);
1008                 ev2 = md_event(refsb);
1009                 if (ev1 > ev2)
1010                         ret = 1;
1011                 else
1012                         ret = 0;
1013         }
1014         rdev->sectors = rdev->sb_start;
1015         /* Limit to 4TB as metadata cannot record more than that.
1016          * (not needed for Linear and RAID0 as metadata doesn't
1017          * record this size)
1018          */
1019         if (IS_ENABLED(CONFIG_LBDAF) && (u64)rdev->sectors >= (2ULL << 32) &&
1020             sb->level >= 1)
1021                 rdev->sectors = (sector_t)(2ULL << 32) - 2;
1022
1023         if (rdev->sectors < ((sector_t)sb->size) * 2 && sb->level >= 1)
1024                 /* "this cannot possibly happen" ... */
1025                 ret = -EINVAL;
1026
1027  abort:
1028         return ret;
1029 }
1030
1031 /*
1032  * validate_super for 0.90.0
1033  */
1034 static int super_90_validate(struct mddev *mddev, struct md_rdev *rdev)
1035 {
1036         mdp_disk_t *desc;
1037         mdp_super_t *sb = page_address(rdev->sb_page);
1038         __u64 ev1 = md_event(sb);
1039
1040         rdev->raid_disk = -1;
1041         clear_bit(Faulty, &rdev->flags);
1042         clear_bit(In_sync, &rdev->flags);
1043         clear_bit(Bitmap_sync, &rdev->flags);
1044         clear_bit(WriteMostly, &rdev->flags);
1045
1046         if (mddev->raid_disks == 0) {
1047                 mddev->major_version = 0;
1048                 mddev->minor_version = sb->minor_version;
1049                 mddev->patch_version = sb->patch_version;
1050                 mddev->external = 0;
1051                 mddev->chunk_sectors = sb->chunk_size >> 9;
1052                 mddev->ctime = sb->ctime;
1053                 mddev->utime = sb->utime;
1054                 mddev->level = sb->level;
1055                 mddev->clevel[0] = 0;
1056                 mddev->layout = sb->layout;
1057                 mddev->raid_disks = sb->raid_disks;
1058                 mddev->dev_sectors = ((sector_t)sb->size) * 2;
1059                 mddev->events = ev1;
1060                 mddev->bitmap_info.offset = 0;
1061                 mddev->bitmap_info.space = 0;
1062                 /* bitmap can use 60 K after the 4K superblocks */
1063                 mddev->bitmap_info.default_offset = MD_SB_BYTES >> 9;
1064                 mddev->bitmap_info.default_space = 64*2 - (MD_SB_BYTES >> 9);
1065                 mddev->reshape_backwards = 0;
1066
1067                 if (mddev->minor_version >= 91) {
1068                         mddev->reshape_position = sb->reshape_position;
1069                         mddev->delta_disks = sb->delta_disks;
1070                         mddev->new_level = sb->new_level;
1071                         mddev->new_layout = sb->new_layout;
1072                         mddev->new_chunk_sectors = sb->new_chunk >> 9;
1073                         if (mddev->delta_disks < 0)
1074                                 mddev->reshape_backwards = 1;
1075                 } else {
1076                         mddev->reshape_position = MaxSector;
1077                         mddev->delta_disks = 0;
1078                         mddev->new_level = mddev->level;
1079                         mddev->new_layout = mddev->layout;
1080                         mddev->new_chunk_sectors = mddev->chunk_sectors;
1081                 }
1082
1083                 if (sb->state & (1<<MD_SB_CLEAN))
1084                         mddev->recovery_cp = MaxSector;
1085                 else {
1086                         if (sb->events_hi == sb->cp_events_hi &&
1087                                 sb->events_lo == sb->cp_events_lo) {
1088                                 mddev->recovery_cp = sb->recovery_cp;
1089                         } else
1090                                 mddev->recovery_cp = 0;
1091                 }
1092
1093                 memcpy(mddev->uuid+0, &sb->set_uuid0, 4);
1094                 memcpy(mddev->uuid+4, &sb->set_uuid1, 4);
1095                 memcpy(mddev->uuid+8, &sb->set_uuid2, 4);
1096                 memcpy(mddev->uuid+12,&sb->set_uuid3, 4);
1097
1098                 mddev->max_disks = MD_SB_DISKS;
1099
1100                 if (sb->state & (1<<MD_SB_BITMAP_PRESENT) &&
1101                     mddev->bitmap_info.file == NULL) {
1102                         mddev->bitmap_info.offset =
1103                                 mddev->bitmap_info.default_offset;
1104                         mddev->bitmap_info.space =
1105                                 mddev->bitmap_info.default_space;
1106                 }
1107
1108         } else if (mddev->pers == NULL) {
1109                 /* Insist on good event counter while assembling, except
1110                  * for spares (which don't need an event count) */
1111                 ++ev1;
1112                 if (sb->disks[rdev->desc_nr].state & (
1113                             (1<<MD_DISK_SYNC) | (1 << MD_DISK_ACTIVE)))
1114                         if (ev1 < mddev->events)
1115                                 return -EINVAL;
1116         } else if (mddev->bitmap) {
1117                 /* if adding to array with a bitmap, then we can accept an
1118                  * older device ... but not too old.
1119                  */
1120                 if (ev1 < mddev->bitmap->events_cleared)
1121                         return 0;
1122                 if (ev1 < mddev->events)
1123                         set_bit(Bitmap_sync, &rdev->flags);
1124         } else {
1125                 if (ev1 < mddev->events)
1126                         /* just a hot-add of a new device, leave raid_disk at -1 */
1127                         return 0;
1128         }
1129
1130         if (mddev->level != LEVEL_MULTIPATH) {
1131                 desc = sb->disks + rdev->desc_nr;
1132
1133                 if (desc->state & (1<<MD_DISK_FAULTY))
1134                         set_bit(Faulty, &rdev->flags);
1135                 else if (desc->state & (1<<MD_DISK_SYNC) /* &&
1136                             desc->raid_disk < mddev->raid_disks */) {
1137                         set_bit(In_sync, &rdev->flags);
1138                         rdev->raid_disk = desc->raid_disk;
1139                         rdev->saved_raid_disk = desc->raid_disk;
1140                 } else if (desc->state & (1<<MD_DISK_ACTIVE)) {
1141                         /* active but not in sync implies recovery up to
1142                          * reshape position.  We don't know exactly where
1143                          * that is, so set to zero for now */
1144                         if (mddev->minor_version >= 91) {
1145                                 rdev->recovery_offset = 0;
1146                                 rdev->raid_disk = desc->raid_disk;
1147                         }
1148                 }
1149                 if (desc->state & (1<<MD_DISK_WRITEMOSTLY))
1150                         set_bit(WriteMostly, &rdev->flags);
1151         } else /* MULTIPATH are always insync */
1152                 set_bit(In_sync, &rdev->flags);
1153         return 0;
1154 }
1155
1156 /*
1157  * sync_super for 0.90.0
1158  */
1159 static void super_90_sync(struct mddev *mddev, struct md_rdev *rdev)
1160 {
1161         mdp_super_t *sb;
1162         struct md_rdev *rdev2;
1163         int next_spare = mddev->raid_disks;
1164
1165         /* make rdev->sb match mddev data..
1166          *
1167          * 1/ zero out disks
1168          * 2/ Add info for each disk, keeping track of highest desc_nr (next_spare);
1169          * 3/ any empty disks < next_spare become removed
1170          *
1171          * disks[0] gets initialised to REMOVED because
1172          * we cannot be sure from other fields if it has
1173          * been initialised or not.
1174          */
1175         int i;
1176         int active=0, working=0,failed=0,spare=0,nr_disks=0;
1177
1178         rdev->sb_size = MD_SB_BYTES;
1179
1180         sb = page_address(rdev->sb_page);
1181
1182         memset(sb, 0, sizeof(*sb));
1183
1184         sb->md_magic = MD_SB_MAGIC;
1185         sb->major_version = mddev->major_version;
1186         sb->patch_version = mddev->patch_version;
1187         sb->gvalid_words  = 0; /* ignored */
1188         memcpy(&sb->set_uuid0, mddev->uuid+0, 4);
1189         memcpy(&sb->set_uuid1, mddev->uuid+4, 4);
1190         memcpy(&sb->set_uuid2, mddev->uuid+8, 4);
1191         memcpy(&sb->set_uuid3, mddev->uuid+12,4);
1192
1193         sb->ctime = clamp_t(time64_t, mddev->ctime, 0, U32_MAX);
1194         sb->level = mddev->level;
1195         sb->size = mddev->dev_sectors / 2;
1196         sb->raid_disks = mddev->raid_disks;
1197         sb->md_minor = mddev->md_minor;
1198         sb->not_persistent = 0;
1199         sb->utime = clamp_t(time64_t, mddev->utime, 0, U32_MAX);
1200         sb->state = 0;
1201         sb->events_hi = (mddev->events>>32);
1202         sb->events_lo = (u32)mddev->events;
1203
1204         if (mddev->reshape_position == MaxSector)
1205                 sb->minor_version = 90;
1206         else {
1207                 sb->minor_version = 91;
1208                 sb->reshape_position = mddev->reshape_position;
1209                 sb->new_level = mddev->new_level;
1210                 sb->delta_disks = mddev->delta_disks;
1211                 sb->new_layout = mddev->new_layout;
1212                 sb->new_chunk = mddev->new_chunk_sectors << 9;
1213         }
1214         mddev->minor_version = sb->minor_version;
1215         if (mddev->in_sync)
1216         {
1217                 sb->recovery_cp = mddev->recovery_cp;
1218                 sb->cp_events_hi = (mddev->events>>32);
1219                 sb->cp_events_lo = (u32)mddev->events;
1220                 if (mddev->recovery_cp == MaxSector)
1221                         sb->state = (1<< MD_SB_CLEAN);
1222         } else
1223                 sb->recovery_cp = 0;
1224
1225         sb->layout = mddev->layout;
1226         sb->chunk_size = mddev->chunk_sectors << 9;
1227
1228         if (mddev->bitmap && mddev->bitmap_info.file == NULL)
1229                 sb->state |= (1<<MD_SB_BITMAP_PRESENT);
1230
1231         sb->disks[0].state = (1<<MD_DISK_REMOVED);
1232         rdev_for_each(rdev2, mddev) {
1233                 mdp_disk_t *d;
1234                 int desc_nr;
1235                 int is_active = test_bit(In_sync, &rdev2->flags);
1236
1237                 if (rdev2->raid_disk >= 0 &&
1238                     sb->minor_version >= 91)
1239                         /* we have nowhere to store the recovery_offset,
1240                          * but if it is not below the reshape_position,
1241                          * we can piggy-back on that.
1242                          */
1243                         is_active = 1;
1244                 if (rdev2->raid_disk < 0 ||
1245                     test_bit(Faulty, &rdev2->flags))
1246                         is_active = 0;
1247                 if (is_active)
1248                         desc_nr = rdev2->raid_disk;
1249                 else
1250                         desc_nr = next_spare++;
1251                 rdev2->desc_nr = desc_nr;
1252                 d = &sb->disks[rdev2->desc_nr];
1253                 nr_disks++;
1254                 d->number = rdev2->desc_nr;
1255                 d->major = MAJOR(rdev2->bdev->bd_dev);
1256                 d->minor = MINOR(rdev2->bdev->bd_dev);
1257                 if (is_active)
1258                         d->raid_disk = rdev2->raid_disk;
1259                 else
1260                         d->raid_disk = rdev2->desc_nr; /* compatibility */
1261                 if (test_bit(Faulty, &rdev2->flags))
1262                         d->state = (1<<MD_DISK_FAULTY);
1263                 else if (is_active) {
1264                         d->state = (1<<MD_DISK_ACTIVE);
1265                         if (test_bit(In_sync, &rdev2->flags))
1266                                 d->state |= (1<<MD_DISK_SYNC);
1267                         active++;
1268                         working++;
1269                 } else {
1270                         d->state = 0;
1271                         spare++;
1272                         working++;
1273                 }
1274                 if (test_bit(WriteMostly, &rdev2->flags))
1275                         d->state |= (1<<MD_DISK_WRITEMOSTLY);
1276         }
1277         /* now set the "removed" and "faulty" bits on any missing devices */
1278         for (i=0 ; i < mddev->raid_disks ; i++) {
1279                 mdp_disk_t *d = &sb->disks[i];
1280                 if (d->state == 0 && d->number == 0) {
1281                         d->number = i;
1282                         d->raid_disk = i;
1283                         d->state = (1<<MD_DISK_REMOVED);
1284                         d->state |= (1<<MD_DISK_FAULTY);
1285                         failed++;
1286                 }
1287         }
1288         sb->nr_disks = nr_disks;
1289         sb->active_disks = active;
1290         sb->working_disks = working;
1291         sb->failed_disks = failed;
1292         sb->spare_disks = spare;
1293
1294         sb->this_disk = sb->disks[rdev->desc_nr];
1295         sb->sb_csum = calc_sb_csum(sb);
1296 }
1297
1298 /*
1299  * rdev_size_change for 0.90.0
1300  */
1301 static unsigned long long
1302 super_90_rdev_size_change(struct md_rdev *rdev, sector_t num_sectors)
1303 {
1304         if (num_sectors && num_sectors < rdev->mddev->dev_sectors)
1305                 return 0; /* component must fit device */
1306         if (rdev->mddev->bitmap_info.offset)
1307                 return 0; /* can't move bitmap */
1308         rdev->sb_start = calc_dev_sboffset(rdev);
1309         if (!num_sectors || num_sectors > rdev->sb_start)
1310                 num_sectors = rdev->sb_start;
1311         /* Limit to 4TB as metadata cannot record more than that.
1312          * 4TB == 2^32 KB, or 2*2^32 sectors.
1313          */
1314         if (IS_ENABLED(CONFIG_LBDAF) && (u64)num_sectors >= (2ULL << 32) &&
1315             rdev->mddev->level >= 1)
1316                 num_sectors = (sector_t)(2ULL << 32) - 2;
1317         md_super_write(rdev->mddev, rdev, rdev->sb_start, rdev->sb_size,
1318                        rdev->sb_page);
1319         md_super_wait(rdev->mddev);
1320         return num_sectors;
1321 }
1322
1323 static int
1324 super_90_allow_new_offset(struct md_rdev *rdev, unsigned long long new_offset)
1325 {
1326         /* non-zero offset changes not possible with v0.90 */
1327         return new_offset == 0;
1328 }
1329
1330 /*
1331  * version 1 superblock
1332  */
1333
1334 static __le32 calc_sb_1_csum(struct mdp_superblock_1 *sb)
1335 {
1336         __le32 disk_csum;
1337         u32 csum;
1338         unsigned long long newcsum;
1339         int size = 256 + le32_to_cpu(sb->max_dev)*2;
1340         __le32 *isuper = (__le32*)sb;
1341
1342         disk_csum = sb->sb_csum;
1343         sb->sb_csum = 0;
1344         newcsum = 0;
1345         for (; size >= 4; size -= 4)
1346                 newcsum += le32_to_cpu(*isuper++);
1347
1348         if (size == 2)
1349                 newcsum += le16_to_cpu(*(__le16*) isuper);
1350
1351         csum = (newcsum & 0xffffffff) + (newcsum >> 32);
1352         sb->sb_csum = disk_csum;
1353         return cpu_to_le32(csum);
1354 }
1355
1356 static int md_set_badblocks(struct badblocks *bb, sector_t s, int sectors,
1357                             int acknowledged);
1358 static int super_1_load(struct md_rdev *rdev, struct md_rdev *refdev, int minor_version)
1359 {
1360         struct mdp_superblock_1 *sb;
1361         int ret;
1362         sector_t sb_start;
1363         sector_t sectors;
1364         char b[BDEVNAME_SIZE], b2[BDEVNAME_SIZE];
1365         int bmask;
1366
1367         /*
1368          * Calculate the position of the superblock in 512byte sectors.
1369          * It is always aligned to a 4K boundary and
1370          * depeding on minor_version, it can be:
1371          * 0: At least 8K, but less than 12K, from end of device
1372          * 1: At start of device
1373          * 2: 4K from start of device.
1374          */
1375         switch(minor_version) {
1376         case 0:
1377                 sb_start = i_size_read(rdev->bdev->bd_inode) >> 9;
1378                 sb_start -= 8*2;
1379                 sb_start &= ~(sector_t)(4*2-1);
1380                 break;
1381         case 1:
1382                 sb_start = 0;
1383                 break;
1384         case 2:
1385                 sb_start = 8;
1386                 break;
1387         default:
1388                 return -EINVAL;
1389         }
1390         rdev->sb_start = sb_start;
1391
1392         /* superblock is rarely larger than 1K, but it can be larger,
1393          * and it is safe to read 4k, so we do that
1394          */
1395         ret = read_disk_sb(rdev, 4096);
1396         if (ret) return ret;
1397
1398         sb = page_address(rdev->sb_page);
1399
1400         if (sb->magic != cpu_to_le32(MD_SB_MAGIC) ||
1401             sb->major_version != cpu_to_le32(1) ||
1402             le32_to_cpu(sb->max_dev) > (4096-256)/2 ||
1403             le64_to_cpu(sb->super_offset) != rdev->sb_start ||
1404             (le32_to_cpu(sb->feature_map) & ~MD_FEATURE_ALL) != 0)
1405                 return -EINVAL;
1406
1407         if (calc_sb_1_csum(sb) != sb->sb_csum) {
1408                 printk("md: invalid superblock checksum on %s\n",
1409                         bdevname(rdev->bdev,b));
1410                 return -EINVAL;
1411         }
1412         if (le64_to_cpu(sb->data_size) < 10) {
1413                 printk("md: data_size too small on %s\n",
1414                        bdevname(rdev->bdev,b));
1415                 return -EINVAL;
1416         }
1417         if (sb->pad0 ||
1418             sb->pad3[0] ||
1419             memcmp(sb->pad3, sb->pad3+1, sizeof(sb->pad3) - sizeof(sb->pad3[1])))
1420                 /* Some padding is non-zero, might be a new feature */
1421                 return -EINVAL;
1422
1423         rdev->preferred_minor = 0xffff;
1424         rdev->data_offset = le64_to_cpu(sb->data_offset);
1425         rdev->new_data_offset = rdev->data_offset;
1426         if ((le32_to_cpu(sb->feature_map) & MD_FEATURE_RESHAPE_ACTIVE) &&
1427             (le32_to_cpu(sb->feature_map) & MD_FEATURE_NEW_OFFSET))
1428                 rdev->new_data_offset += (s32)le32_to_cpu(sb->new_offset);
1429         atomic_set(&rdev->corrected_errors, le32_to_cpu(sb->cnt_corrected_read));
1430
1431         rdev->sb_size = le32_to_cpu(sb->max_dev) * 2 + 256;
1432         bmask = queue_logical_block_size(rdev->bdev->bd_disk->queue)-1;
1433         if (rdev->sb_size & bmask)
1434                 rdev->sb_size = (rdev->sb_size | bmask) + 1;
1435
1436         if (minor_version
1437             && rdev->data_offset < sb_start + (rdev->sb_size/512))
1438                 return -EINVAL;
1439         if (minor_version
1440             && rdev->new_data_offset < sb_start + (rdev->sb_size/512))
1441                 return -EINVAL;
1442
1443         if (sb->level == cpu_to_le32(LEVEL_MULTIPATH))
1444                 rdev->desc_nr = -1;
1445         else
1446                 rdev->desc_nr = le32_to_cpu(sb->dev_number);
1447
1448         if (!rdev->bb_page) {
1449                 rdev->bb_page = alloc_page(GFP_KERNEL);
1450                 if (!rdev->bb_page)
1451                         return -ENOMEM;
1452         }
1453         if ((le32_to_cpu(sb->feature_map) & MD_FEATURE_BAD_BLOCKS) &&
1454             rdev->badblocks.count == 0) {
1455                 /* need to load the bad block list.
1456                  * Currently we limit it to one page.
1457                  */
1458                 s32 offset;
1459                 sector_t bb_sector;
1460                 u64 *bbp;
1461                 int i;
1462                 int sectors = le16_to_cpu(sb->bblog_size);
1463                 if (sectors > (PAGE_SIZE / 512))
1464                         return -EINVAL;
1465                 offset = le32_to_cpu(sb->bblog_offset);
1466                 if (offset == 0)
1467                         return -EINVAL;
1468                 bb_sector = (long long)offset;
1469                 if (!sync_page_io(rdev, bb_sector, sectors << 9,
1470                                   rdev->bb_page, READ, true))
1471                         return -EIO;
1472                 bbp = (u64 *)page_address(rdev->bb_page);
1473                 rdev->badblocks.shift = sb->bblog_shift;
1474                 for (i = 0 ; i < (sectors << (9-3)) ; i++, bbp++) {
1475                         u64 bb = le64_to_cpu(*bbp);
1476                         int count = bb & (0x3ff);
1477                         u64 sector = bb >> 10;
1478                         sector <<= sb->bblog_shift;
1479                         count <<= sb->bblog_shift;
1480                         if (bb + 1 == 0)
1481                                 break;
1482                         if (md_set_badblocks(&rdev->badblocks,
1483                                              sector, count, 1) == 0)
1484                                 return -EINVAL;
1485                 }
1486         } else if (sb->bblog_offset != 0)
1487                 rdev->badblocks.shift = 0;
1488
1489         if (!refdev) {
1490                 ret = 1;
1491         } else {
1492                 __u64 ev1, ev2;
1493                 struct mdp_superblock_1 *refsb = page_address(refdev->sb_page);
1494
1495                 if (memcmp(sb->set_uuid, refsb->set_uuid, 16) != 0 ||
1496                     sb->level != refsb->level ||
1497                     sb->layout != refsb->layout ||
1498                     sb->chunksize != refsb->chunksize) {
1499                         printk(KERN_WARNING "md: %s has strangely different"
1500                                 " superblock to %s\n",
1501                                 bdevname(rdev->bdev,b),
1502                                 bdevname(refdev->bdev,b2));
1503                         return -EINVAL;
1504                 }
1505                 ev1 = le64_to_cpu(sb->events);
1506                 ev2 = le64_to_cpu(refsb->events);
1507
1508                 if (ev1 > ev2)
1509                         ret = 1;
1510                 else
1511                         ret = 0;
1512         }
1513         if (minor_version) {
1514                 sectors = (i_size_read(rdev->bdev->bd_inode) >> 9);
1515                 sectors -= rdev->data_offset;
1516         } else
1517                 sectors = rdev->sb_start;
1518         if (sectors < le64_to_cpu(sb->data_size))
1519                 return -EINVAL;
1520         rdev->sectors = le64_to_cpu(sb->data_size);
1521         return ret;
1522 }
1523
1524 static int super_1_validate(struct mddev *mddev, struct md_rdev *rdev)
1525 {
1526         struct mdp_superblock_1 *sb = page_address(rdev->sb_page);
1527         __u64 ev1 = le64_to_cpu(sb->events);
1528
1529         rdev->raid_disk = -1;
1530         clear_bit(Faulty, &rdev->flags);
1531         clear_bit(In_sync, &rdev->flags);
1532         clear_bit(Bitmap_sync, &rdev->flags);
1533         clear_bit(WriteMostly, &rdev->flags);
1534
1535         if (mddev->raid_disks == 0) {
1536                 mddev->major_version = 1;
1537                 mddev->patch_version = 0;
1538                 mddev->external = 0;
1539                 mddev->chunk_sectors = le32_to_cpu(sb->chunksize);
1540                 mddev->ctime = le64_to_cpu(sb->ctime);
1541                 mddev->utime = le64_to_cpu(sb->utime);
1542                 mddev->level = le32_to_cpu(sb->level);
1543                 mddev->clevel[0] = 0;
1544                 mddev->layout = le32_to_cpu(sb->layout);
1545                 mddev->raid_disks = le32_to_cpu(sb->raid_disks);
1546                 mddev->dev_sectors = le64_to_cpu(sb->size);
1547                 mddev->events = ev1;
1548                 mddev->bitmap_info.offset = 0;
1549                 mddev->bitmap_info.space = 0;
1550                 /* Default location for bitmap is 1K after superblock
1551                  * using 3K - total of 4K
1552                  */
1553                 mddev->bitmap_info.default_offset = 1024 >> 9;
1554                 mddev->bitmap_info.default_space = (4096-1024) >> 9;
1555                 mddev->reshape_backwards = 0;
1556
1557                 mddev->recovery_cp = le64_to_cpu(sb->resync_offset);
1558                 memcpy(mddev->uuid, sb->set_uuid, 16);
1559
1560                 mddev->max_disks =  (4096-256)/2;
1561
1562                 if ((le32_to_cpu(sb->feature_map) & MD_FEATURE_BITMAP_OFFSET) &&
1563                     mddev->bitmap_info.file == NULL) {
1564                         mddev->bitmap_info.offset =
1565                                 (__s32)le32_to_cpu(sb->bitmap_offset);
1566                         /* Metadata doesn't record how much space is available.
1567                          * For 1.0, we assume we can use up to the superblock
1568                          * if before, else to 4K beyond superblock.
1569                          * For others, assume no change is possible.
1570                          */
1571                         if (mddev->minor_version > 0)
1572                                 mddev->bitmap_info.space = 0;
1573                         else if (mddev->bitmap_info.offset > 0)
1574                                 mddev->bitmap_info.space =
1575                                         8 - mddev->bitmap_info.offset;
1576                         else
1577                                 mddev->bitmap_info.space =
1578                                         -mddev->bitmap_info.offset;
1579                 }
1580
1581                 if ((le32_to_cpu(sb->feature_map) & MD_FEATURE_RESHAPE_ACTIVE)) {
1582                         mddev->reshape_position = le64_to_cpu(sb->reshape_position);
1583                         mddev->delta_disks = le32_to_cpu(sb->delta_disks);
1584                         mddev->new_level = le32_to_cpu(sb->new_level);
1585                         mddev->new_layout = le32_to_cpu(sb->new_layout);
1586                         mddev->new_chunk_sectors = le32_to_cpu(sb->new_chunk);
1587                         if (mddev->delta_disks < 0 ||
1588                             (mddev->delta_disks == 0 &&
1589                              (le32_to_cpu(sb->feature_map)
1590                               & MD_FEATURE_RESHAPE_BACKWARDS)))
1591                                 mddev->reshape_backwards = 1;
1592                 } else {
1593                         mddev->reshape_position = MaxSector;
1594                         mddev->delta_disks = 0;
1595                         mddev->new_level = mddev->level;
1596                         mddev->new_layout = mddev->layout;
1597                         mddev->new_chunk_sectors = mddev->chunk_sectors;
1598                 }
1599
1600                 if (le32_to_cpu(sb->feature_map) & MD_FEATURE_JOURNAL) {
1601                         set_bit(MD_HAS_JOURNAL, &mddev->flags);
1602                         if (mddev->recovery_cp == MaxSector)
1603                                 set_bit(MD_JOURNAL_CLEAN, &mddev->flags);
1604                 }
1605         } else if (mddev->pers == NULL) {
1606                 /* Insist of good event counter while assembling, except for
1607                  * spares (which don't need an event count) */
1608                 ++ev1;
1609                 if (rdev->desc_nr >= 0 &&
1610                     rdev->desc_nr < le32_to_cpu(sb->max_dev) &&
1611                     (le16_to_cpu(sb->dev_roles[rdev->desc_nr]) < MD_DISK_ROLE_MAX ||
1612                      le16_to_cpu(sb->dev_roles[rdev->desc_nr]) == MD_DISK_ROLE_JOURNAL))
1613                         if (ev1 < mddev->events)
1614                                 return -EINVAL;
1615         } else if (mddev->bitmap) {
1616                 /* If adding to array with a bitmap, then we can accept an
1617                  * older device, but not too old.
1618                  */
1619                 if (ev1 < mddev->bitmap->events_cleared)
1620                         return 0;
1621                 if (ev1 < mddev->events)
1622                         set_bit(Bitmap_sync, &rdev->flags);
1623         } else {
1624                 if (ev1 < mddev->events)
1625                         /* just a hot-add of a new device, leave raid_disk at -1 */
1626                         return 0;
1627         }
1628         if (mddev->level != LEVEL_MULTIPATH) {
1629                 int role;
1630                 if (rdev->desc_nr < 0 ||
1631                     rdev->desc_nr >= le32_to_cpu(sb->max_dev)) {
1632                         role = MD_DISK_ROLE_SPARE;
1633                         rdev->desc_nr = -1;
1634                 } else
1635                         role = le16_to_cpu(sb->dev_roles[rdev->desc_nr]);
1636                 switch(role) {
1637                 case MD_DISK_ROLE_SPARE: /* spare */
1638                         break;
1639                 case MD_DISK_ROLE_FAULTY: /* faulty */
1640                         set_bit(Faulty, &rdev->flags);
1641                         break;
1642                 case MD_DISK_ROLE_JOURNAL: /* journal device */
1643                         if (!(le32_to_cpu(sb->feature_map) & MD_FEATURE_JOURNAL)) {
1644                                 /* journal device without journal feature */
1645                                 printk(KERN_WARNING
1646                                   "md: journal device provided without journal feature, ignoring the device\n");
1647                                 return -EINVAL;
1648                         }
1649                         set_bit(Journal, &rdev->flags);
1650                         rdev->journal_tail = le64_to_cpu(sb->journal_tail);
1651                         rdev->raid_disk = 0;
1652                         break;
1653                 default:
1654                         rdev->saved_raid_disk = role;
1655                         if ((le32_to_cpu(sb->feature_map) &
1656                              MD_FEATURE_RECOVERY_OFFSET)) {
1657                                 rdev->recovery_offset = le64_to_cpu(sb->recovery_offset);
1658                                 if (!(le32_to_cpu(sb->feature_map) &
1659                                       MD_FEATURE_RECOVERY_BITMAP))
1660                                         rdev->saved_raid_disk = -1;
1661                         } else
1662                                 set_bit(In_sync, &rdev->flags);
1663                         rdev->raid_disk = role;
1664                         break;
1665                 }
1666                 if (sb->devflags & WriteMostly1)
1667                         set_bit(WriteMostly, &rdev->flags);
1668                 if (le32_to_cpu(sb->feature_map) & MD_FEATURE_REPLACEMENT)
1669                         set_bit(Replacement, &rdev->flags);
1670         } else /* MULTIPATH are always insync */
1671                 set_bit(In_sync, &rdev->flags);
1672
1673         return 0;
1674 }
1675
1676 static void super_1_sync(struct mddev *mddev, struct md_rdev *rdev)
1677 {
1678         struct mdp_superblock_1 *sb;
1679         struct md_rdev *rdev2;
1680         int max_dev, i;
1681         /* make rdev->sb match mddev and rdev data. */
1682
1683         sb = page_address(rdev->sb_page);
1684
1685         sb->feature_map = 0;
1686         sb->pad0 = 0;
1687         sb->recovery_offset = cpu_to_le64(0);
1688         memset(sb->pad3, 0, sizeof(sb->pad3));
1689
1690         sb->utime = cpu_to_le64((__u64)mddev->utime);
1691         sb->events = cpu_to_le64(mddev->events);
1692         if (mddev->in_sync)
1693                 sb->resync_offset = cpu_to_le64(mddev->recovery_cp);
1694         else if (test_bit(MD_JOURNAL_CLEAN, &mddev->flags))
1695                 sb->resync_offset = cpu_to_le64(MaxSector);
1696         else
1697                 sb->resync_offset = cpu_to_le64(0);
1698
1699         sb->cnt_corrected_read = cpu_to_le32(atomic_read(&rdev->corrected_errors));
1700
1701         sb->raid_disks = cpu_to_le32(mddev->raid_disks);
1702         sb->size = cpu_to_le64(mddev->dev_sectors);
1703         sb->chunksize = cpu_to_le32(mddev->chunk_sectors);
1704         sb->level = cpu_to_le32(mddev->level);
1705         sb->layout = cpu_to_le32(mddev->layout);
1706
1707         if (test_bit(WriteMostly, &rdev->flags))
1708                 sb->devflags |= WriteMostly1;
1709         else
1710                 sb->devflags &= ~WriteMostly1;
1711         sb->data_offset = cpu_to_le64(rdev->data_offset);
1712         sb->data_size = cpu_to_le64(rdev->sectors);
1713
1714         if (mddev->bitmap && mddev->bitmap_info.file == NULL) {
1715                 sb->bitmap_offset = cpu_to_le32((__u32)mddev->bitmap_info.offset);
1716                 sb->feature_map = cpu_to_le32(MD_FEATURE_BITMAP_OFFSET);
1717         }
1718
1719         if (rdev->raid_disk >= 0 && !test_bit(Journal, &rdev->flags) &&
1720             !test_bit(In_sync, &rdev->flags)) {
1721                 sb->feature_map |=
1722                         cpu_to_le32(MD_FEATURE_RECOVERY_OFFSET);
1723                 sb->recovery_offset =
1724                         cpu_to_le64(rdev->recovery_offset);
1725                 if (rdev->saved_raid_disk >= 0 && mddev->bitmap)
1726                         sb->feature_map |=
1727                                 cpu_to_le32(MD_FEATURE_RECOVERY_BITMAP);
1728         }
1729         /* Note: recovery_offset and journal_tail share space  */
1730         if (test_bit(Journal, &rdev->flags))
1731                 sb->journal_tail = cpu_to_le64(rdev->journal_tail);
1732         if (test_bit(Replacement, &rdev->flags))
1733                 sb->feature_map |=
1734                         cpu_to_le32(MD_FEATURE_REPLACEMENT);
1735
1736         if (mddev->reshape_position != MaxSector) {
1737                 sb->feature_map |= cpu_to_le32(MD_FEATURE_RESHAPE_ACTIVE);
1738                 sb->reshape_position = cpu_to_le64(mddev->reshape_position);
1739                 sb->new_layout = cpu_to_le32(mddev->new_layout);
1740                 sb->delta_disks = cpu_to_le32(mddev->delta_disks);
1741                 sb->new_level = cpu_to_le32(mddev->new_level);
1742                 sb->new_chunk = cpu_to_le32(mddev->new_chunk_sectors);
1743                 if (mddev->delta_disks == 0 &&
1744                     mddev->reshape_backwards)
1745                         sb->feature_map
1746                                 |= cpu_to_le32(MD_FEATURE_RESHAPE_BACKWARDS);
1747                 if (rdev->new_data_offset != rdev->data_offset) {
1748                         sb->feature_map
1749                                 |= cpu_to_le32(MD_FEATURE_NEW_OFFSET);
1750                         sb->new_offset = cpu_to_le32((__u32)(rdev->new_data_offset
1751                                                              - rdev->data_offset));
1752                 }
1753         }
1754
1755         if (mddev_is_clustered(mddev))
1756                 sb->feature_map |= cpu_to_le32(MD_FEATURE_CLUSTERED);
1757
1758         if (rdev->badblocks.count == 0)
1759                 /* Nothing to do for bad blocks*/ ;
1760         else if (sb->bblog_offset == 0)
1761                 /* Cannot record bad blocks on this device */
1762                 md_error(mddev, rdev);
1763         else {
1764                 struct badblocks *bb = &rdev->badblocks;
1765                 u64 *bbp = (u64 *)page_address(rdev->bb_page);
1766                 u64 *p = bb->page;
1767                 sb->feature_map |= cpu_to_le32(MD_FEATURE_BAD_BLOCKS);
1768                 if (bb->changed) {
1769                         unsigned seq;
1770
1771 retry:
1772                         seq = read_seqbegin(&bb->lock);
1773
1774                         memset(bbp, 0xff, PAGE_SIZE);
1775
1776                         for (i = 0 ; i < bb->count ; i++) {
1777                                 u64 internal_bb = p[i];
1778                                 u64 store_bb = ((BB_OFFSET(internal_bb) << 10)
1779                                                 | BB_LEN(internal_bb));
1780                                 bbp[i] = cpu_to_le64(store_bb);
1781                         }
1782                         bb->changed = 0;
1783                         if (read_seqretry(&bb->lock, seq))
1784                                 goto retry;
1785
1786                         bb->sector = (rdev->sb_start +
1787                                       (int)le32_to_cpu(sb->bblog_offset));
1788                         bb->size = le16_to_cpu(sb->bblog_size);
1789                 }
1790         }
1791
1792         max_dev = 0;
1793         rdev_for_each(rdev2, mddev)
1794                 if (rdev2->desc_nr+1 > max_dev)
1795                         max_dev = rdev2->desc_nr+1;
1796
1797         if (max_dev > le32_to_cpu(sb->max_dev)) {
1798                 int bmask;
1799                 sb->max_dev = cpu_to_le32(max_dev);
1800                 rdev->sb_size = max_dev * 2 + 256;
1801                 bmask = queue_logical_block_size(rdev->bdev->bd_disk->queue)-1;
1802                 if (rdev->sb_size & bmask)
1803                         rdev->sb_size = (rdev->sb_size | bmask) + 1;
1804         } else
1805                 max_dev = le32_to_cpu(sb->max_dev);
1806
1807         for (i=0; i<max_dev;i++)
1808                 sb->dev_roles[i] = cpu_to_le16(MD_DISK_ROLE_FAULTY);
1809
1810         if (test_bit(MD_HAS_JOURNAL, &mddev->flags))
1811                 sb->feature_map |= cpu_to_le32(MD_FEATURE_JOURNAL);
1812
1813         rdev_for_each(rdev2, mddev) {
1814                 i = rdev2->desc_nr;
1815                 if (test_bit(Faulty, &rdev2->flags))
1816                         sb->dev_roles[i] = cpu_to_le16(MD_DISK_ROLE_FAULTY);
1817                 else if (test_bit(In_sync, &rdev2->flags))
1818                         sb->dev_roles[i] = cpu_to_le16(rdev2->raid_disk);
1819                 else if (test_bit(Journal, &rdev2->flags))
1820                         sb->dev_roles[i] = cpu_to_le16(MD_DISK_ROLE_JOURNAL);
1821                 else if (rdev2->raid_disk >= 0)
1822                         sb->dev_roles[i] = cpu_to_le16(rdev2->raid_disk);
1823                 else
1824                         sb->dev_roles[i] = cpu_to_le16(MD_DISK_ROLE_SPARE);
1825         }
1826
1827         sb->sb_csum = calc_sb_1_csum(sb);
1828 }
1829
1830 static unsigned long long
1831 super_1_rdev_size_change(struct md_rdev *rdev, sector_t num_sectors)
1832 {
1833         struct mdp_superblock_1 *sb;
1834         sector_t max_sectors;
1835         if (num_sectors && num_sectors < rdev->mddev->dev_sectors)
1836                 return 0; /* component must fit device */
1837         if (rdev->data_offset != rdev->new_data_offset)
1838                 return 0; /* too confusing */
1839         if (rdev->sb_start < rdev->data_offset) {
1840                 /* minor versions 1 and 2; superblock before data */
1841                 max_sectors = i_size_read(rdev->bdev->bd_inode) >> 9;
1842                 max_sectors -= rdev->data_offset;
1843                 if (!num_sectors || num_sectors > max_sectors)
1844                         num_sectors = max_sectors;
1845         } else if (rdev->mddev->bitmap_info.offset) {
1846                 /* minor version 0 with bitmap we can't move */
1847                 return 0;
1848         } else {
1849                 /* minor version 0; superblock after data */
1850                 sector_t sb_start;
1851                 sb_start = (i_size_read(rdev->bdev->bd_inode) >> 9) - 8*2;
1852                 sb_start &= ~(sector_t)(4*2 - 1);
1853                 max_sectors = rdev->sectors + sb_start - rdev->sb_start;
1854                 if (!num_sectors || num_sectors > max_sectors)
1855                         num_sectors = max_sectors;
1856                 rdev->sb_start = sb_start;
1857         }
1858         sb = page_address(rdev->sb_page);
1859         sb->data_size = cpu_to_le64(num_sectors);
1860         sb->super_offset = rdev->sb_start;
1861         sb->sb_csum = calc_sb_1_csum(sb);
1862         md_super_write(rdev->mddev, rdev, rdev->sb_start, rdev->sb_size,
1863                        rdev->sb_page);
1864         md_super_wait(rdev->mddev);
1865         return num_sectors;
1866
1867 }
1868
1869 static int
1870 super_1_allow_new_offset(struct md_rdev *rdev,
1871                          unsigned long long new_offset)
1872 {
1873         /* All necessary checks on new >= old have been done */
1874         struct bitmap *bitmap;
1875         if (new_offset >= rdev->data_offset)
1876                 return 1;
1877
1878         /* with 1.0 metadata, there is no metadata to tread on
1879          * so we can always move back */
1880         if (rdev->mddev->minor_version == 0)
1881                 return 1;
1882
1883         /* otherwise we must be sure not to step on
1884          * any metadata, so stay:
1885          * 36K beyond start of superblock
1886          * beyond end of badblocks
1887          * beyond write-intent bitmap
1888          */
1889         if (rdev->sb_start + (32+4)*2 > new_offset)
1890                 return 0;
1891         bitmap = rdev->mddev->bitmap;
1892         if (bitmap && !rdev->mddev->bitmap_info.file &&
1893             rdev->sb_start + rdev->mddev->bitmap_info.offset +
1894             bitmap->storage.file_pages * (PAGE_SIZE>>9) > new_offset)
1895                 return 0;
1896         if (rdev->badblocks.sector + rdev->badblocks.size > new_offset)
1897                 return 0;
1898
1899         return 1;
1900 }
1901
1902 static struct super_type super_types[] = {
1903         [0] = {
1904                 .name   = "0.90.0",
1905                 .owner  = THIS_MODULE,
1906                 .load_super         = super_90_load,
1907                 .validate_super     = super_90_validate,
1908                 .sync_super         = super_90_sync,
1909                 .rdev_size_change   = super_90_rdev_size_change,
1910                 .allow_new_offset   = super_90_allow_new_offset,
1911         },
1912         [1] = {
1913                 .name   = "md-1",
1914                 .owner  = THIS_MODULE,
1915                 .load_super         = super_1_load,
1916                 .validate_super     = super_1_validate,
1917                 .sync_super         = super_1_sync,
1918                 .rdev_size_change   = super_1_rdev_size_change,
1919                 .allow_new_offset   = super_1_allow_new_offset,
1920         },
1921 };
1922
1923 static void sync_super(struct mddev *mddev, struct md_rdev *rdev)
1924 {
1925         if (mddev->sync_super) {
1926                 mddev->sync_super(mddev, rdev);
1927                 return;
1928         }
1929
1930         BUG_ON(mddev->major_version >= ARRAY_SIZE(super_types));
1931
1932         super_types[mddev->major_version].sync_super(mddev, rdev);
1933 }
1934
1935 static int match_mddev_units(struct mddev *mddev1, struct mddev *mddev2)
1936 {
1937         struct md_rdev *rdev, *rdev2;
1938
1939         rcu_read_lock();
1940         rdev_for_each_rcu(rdev, mddev1) {
1941                 if (test_bit(Faulty, &rdev->flags) ||
1942                     test_bit(Journal, &rdev->flags) ||
1943                     rdev->raid_disk == -1)
1944                         continue;
1945                 rdev_for_each_rcu(rdev2, mddev2) {
1946                         if (test_bit(Faulty, &rdev2->flags) ||
1947                             test_bit(Journal, &rdev2->flags) ||
1948                             rdev2->raid_disk == -1)
1949                                 continue;
1950                         if (rdev->bdev->bd_contains ==
1951                             rdev2->bdev->bd_contains) {
1952                                 rcu_read_unlock();
1953                                 return 1;
1954                         }
1955                 }
1956         }
1957         rcu_read_unlock();
1958         return 0;
1959 }
1960
1961 static LIST_HEAD(pending_raid_disks);
1962
1963 /*
1964  * Try to register data integrity profile for an mddev
1965  *
1966  * This is called when an array is started and after a disk has been kicked
1967  * from the array. It only succeeds if all working and active component devices
1968  * are integrity capable with matching profiles.
1969  */
1970 int md_integrity_register(struct mddev *mddev)
1971 {
1972         struct md_rdev *rdev, *reference = NULL;
1973
1974         if (list_empty(&mddev->disks))
1975                 return 0; /* nothing to do */
1976         if (!mddev->gendisk || blk_get_integrity(mddev->gendisk))
1977                 return 0; /* shouldn't register, or already is */
1978         rdev_for_each(rdev, mddev) {
1979                 /* skip spares and non-functional disks */
1980                 if (test_bit(Faulty, &rdev->flags))
1981                         continue;
1982                 if (rdev->raid_disk < 0)
1983                         continue;
1984                 if (!reference) {
1985                         /* Use the first rdev as the reference */
1986                         reference = rdev;
1987                         continue;
1988                 }
1989                 /* does this rdev's profile match the reference profile? */
1990                 if (blk_integrity_compare(reference->bdev->bd_disk,
1991                                 rdev->bdev->bd_disk) < 0)
1992                         return -EINVAL;
1993         }
1994         if (!reference || !bdev_get_integrity(reference->bdev))
1995                 return 0;
1996         /*
1997          * All component devices are integrity capable and have matching
1998          * profiles, register the common profile for the md device.
1999          */
2000         blk_integrity_register(mddev->gendisk,
2001                                bdev_get_integrity(reference->bdev));
2002
2003         printk(KERN_NOTICE "md: data integrity enabled on %s\n", mdname(mddev));
2004         if (bioset_integrity_create(mddev->bio_set, BIO_POOL_SIZE)) {
2005                 printk(KERN_ERR "md: failed to create integrity pool for %s\n",
2006                        mdname(mddev));
2007                 return -EINVAL;
2008         }
2009         return 0;
2010 }
2011 EXPORT_SYMBOL(md_integrity_register);
2012
2013 /*
2014  * Attempt to add an rdev, but only if it is consistent with the current
2015  * integrity profile
2016  */
2017 int md_integrity_add_rdev(struct md_rdev *rdev, struct mddev *mddev)
2018 {
2019         struct blk_integrity *bi_rdev;
2020         struct blk_integrity *bi_mddev;
2021         char name[BDEVNAME_SIZE];
2022
2023         if (!mddev->gendisk)
2024                 return 0;
2025
2026         bi_rdev = bdev_get_integrity(rdev->bdev);
2027         bi_mddev = blk_get_integrity(mddev->gendisk);
2028
2029         if (!bi_mddev) /* nothing to do */
2030                 return 0;
2031
2032         if (blk_integrity_compare(mddev->gendisk, rdev->bdev->bd_disk) != 0) {
2033                 printk(KERN_NOTICE "%s: incompatible integrity profile for %s\n",
2034                                 mdname(mddev), bdevname(rdev->bdev, name));
2035                 return -ENXIO;
2036         }
2037
2038         return 0;
2039 }
2040 EXPORT_SYMBOL(md_integrity_add_rdev);
2041
2042 static int bind_rdev_to_array(struct md_rdev *rdev, struct mddev *mddev)
2043 {
2044         char b[BDEVNAME_SIZE];
2045         struct kobject *ko;
2046         int err;
2047
2048         /* prevent duplicates */
2049         if (find_rdev(mddev, rdev->bdev->bd_dev))
2050                 return -EEXIST;
2051
2052         /* make sure rdev->sectors exceeds mddev->dev_sectors */
2053         if (!test_bit(Journal, &rdev->flags) &&
2054             rdev->sectors &&
2055             (mddev->dev_sectors == 0 || rdev->sectors < mddev->dev_sectors)) {
2056                 if (mddev->pers) {
2057                         /* Cannot change size, so fail
2058                          * If mddev->level <= 0, then we don't care
2059                          * about aligning sizes (e.g. linear)
2060                          */
2061                         if (mddev->level > 0)
2062                                 return -ENOSPC;
2063                 } else
2064                         mddev->dev_sectors = rdev->sectors;
2065         }
2066
2067         /* Verify rdev->desc_nr is unique.
2068          * If it is -1, assign a free number, else
2069          * check number is not in use
2070          */
2071         rcu_read_lock();
2072         if (rdev->desc_nr < 0) {
2073                 int choice = 0;
2074                 if (mddev->pers)
2075                         choice = mddev->raid_disks;
2076                 while (md_find_rdev_nr_rcu(mddev, choice))
2077                         choice++;
2078                 rdev->desc_nr = choice;
2079         } else {
2080                 if (md_find_rdev_nr_rcu(mddev, rdev->desc_nr)) {
2081                         rcu_read_unlock();
2082                         return -EBUSY;
2083                 }
2084         }
2085         rcu_read_unlock();
2086         if (!test_bit(Journal, &rdev->flags) &&
2087             mddev->max_disks && rdev->desc_nr >= mddev->max_disks) {
2088                 printk(KERN_WARNING "md: %s: array is limited to %d devices\n",
2089                        mdname(mddev), mddev->max_disks);
2090                 return -EBUSY;
2091         }
2092         bdevname(rdev->bdev,b);
2093         strreplace(b, '/', '!');
2094
2095         rdev->mddev = mddev;
2096         printk(KERN_INFO "md: bind<%s>\n", b);
2097
2098         if ((err = kobject_add(&rdev->kobj, &mddev->kobj, "dev-%s", b)))
2099                 goto fail;
2100
2101         ko = &part_to_dev(rdev->bdev->bd_part)->kobj;
2102         if (sysfs_create_link(&rdev->kobj, ko, "block"))
2103                 /* failure here is OK */;
2104         rdev->sysfs_state = sysfs_get_dirent_safe(rdev->kobj.sd, "state");
2105
2106         list_add_rcu(&rdev->same_set, &mddev->disks);
2107         bd_link_disk_holder(rdev->bdev, mddev->gendisk);
2108
2109         /* May as well allow recovery to be retried once */
2110         mddev->recovery_disabled++;
2111
2112         return 0;
2113
2114  fail:
2115         printk(KERN_WARNING "md: failed to register dev-%s for %s\n",
2116                b, mdname(mddev));
2117         return err;
2118 }
2119
2120 static void md_delayed_delete(struct work_struct *ws)
2121 {
2122         struct md_rdev *rdev = container_of(ws, struct md_rdev, del_work);
2123         kobject_del(&rdev->kobj);
2124         kobject_put(&rdev->kobj);
2125 }
2126
2127 static void unbind_rdev_from_array(struct md_rdev *rdev)
2128 {
2129         char b[BDEVNAME_SIZE];
2130
2131         bd_unlink_disk_holder(rdev->bdev, rdev->mddev->gendisk);
2132         list_del_rcu(&rdev->same_set);
2133         printk(KERN_INFO "md: unbind<%s>\n", bdevname(rdev->bdev,b));
2134         rdev->mddev = NULL;
2135         sysfs_remove_link(&rdev->kobj, "block");
2136         sysfs_put(rdev->sysfs_state);
2137         rdev->sysfs_state = NULL;
2138         rdev->badblocks.count = 0;
2139         /* We need to delay this, otherwise we can deadlock when
2140          * writing to 'remove' to "dev/state".  We also need
2141          * to delay it due to rcu usage.
2142          */
2143         synchronize_rcu();
2144         INIT_WORK(&rdev->del_work, md_delayed_delete);
2145         kobject_get(&rdev->kobj);
2146         queue_work(md_misc_wq, &rdev->del_work);
2147 }
2148
2149 /*
2150  * prevent the device from being mounted, repartitioned or
2151  * otherwise reused by a RAID array (or any other kernel
2152  * subsystem), by bd_claiming the device.
2153  */
2154 static int lock_rdev(struct md_rdev *rdev, dev_t dev, int shared)
2155 {
2156         int err = 0;
2157         struct block_device *bdev;
2158         char b[BDEVNAME_SIZE];
2159
2160         bdev = blkdev_get_by_dev(dev, FMODE_READ|FMODE_WRITE|FMODE_EXCL,
2161                                  shared ? (struct md_rdev *)lock_rdev : rdev);
2162         if (IS_ERR(bdev)) {
2163                 printk(KERN_ERR "md: could not open %s.\n",
2164                         __bdevname(dev, b));
2165                 return PTR_ERR(bdev);
2166         }
2167         rdev->bdev = bdev;
2168         return err;
2169 }
2170
2171 static void unlock_rdev(struct md_rdev *rdev)
2172 {
2173         struct block_device *bdev = rdev->bdev;
2174         rdev->bdev = NULL;
2175         blkdev_put(bdev, FMODE_READ|FMODE_WRITE|FMODE_EXCL);
2176 }
2177
2178 void md_autodetect_dev(dev_t dev);
2179
2180 static void export_rdev(struct md_rdev *rdev)
2181 {
2182         char b[BDEVNAME_SIZE];
2183
2184         printk(KERN_INFO "md: export_rdev(%s)\n",
2185                 bdevname(rdev->bdev,b));
2186         md_rdev_clear(rdev);
2187 #ifndef MODULE
2188         if (test_bit(AutoDetected, &rdev->flags))
2189                 md_autodetect_dev(rdev->bdev->bd_dev);
2190 #endif
2191         unlock_rdev(rdev);
2192         kobject_put(&rdev->kobj);
2193 }
2194
2195 void md_kick_rdev_from_array(struct md_rdev *rdev)
2196 {
2197         unbind_rdev_from_array(rdev);
2198         export_rdev(rdev);
2199 }
2200 EXPORT_SYMBOL_GPL(md_kick_rdev_from_array);
2201
2202 static void export_array(struct mddev *mddev)
2203 {
2204         struct md_rdev *rdev;
2205
2206         while (!list_empty(&mddev->disks)) {
2207                 rdev = list_first_entry(&mddev->disks, struct md_rdev,
2208                                         same_set);
2209                 md_kick_rdev_from_array(rdev);
2210         }
2211         mddev->raid_disks = 0;
2212         mddev->major_version = 0;
2213 }
2214
2215 static void sync_sbs(struct mddev *mddev, int nospares)
2216 {
2217         /* Update each superblock (in-memory image), but
2218          * if we are allowed to, skip spares which already
2219          * have the right event counter, or have one earlier
2220          * (which would mean they aren't being marked as dirty
2221          * with the rest of the array)
2222          */
2223         struct md_rdev *rdev;
2224         rdev_for_each(rdev, mddev) {
2225                 if (rdev->sb_events == mddev->events ||
2226                     (nospares &&
2227                      rdev->raid_disk < 0 &&
2228                      rdev->sb_events+1 == mddev->events)) {
2229                         /* Don't update this superblock */
2230                         rdev->sb_loaded = 2;
2231                 } else {
2232                         sync_super(mddev, rdev);
2233                         rdev->sb_loaded = 1;
2234                 }
2235         }
2236 }
2237
2238 static bool does_sb_need_changing(struct mddev *mddev)
2239 {
2240         struct md_rdev *rdev;
2241         struct mdp_superblock_1 *sb;
2242         int role;
2243
2244         /* Find a good rdev */
2245         rdev_for_each(rdev, mddev)
2246                 if ((rdev->raid_disk >= 0) && !test_bit(Faulty, &rdev->flags))
2247                         break;
2248
2249         /* No good device found. */
2250         if (!rdev)
2251                 return false;
2252
2253         sb = page_address(rdev->sb_page);
2254         /* Check if a device has become faulty or a spare become active */
2255         rdev_for_each(rdev, mddev) {
2256                 role = le16_to_cpu(sb->dev_roles[rdev->desc_nr]);
2257                 /* Device activated? */
2258                 if (role == 0xffff && rdev->raid_disk >=0 &&
2259                     !test_bit(Faulty, &rdev->flags))
2260                         return true;
2261                 /* Device turned faulty? */
2262                 if (test_bit(Faulty, &rdev->flags) && (role < 0xfffd))
2263                         return true;
2264         }
2265
2266         /* Check if any mddev parameters have changed */
2267         if ((mddev->dev_sectors != le64_to_cpu(sb->size)) ||
2268             (mddev->reshape_position != le64_to_cpu(sb->reshape_position)) ||
2269             (mddev->layout != le64_to_cpu(sb->layout)) ||
2270             (mddev->raid_disks != le32_to_cpu(sb->raid_disks)) ||
2271             (mddev->chunk_sectors != le32_to_cpu(sb->chunksize)))
2272                 return true;
2273
2274         return false;
2275 }
2276
2277 void md_update_sb(struct mddev *mddev, int force_change)
2278 {
2279         struct md_rdev *rdev;
2280         int sync_req;
2281         int nospares = 0;
2282         int any_badblocks_changed = 0;
2283         int ret = -1;
2284
2285         if (mddev->ro) {
2286                 if (force_change)
2287                         set_bit(MD_CHANGE_DEVS, &mddev->flags);
2288                 return;
2289         }
2290
2291         if (mddev_is_clustered(mddev)) {
2292                 if (test_and_clear_bit(MD_CHANGE_DEVS, &mddev->flags))
2293                         force_change = 1;
2294                 ret = md_cluster_ops->metadata_update_start(mddev);
2295                 /* Has someone else has updated the sb */
2296                 if (!does_sb_need_changing(mddev)) {
2297                         if (ret == 0)
2298                                 md_cluster_ops->metadata_update_cancel(mddev);
2299                         clear_bit(MD_CHANGE_PENDING, &mddev->flags);
2300                         return;
2301                 }
2302         }
2303 repeat:
2304         /* First make sure individual recovery_offsets are correct */
2305         rdev_for_each(rdev, mddev) {
2306                 if (rdev->raid_disk >= 0 &&
2307                     mddev->delta_disks >= 0 &&
2308                     !test_bit(Journal, &rdev->flags) &&
2309                     !test_bit(In_sync, &rdev->flags) &&
2310                     mddev->curr_resync_completed > rdev->recovery_offset)
2311                                 rdev->recovery_offset = mddev->curr_resync_completed;
2312
2313         }
2314         if (!mddev->persistent) {
2315                 clear_bit(MD_CHANGE_CLEAN, &mddev->flags);
2316                 clear_bit(MD_CHANGE_DEVS, &mddev->flags);
2317                 if (!mddev->external) {
2318                         clear_bit(MD_CHANGE_PENDING, &mddev->flags);
2319                         rdev_for_each(rdev, mddev) {
2320                                 if (rdev->badblocks.changed) {
2321                                         rdev->badblocks.changed = 0;
2322                                         md_ack_all_badblocks(&rdev->badblocks);
2323                                         md_error(mddev, rdev);
2324                                 }
2325                                 clear_bit(Blocked, &rdev->flags);
2326                                 clear_bit(BlockedBadBlocks, &rdev->flags);
2327                                 wake_up(&rdev->blocked_wait);
2328                         }
2329                 }
2330                 wake_up(&mddev->sb_wait);
2331                 return;
2332         }
2333
2334         spin_lock(&mddev->lock);
2335
2336         mddev->utime = ktime_get_real_seconds();
2337
2338         if (test_and_clear_bit(MD_CHANGE_DEVS, &mddev->flags))
2339                 force_change = 1;
2340         if (test_and_clear_bit(MD_CHANGE_CLEAN, &mddev->flags))
2341                 /* just a clean<-> dirty transition, possibly leave spares alone,
2342                  * though if events isn't the right even/odd, we will have to do
2343                  * spares after all
2344                  */
2345                 nospares = 1;
2346         if (force_change)
2347                 nospares = 0;
2348         if (mddev->degraded)
2349                 /* If the array is degraded, then skipping spares is both
2350                  * dangerous and fairly pointless.
2351                  * Dangerous because a device that was removed from the array
2352                  * might have a event_count that still looks up-to-date,
2353                  * so it can be re-added without a resync.
2354                  * Pointless because if there are any spares to skip,
2355                  * then a recovery will happen and soon that array won't
2356                  * be degraded any more and the spare can go back to sleep then.
2357                  */
2358                 nospares = 0;
2359
2360         sync_req = mddev->in_sync;
2361
2362         /* If this is just a dirty<->clean transition, and the array is clean
2363          * and 'events' is odd, we can roll back to the previous clean state */
2364         if (nospares
2365             && (mddev->in_sync && mddev->recovery_cp == MaxSector)
2366             && mddev->can_decrease_events
2367             && mddev->events != 1) {
2368                 mddev->events--;
2369                 mddev->can_decrease_events = 0;
2370         } else {
2371                 /* otherwise we have to go forward and ... */
2372                 mddev->events ++;
2373                 mddev->can_decrease_events = nospares;
2374         }
2375
2376         /*
2377          * This 64-bit counter should never wrap.
2378          * Either we are in around ~1 trillion A.C., assuming
2379          * 1 reboot per second, or we have a bug...
2380          */
2381         WARN_ON(mddev->events == 0);
2382
2383         rdev_for_each(rdev, mddev) {
2384                 if (rdev->badblocks.changed)
2385                         any_badblocks_changed++;
2386                 if (test_bit(Faulty, &rdev->flags))
2387                         set_bit(FaultRecorded, &rdev->flags);
2388         }
2389
2390         sync_sbs(mddev, nospares);
2391         spin_unlock(&mddev->lock);
2392
2393         pr_debug("md: updating %s RAID superblock on device (in sync %d)\n",
2394                  mdname(mddev), mddev->in_sync);
2395
2396         bitmap_update_sb(mddev->bitmap);
2397         rdev_for_each(rdev, mddev) {
2398                 char b[BDEVNAME_SIZE];
2399
2400                 if (rdev->sb_loaded != 1)
2401                         continue; /* no noise on spare devices */
2402
2403                 if (!test_bit(Faulty, &rdev->flags)) {
2404                         md_super_write(mddev,rdev,
2405                                        rdev->sb_start, rdev->sb_size,
2406                                        rdev->sb_page);
2407                         pr_debug("md: (write) %s's sb offset: %llu\n",
2408                                  bdevname(rdev->bdev, b),
2409                                  (unsigned long long)rdev->sb_start);
2410                         rdev->sb_events = mddev->events;
2411                         if (rdev->badblocks.size) {
2412                                 md_super_write(mddev, rdev,
2413                                                rdev->badblocks.sector,
2414                                                rdev->badblocks.size << 9,
2415                                                rdev->bb_page);
2416                                 rdev->badblocks.size = 0;
2417                         }
2418
2419                 } else
2420                         pr_debug("md: %s (skipping faulty)\n",
2421                                  bdevname(rdev->bdev, b));
2422
2423                 if (mddev->level == LEVEL_MULTIPATH)
2424                         /* only need to write one superblock... */
2425                         break;
2426         }
2427         md_super_wait(mddev);
2428         /* if there was a failure, MD_CHANGE_DEVS was set, and we re-write super */
2429
2430         spin_lock(&mddev->lock);
2431         if (mddev->in_sync != sync_req ||
2432             test_bit(MD_CHANGE_DEVS, &mddev->flags)) {
2433                 /* have to write it out again */
2434                 spin_unlock(&mddev->lock);
2435                 goto repeat;
2436         }
2437         clear_bit(MD_CHANGE_PENDING, &mddev->flags);
2438         spin_unlock(&mddev->lock);
2439         wake_up(&mddev->sb_wait);
2440         if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery))
2441                 sysfs_notify(&mddev->kobj, NULL, "sync_completed");
2442
2443         rdev_for_each(rdev, mddev) {
2444                 if (test_and_clear_bit(FaultRecorded, &rdev->flags))
2445                         clear_bit(Blocked, &rdev->flags);
2446
2447                 if (any_badblocks_changed)
2448                         md_ack_all_badblocks(&rdev->badblocks);
2449                 clear_bit(BlockedBadBlocks, &rdev->flags);
2450                 wake_up(&rdev->blocked_wait);
2451         }
2452
2453         if (mddev_is_clustered(mddev) && ret == 0)
2454                 md_cluster_ops->metadata_update_finish(mddev);
2455 }
2456 EXPORT_SYMBOL(md_update_sb);
2457
2458 static int add_bound_rdev(struct md_rdev *rdev)
2459 {
2460         struct mddev *mddev = rdev->mddev;
2461         int err = 0;
2462         bool add_journal = test_bit(Journal, &rdev->flags);
2463
2464         if (!mddev->pers->hot_remove_disk || add_journal) {
2465                 /* If there is hot_add_disk but no hot_remove_disk
2466                  * then added disks for geometry changes,
2467                  * and should be added immediately.
2468                  */
2469                 super_types[mddev->major_version].
2470                         validate_super(mddev, rdev);
2471                 if (add_journal)
2472                         mddev_suspend(mddev);
2473                 err = mddev->pers->hot_add_disk(mddev, rdev);
2474                 if (add_journal)
2475                         mddev_resume(mddev);
2476                 if (err) {
2477                         unbind_rdev_from_array(rdev);
2478                         export_rdev(rdev);
2479                         return err;
2480                 }
2481         }
2482         sysfs_notify_dirent_safe(rdev->sysfs_state);
2483
2484         set_bit(MD_CHANGE_DEVS, &mddev->flags);
2485         if (mddev->degraded)
2486                 set_bit(MD_RECOVERY_RECOVER, &mddev->recovery);
2487         set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
2488         md_new_event(mddev);
2489         md_wakeup_thread(mddev->thread);
2490         return 0;
2491 }
2492
2493 /* words written to sysfs files may, or may not, be \n terminated.
2494  * We want to accept with case. For this we use cmd_match.
2495  */
2496 static int cmd_match(const char *cmd, const char *str)
2497 {
2498         /* See if cmd, written into a sysfs file, matches
2499          * str.  They must either be the same, or cmd can
2500          * have a trailing newline
2501          */
2502         while (*cmd && *str && *cmd == *str) {
2503                 cmd++;
2504                 str++;
2505         }
2506         if (*cmd == '\n')
2507                 cmd++;
2508         if (*str || *cmd)
2509                 return 0;
2510         return 1;
2511 }
2512
2513 struct rdev_sysfs_entry {
2514         struct attribute attr;
2515         ssize_t (*show)(struct md_rdev *, char *);
2516         ssize_t (*store)(struct md_rdev *, const char *, size_t);
2517 };
2518
2519 static ssize_t
2520 state_show(struct md_rdev *rdev, char *page)
2521 {
2522         char *sep = "";
2523         size_t len = 0;
2524         unsigned long flags = ACCESS_ONCE(rdev->flags);
2525
2526         if (test_bit(Faulty, &flags) ||
2527             rdev->badblocks.unacked_exist) {
2528                 len+= sprintf(page+len, "%sfaulty",sep);
2529                 sep = ",";
2530         }
2531         if (test_bit(In_sync, &flags)) {
2532                 len += sprintf(page+len, "%sin_sync",sep);
2533                 sep = ",";
2534         }
2535         if (test_bit(Journal, &flags)) {
2536                 len += sprintf(page+len, "%sjournal",sep);
2537                 sep = ",";
2538         }
2539         if (test_bit(WriteMostly, &flags)) {
2540                 len += sprintf(page+len, "%swrite_mostly",sep);
2541                 sep = ",";
2542         }
2543         if (test_bit(Blocked, &flags) ||
2544             (rdev->badblocks.unacked_exist
2545              && !test_bit(Faulty, &flags))) {
2546                 len += sprintf(page+len, "%sblocked", sep);
2547                 sep = ",";
2548         }
2549         if (!test_bit(Faulty, &flags) &&
2550             !test_bit(Journal, &flags) &&
2551             !test_bit(In_sync, &flags)) {
2552                 len += sprintf(page+len, "%sspare", sep);
2553                 sep = ",";
2554         }
2555         if (test_bit(WriteErrorSeen, &flags)) {
2556                 len += sprintf(page+len, "%swrite_error", sep);
2557                 sep = ",";
2558         }
2559         if (test_bit(WantReplacement, &flags)) {
2560                 len += sprintf(page+len, "%swant_replacement", sep);
2561                 sep = ",";
2562         }
2563         if (test_bit(Replacement, &flags)) {
2564                 len += sprintf(page+len, "%sreplacement", sep);
2565                 sep = ",";
2566         }
2567
2568         return len+sprintf(page+len, "\n");
2569 }
2570
2571 static ssize_t
2572 state_store(struct md_rdev *rdev, const char *buf, size_t len)
2573 {
2574         /* can write
2575          *  faulty  - simulates an error
2576          *  remove  - disconnects the device
2577          *  writemostly - sets write_mostly
2578          *  -writemostly - clears write_mostly
2579          *  blocked - sets the Blocked flags
2580          *  -blocked - clears the Blocked and possibly simulates an error
2581          *  insync - sets Insync providing device isn't active
2582          *  -insync - clear Insync for a device with a slot assigned,
2583          *            so that it gets rebuilt based on bitmap
2584          *  write_error - sets WriteErrorSeen
2585          *  -write_error - clears WriteErrorSeen
2586          */
2587         int err = -EINVAL;
2588         if (cmd_match(buf, "faulty") && rdev->mddev->pers) {
2589                 md_error(rdev->mddev, rdev);
2590                 if (test_bit(Faulty, &rdev->flags))
2591                         err = 0;
2592                 else
2593                         err = -EBUSY;
2594         } else if (cmd_match(buf, "remove")) {
2595                 if (rdev->raid_disk >= 0)
2596                         err = -EBUSY;
2597                 else {
2598                         struct mddev *mddev = rdev->mddev;
2599                         err = 0;
2600                         if (mddev_is_clustered(mddev))
2601                                 err = md_cluster_ops->remove_disk(mddev, rdev);
2602
2603                         if (err == 0) {
2604                                 md_kick_rdev_from_array(rdev);
2605                                 if (mddev->pers)
2606                                         md_update_sb(mddev, 1);
2607                                 md_new_event(mddev);
2608                         }
2609                 }
2610         } else if (cmd_match(buf, "writemostly")) {
2611                 set_bit(WriteMostly, &rdev->flags);
2612                 err = 0;
2613         } else if (cmd_match(buf, "-writemostly")) {
2614                 clear_bit(WriteMostly, &rdev->flags);
2615                 err = 0;
2616         } else if (cmd_match(buf, "blocked")) {
2617                 set_bit(Blocked, &rdev->flags);
2618                 err = 0;
2619         } else if (cmd_match(buf, "-blocked")) {
2620                 if (!test_bit(Faulty, &rdev->flags) &&
2621                     rdev->badblocks.unacked_exist) {
2622                         /* metadata handler doesn't understand badblocks,
2623                          * so we need to fail the device
2624                          */
2625                         md_error(rdev->mddev, rdev);
2626                 }
2627                 clear_bit(Blocked, &rdev->flags);
2628                 clear_bit(BlockedBadBlocks, &rdev->flags);
2629                 wake_up(&rdev->blocked_wait);
2630                 set_bit(MD_RECOVERY_NEEDED, &rdev->mddev->recovery);
2631                 md_wakeup_thread(rdev->mddev->thread);
2632
2633                 err = 0;
2634         } else if (cmd_match(buf, "insync") && rdev->raid_disk == -1) {
2635                 set_bit(In_sync, &rdev->flags);
2636                 err = 0;
2637         } else if (cmd_match(buf, "-insync") && rdev->raid_disk >= 0 &&
2638                    !test_bit(Journal, &rdev->flags)) {
2639                 if (rdev->mddev->pers == NULL) {
2640                         clear_bit(In_sync, &rdev->flags);
2641                         rdev->saved_raid_disk = rdev->raid_disk;
2642                         rdev->raid_disk = -1;
2643                         err = 0;
2644                 }
2645         } else if (cmd_match(buf, "write_error")) {
2646                 set_bit(WriteErrorSeen, &rdev->flags);
2647                 err = 0;
2648         } else if (cmd_match(buf, "-write_error")) {
2649                 clear_bit(WriteErrorSeen, &rdev->flags);
2650                 err = 0;
2651         } else if (cmd_match(buf, "want_replacement")) {
2652                 /* Any non-spare device that is not a replacement can
2653                  * become want_replacement at any time, but we then need to
2654                  * check if recovery is needed.
2655                  */
2656                 if (rdev->raid_disk >= 0 &&
2657                     !test_bit(Journal, &rdev->flags) &&
2658                     !test_bit(Replacement, &rdev->flags))
2659                         set_bit(WantReplacement, &rdev->flags);
2660                 set_bit(MD_RECOVERY_NEEDED, &rdev->mddev->recovery);
2661                 md_wakeup_thread(rdev->mddev->thread);
2662                 err = 0;
2663         } else if (cmd_match(buf, "-want_replacement")) {
2664                 /* Clearing 'want_replacement' is always allowed.
2665                  * Once replacements starts it is too late though.
2666                  */
2667                 err = 0;
2668                 clear_bit(WantReplacement, &rdev->flags);
2669         } else if (cmd_match(buf, "replacement")) {
2670                 /* Can only set a device as a replacement when array has not
2671                  * yet been started.  Once running, replacement is automatic
2672                  * from spares, or by assigning 'slot'.
2673                  */
2674                 if (rdev->mddev->pers)
2675                         err = -EBUSY;
2676                 else {
2677                         set_bit(Replacement, &rdev->flags);
2678                         err = 0;
2679                 }
2680         } else if (cmd_match(buf, "-replacement")) {
2681                 /* Similarly, can only clear Replacement before start */
2682                 if (rdev->mddev->pers)
2683                         err = -EBUSY;
2684                 else {
2685                         clear_bit(Replacement, &rdev->flags);
2686                         err = 0;
2687                 }
2688         } else if (cmd_match(buf, "re-add")) {
2689                 if (test_bit(Faulty, &rdev->flags) && (rdev->raid_disk == -1)) {
2690                         /* clear_bit is performed _after_ all the devices
2691                          * have their local Faulty bit cleared. If any writes
2692                          * happen in the meantime in the local node, they
2693                          * will land in the local bitmap, which will be synced
2694                          * by this node eventually
2695                          */
2696                         if (!mddev_is_clustered(rdev->mddev) ||
2697                             (err = md_cluster_ops->gather_bitmaps(rdev)) == 0) {
2698                                 clear_bit(Faulty, &rdev->flags);
2699                                 err = add_bound_rdev(rdev);
2700                         }
2701                 } else
2702                         err = -EBUSY;
2703         }
2704         if (!err)
2705                 sysfs_notify_dirent_safe(rdev->sysfs_state);
2706         return err ? err : len;
2707 }
2708 static struct rdev_sysfs_entry rdev_state =
2709 __ATTR_PREALLOC(state, S_IRUGO|S_IWUSR, state_show, state_store);
2710
2711 static ssize_t
2712 errors_show(struct md_rdev *rdev, char *page)
2713 {
2714         return sprintf(page, "%d\n", atomic_read(&rdev->corrected_errors));
2715 }
2716
2717 static ssize_t
2718 errors_store(struct md_rdev *rdev, const char *buf, size_t len)
2719 {
2720         unsigned int n;
2721         int rv;
2722
2723         rv = kstrtouint(buf, 10, &n);
2724         if (rv < 0)
2725                 return rv;
2726         atomic_set(&rdev->corrected_errors, n);
2727         return len;
2728 }
2729 static struct rdev_sysfs_entry rdev_errors =
2730 __ATTR(errors, S_IRUGO|S_IWUSR, errors_show, errors_store);
2731
2732 static ssize_t
2733 slot_show(struct md_rdev *rdev, char *page)
2734 {
2735         if (test_bit(Journal, &rdev->flags))
2736                 return sprintf(page, "journal\n");
2737         else if (rdev->raid_disk < 0)
2738                 return sprintf(page, "none\n");
2739         else
2740                 return sprintf(page, "%d\n", rdev->raid_disk);
2741 }
2742
2743 static ssize_t
2744 slot_store(struct md_rdev *rdev, const char *buf, size_t len)
2745 {
2746         int slot;
2747         int err;
2748
2749         if (test_bit(Journal, &rdev->flags))
2750                 return -EBUSY;
2751         if (strncmp(buf, "none", 4)==0)
2752                 slot = -1;
2753         else {
2754                 err = kstrtouint(buf, 10, (unsigned int *)&slot);
2755                 if (err < 0)
2756                         return err;
2757         }
2758         if (rdev->mddev->pers && slot == -1) {
2759                 /* Setting 'slot' on an active array requires also
2760                  * updating the 'rd%d' link, and communicating
2761                  * with the personality with ->hot_*_disk.
2762                  * For now we only support removing
2763                  * failed/spare devices.  This normally happens automatically,
2764                  * but not when the metadata is externally managed.
2765                  */
2766                 if (rdev->raid_disk == -1)
2767                         return -EEXIST;
2768                 /* personality does all needed checks */
2769                 if (rdev->mddev->pers->hot_remove_disk == NULL)
2770                         return -EINVAL;
2771                 clear_bit(Blocked, &rdev->flags);
2772                 remove_and_add_spares(rdev->mddev, rdev);
2773                 if (rdev->raid_disk >= 0)
2774                         return -EBUSY;
2775                 set_bit(MD_RECOVERY_NEEDED, &rdev->mddev->recovery);
2776                 md_wakeup_thread(rdev->mddev->thread);
2777         } else if (rdev->mddev->pers) {
2778                 /* Activating a spare .. or possibly reactivating
2779                  * if we ever get bitmaps working here.
2780                  */
2781                 int err;
2782
2783                 if (rdev->raid_disk != -1)
2784                         return -EBUSY;
2785
2786                 if (test_bit(MD_RECOVERY_RUNNING, &rdev->mddev->recovery))
2787                         return -EBUSY;
2788
2789                 if (rdev->mddev->pers->hot_add_disk == NULL)
2790                         return -EINVAL;
2791
2792                 if (slot >= rdev->mddev->raid_disks &&
2793                     slot >= rdev->mddev->raid_disks + rdev->mddev->delta_disks)
2794                         return -ENOSPC;
2795
2796                 rdev->raid_disk = slot;
2797                 if (test_bit(In_sync, &rdev->flags))
2798                         rdev->saved_raid_disk = slot;
2799                 else
2800                         rdev->saved_raid_disk = -1;
2801                 clear_bit(In_sync, &rdev->flags);
2802                 clear_bit(Bitmap_sync, &rdev->flags);
2803                 err = rdev->mddev->pers->
2804                         hot_add_disk(rdev->mddev, rdev);
2805                 if (err) {
2806                         rdev->raid_disk = -1;
2807                         return err;
2808                 } else
2809                         sysfs_notify_dirent_safe(rdev->sysfs_state);
2810                 if (sysfs_link_rdev(rdev->mddev, rdev))
2811                         /* failure here is OK */;
2812                 /* don't wakeup anyone, leave that to userspace. */
2813         } else {
2814                 if (slot >= rdev->mddev->raid_disks &&
2815                     slot >= rdev->mddev->raid_disks + rdev->mddev->delta_disks)
2816                         return -ENOSPC;
2817                 rdev->raid_disk = slot;
2818                 /* assume it is working */
2819                 clear_bit(Faulty, &rdev->flags);
2820                 clear_bit(WriteMostly, &rdev->flags);
2821                 set_bit(In_sync, &rdev->flags);
2822                 sysfs_notify_dirent_safe(rdev->sysfs_state);
2823         }
2824         return len;
2825 }
2826
2827 static struct rdev_sysfs_entry rdev_slot =
2828 __ATTR(slot, S_IRUGO|S_IWUSR, slot_show, slot_store);
2829
2830 static ssize_t
2831 offset_show(struct md_rdev *rdev, char *page)
2832 {
2833         return sprintf(page, "%llu\n", (unsigned long long)rdev->data_offset);
2834 }
2835
2836 static ssize_t
2837 offset_store(struct md_rdev *rdev, const char *buf, size_t len)
2838 {
2839         unsigned long long offset;
2840         if (kstrtoull(buf, 10, &offset) < 0)
2841                 return -EINVAL;
2842         if (rdev->mddev->pers && rdev->raid_disk >= 0)
2843                 return -EBUSY;
2844         if (rdev->sectors && rdev->mddev->external)
2845                 /* Must set offset before size, so overlap checks
2846                  * can be sane */
2847                 return -EBUSY;
2848         rdev->data_offset = offset;
2849         rdev->new_data_offset = offset;
2850         return len;
2851 }
2852
2853 static struct rdev_sysfs_entry rdev_offset =
2854 __ATTR(offset, S_IRUGO|S_IWUSR, offset_show, offset_store);
2855
2856 static ssize_t new_offset_show(struct md_rdev *rdev, char *page)
2857 {
2858         return sprintf(page, "%llu\n",
2859                        (unsigned long long)rdev->new_data_offset);
2860 }
2861
2862 static ssize_t new_offset_store(struct md_rdev *rdev,
2863                                 const char *buf, size_t len)
2864 {
2865         unsigned long long new_offset;
2866         struct mddev *mddev = rdev->mddev;
2867
2868         if (kstrtoull(buf, 10, &new_offset) < 0)
2869                 return -EINVAL;
2870
2871         if (mddev->sync_thread ||
2872             test_bit(MD_RECOVERY_RUNNING,&mddev->recovery))
2873                 return -EBUSY;
2874         if (new_offset == rdev->data_offset)
2875                 /* reset is always permitted */
2876                 ;
2877         else if (new_offset > rdev->data_offset) {
2878                 /* must not push array size beyond rdev_sectors */
2879                 if (new_offset - rdev->data_offset
2880                     + mddev->dev_sectors > rdev->sectors)
2881                                 return -E2BIG;
2882         }
2883         /* Metadata worries about other space details. */
2884
2885         /* decreasing the offset is inconsistent with a backwards
2886          * reshape.
2887          */
2888         if (new_offset < rdev->data_offset &&
2889             mddev->reshape_backwards)
2890                 return -EINVAL;
2891         /* Increasing offset is inconsistent with forwards
2892          * reshape.  reshape_direction should be set to
2893          * 'backwards' first.
2894          */
2895         if (new_offset > rdev->data_offset &&
2896             !mddev->reshape_backwards)
2897                 return -EINVAL;
2898
2899         if (mddev->pers && mddev->persistent &&
2900             !super_types[mddev->major_version]
2901             .allow_new_offset(rdev, new_offset))
2902                 return -E2BIG;
2903         rdev->new_data_offset = new_offset;
2904         if (new_offset > rdev->data_offset)
2905                 mddev->reshape_backwards = 1;
2906         else if (new_offset < rdev->data_offset)
2907                 mddev->reshape_backwards = 0;
2908
2909         return len;
2910 }
2911 static struct rdev_sysfs_entry rdev_new_offset =
2912 __ATTR(new_offset, S_IRUGO|S_IWUSR, new_offset_show, new_offset_store);
2913
2914 static ssize_t
2915 rdev_size_show(struct md_rdev *rdev, char *page)
2916 {
2917         return sprintf(page, "%llu\n", (unsigned long long)rdev->sectors / 2);
2918 }
2919
2920 static int overlaps(sector_t s1, sector_t l1, sector_t s2, sector_t l2)
2921 {
2922         /* check if two start/length pairs overlap */
2923         if (s1+l1 <= s2)
2924                 return 0;
2925         if (s2+l2 <= s1)
2926                 return 0;
2927         return 1;
2928 }
2929
2930 static int strict_blocks_to_sectors(const char *buf, sector_t *sectors)
2931 {
2932         unsigned long long blocks;
2933         sector_t new;
2934
2935         if (kstrtoull(buf, 10, &blocks) < 0)
2936                 return -EINVAL;
2937
2938         if (blocks & 1ULL << (8 * sizeof(blocks) - 1))
2939                 return -EINVAL; /* sector conversion overflow */
2940
2941         new = blocks * 2;
2942         if (new != blocks * 2)
2943                 return -EINVAL; /* unsigned long long to sector_t overflow */
2944
2945         *sectors = new;
2946         return 0;
2947 }
2948
2949 static ssize_t
2950 rdev_size_store(struct md_rdev *rdev, const char *buf, size_t len)
2951 {
2952         struct mddev *my_mddev = rdev->mddev;
2953         sector_t oldsectors = rdev->sectors;
2954         sector_t sectors;
2955
2956         if (test_bit(Journal, &rdev->flags))
2957                 return -EBUSY;
2958         if (strict_blocks_to_sectors(buf, &sectors) < 0)
2959                 return -EINVAL;
2960         if (rdev->data_offset != rdev->new_data_offset)
2961                 return -EINVAL; /* too confusing */
2962         if (my_mddev->pers && rdev->raid_disk >= 0) {
2963                 if (my_mddev->persistent) {
2964                         sectors = super_types[my_mddev->major_version].
2965                                 rdev_size_change(rdev, sectors);
2966                         if (!sectors)
2967                                 return -EBUSY;
2968                 } else if (!sectors)
2969                         sectors = (i_size_read(rdev->bdev->bd_inode) >> 9) -
2970                                 rdev->data_offset;
2971                 if (!my_mddev->pers->resize)
2972                         /* Cannot change size for RAID0 or Linear etc */
2973                         return -EINVAL;
2974         }
2975         if (sectors < my_mddev->dev_sectors)
2976                 return -EINVAL; /* component must fit device */
2977
2978         rdev->sectors = sectors;
2979         if (sectors > oldsectors && my_mddev->external) {
2980                 /* Need to check that all other rdevs with the same
2981                  * ->bdev do not overlap.  'rcu' is sufficient to walk
2982                  * the rdev lists safely.
2983                  * This check does not provide a hard guarantee, it
2984                  * just helps avoid dangerous mistakes.
2985                  */
2986                 struct mddev *mddev;
2987                 int overlap = 0;
2988                 struct list_head *tmp;
2989
2990                 rcu_read_lock();
2991                 for_each_mddev(mddev, tmp) {
2992                         struct md_rdev *rdev2;
2993
2994                         rdev_for_each(rdev2, mddev)
2995                                 if (rdev->bdev == rdev2->bdev &&
2996                                     rdev != rdev2 &&
2997                                     overlaps(rdev->data_offset, rdev->sectors,
2998                                              rdev2->data_offset,
2999                                              rdev2->sectors)) {
3000                                         overlap = 1;
3001                                         break;
3002                                 }
3003                         if (overlap) {
3004                                 mddev_put(mddev);
3005                                 break;
3006                         }
3007                 }
3008                 rcu_read_unlock();
3009                 if (overlap) {
3010                         /* Someone else could have slipped in a size
3011                          * change here, but doing so is just silly.
3012                          * We put oldsectors back because we *know* it is
3013                          * safe, and trust userspace not to race with
3014                          * itself
3015                          */
3016                         rdev->sectors = oldsectors;
3017                         return -EBUSY;
3018                 }
3019         }
3020         return len;
3021 }
3022
3023 static struct rdev_sysfs_entry rdev_size =
3024 __ATTR(size, S_IRUGO|S_IWUSR, rdev_size_show, rdev_size_store);
3025
3026 static ssize_t recovery_start_show(struct md_rdev *rdev, char *page)
3027 {
3028         unsigned long long recovery_start = rdev->recovery_offset;
3029
3030         if (test_bit(In_sync, &rdev->flags) ||
3031             recovery_start == MaxSector)
3032                 return sprintf(page, "none\n");
3033
3034         return sprintf(page, "%llu\n", recovery_start);
3035 }
3036
3037 static ssize_t recovery_start_store(struct md_rdev *rdev, const char *buf, size_t len)
3038 {
3039         unsigned long long recovery_start;
3040
3041         if (cmd_match(buf, "none"))
3042                 recovery_start = MaxSector;
3043         else if (kstrtoull(buf, 10, &recovery_start))
3044                 return -EINVAL;
3045
3046         if (rdev->mddev->pers &&
3047             rdev->raid_disk >= 0)
3048                 return -EBUSY;
3049
3050         rdev->recovery_offset = recovery_start;
3051         if (recovery_start == MaxSector)
3052                 set_bit(In_sync, &rdev->flags);
3053         else
3054                 clear_bit(In_sync, &rdev->flags);
3055         return len;
3056 }
3057
3058 static struct rdev_sysfs_entry rdev_recovery_start =
3059 __ATTR(recovery_start, S_IRUGO|S_IWUSR, recovery_start_show, recovery_start_store);
3060
3061 static ssize_t
3062 badblocks_show(struct badblocks *bb, char *page, int unack);
3063 static ssize_t
3064 badblocks_store(struct badblocks *bb, const char *page, size_t len, int unack);
3065
3066 static ssize_t bb_show(struct md_rdev *rdev, char *page)
3067 {
3068         return badblocks_show(&rdev->badblocks, page, 0);
3069 }
3070 static ssize_t bb_store(struct md_rdev *rdev, const char *page, size_t len)
3071 {
3072         int rv = badblocks_store(&rdev->badblocks, page, len, 0);
3073         /* Maybe that ack was all we needed */
3074         if (test_and_clear_bit(BlockedBadBlocks, &rdev->flags))
3075                 wake_up(&rdev->blocked_wait);
3076         return rv;
3077 }
3078 static struct rdev_sysfs_entry rdev_bad_blocks =
3079 __ATTR(bad_blocks, S_IRUGO|S_IWUSR, bb_show, bb_store);
3080
3081 static ssize_t ubb_show(struct md_rdev *rdev, char *page)
3082 {
3083         return badblocks_show(&rdev->badblocks, page, 1);
3084 }
3085 static ssize_t ubb_store(struct md_rdev *rdev, const char *page, size_t len)
3086 {
3087         return badblocks_store(&rdev->badblocks, page, len, 1);
3088 }
3089 static struct rdev_sysfs_entry rdev_unack_bad_blocks =
3090 __ATTR(unacknowledged_bad_blocks, S_IRUGO|S_IWUSR, ubb_show, ubb_store);
3091
3092 static struct attribute *rdev_default_attrs[] = {
3093         &rdev_state.attr,
3094         &rdev_errors.attr,
3095         &rdev_slot.attr,
3096         &rdev_offset.attr,
3097         &rdev_new_offset.attr,
3098         &rdev_size.attr,
3099         &rdev_recovery_start.attr,
3100         &rdev_bad_blocks.attr,
3101         &rdev_unack_bad_blocks.attr,
3102         NULL,
3103 };
3104 static ssize_t
3105 rdev_attr_show(struct kobject *kobj, struct attribute *attr, char *page)
3106 {
3107         struct rdev_sysfs_entry *entry = container_of(attr, struct rdev_sysfs_entry, attr);
3108         struct md_rdev *rdev = container_of(kobj, struct md_rdev, kobj);
3109
3110         if (!entry->show)
3111                 return -EIO;
3112         if (!rdev->mddev)
3113                 return -EBUSY;
3114         return entry->show(rdev, page);
3115 }
3116
3117 static ssize_t
3118 rdev_attr_store(struct kobject *kobj, struct attribute *attr,
3119               const char *page, size_t length)
3120 {
3121         struct rdev_sysfs_entry *entry = container_of(attr, struct rdev_sysfs_entry, attr);
3122         struct md_rdev *rdev = container_of(kobj, struct md_rdev, kobj);
3123         ssize_t rv;
3124         struct mddev *mddev = rdev->mddev;
3125
3126         if (!entry->store)
3127                 return -EIO;
3128         if (!capable(CAP_SYS_ADMIN))
3129                 return -EACCES;
3130         rv = mddev ? mddev_lock(mddev): -EBUSY;
3131         if (!rv) {
3132                 if (rdev->mddev == NULL)
3133                         rv = -EBUSY;
3134                 else
3135                         rv = entry->store(rdev, page, length);
3136                 mddev_unlock(mddev);
3137         }
3138         return rv;
3139 }
3140
3141 static void rdev_free(struct kobject *ko)
3142 {
3143         struct md_rdev *rdev = container_of(ko, struct md_rdev, kobj);
3144         kfree(rdev);
3145 }
3146 static const struct sysfs_ops rdev_sysfs_ops = {
3147         .show           = rdev_attr_show,
3148         .store          = rdev_attr_store,
3149 };
3150 static struct kobj_type rdev_ktype = {
3151         .release        = rdev_free,
3152         .sysfs_ops      = &rdev_sysfs_ops,
3153         .default_attrs  = rdev_default_attrs,
3154 };
3155
3156 int md_rdev_init(struct md_rdev *rdev)
3157 {
3158         rdev->desc_nr = -1;
3159         rdev->saved_raid_disk = -1;
3160         rdev->raid_disk = -1;
3161         rdev->flags = 0;
3162         rdev->data_offset = 0;
3163         rdev->new_data_offset = 0;
3164         rdev->sb_events = 0;
3165         rdev->last_read_error.tv_sec  = 0;
3166         rdev->last_read_error.tv_nsec = 0;
3167         rdev->sb_loaded = 0;
3168         rdev->bb_page = NULL;
3169         atomic_set(&rdev->nr_pending, 0);
3170         atomic_set(&rdev->read_errors, 0);
3171         atomic_set(&rdev->corrected_errors, 0);
3172
3173         INIT_LIST_HEAD(&rdev->same_set);
3174         init_waitqueue_head(&rdev->blocked_wait);
3175
3176         /* Add space to store bad block list.
3177          * This reserves the space even on arrays where it cannot
3178          * be used - I wonder if that matters
3179          */
3180         rdev->badblocks.count = 0;
3181         rdev->badblocks.shift = -1; /* disabled until explicitly enabled */
3182         rdev->badblocks.page = kmalloc(PAGE_SIZE, GFP_KERNEL);
3183         seqlock_init(&rdev->badblocks.lock);
3184         if (rdev->badblocks.page == NULL)
3185                 return -ENOMEM;
3186
3187         return 0;
3188 }
3189 EXPORT_SYMBOL_GPL(md_rdev_init);
3190 /*
3191  * Import a device. If 'super_format' >= 0, then sanity check the superblock
3192  *
3193  * mark the device faulty if:
3194  *
3195  *   - the device is nonexistent (zero size)
3196  *   - the device has no valid superblock
3197  *
3198  * a faulty rdev _never_ has rdev->sb set.
3199  */
3200 static struct md_rdev *md_import_device(dev_t newdev, int super_format, int super_minor)
3201 {
3202         char b[BDEVNAME_SIZE];
3203         int err;
3204         struct md_rdev *rdev;
3205         sector_t size;
3206
3207         rdev = kzalloc(sizeof(*rdev), GFP_KERNEL);
3208         if (!rdev) {
3209                 printk(KERN_ERR "md: could not alloc mem for new device!\n");
3210                 return ERR_PTR(-ENOMEM);
3211         }
3212
3213         err = md_rdev_init(rdev);
3214         if (err)
3215                 goto abort_free;
3216         err = alloc_disk_sb(rdev);
3217         if (err)
3218                 goto abort_free;
3219
3220         err = lock_rdev(rdev, newdev, super_format == -2);
3221         if (err)
3222                 goto abort_free;
3223
3224         kobject_init(&rdev->kobj, &rdev_ktype);
3225
3226         size = i_size_read(rdev->bdev->bd_inode) >> BLOCK_SIZE_BITS;
3227         if (!size) {
3228                 printk(KERN_WARNING
3229                         "md: %s has zero or unknown size, marking faulty!\n",
3230                         bdevname(rdev->bdev,b));
3231                 err = -EINVAL;
3232                 goto abort_free;
3233         }
3234
3235         if (super_format >= 0) {
3236                 err = super_types[super_format].
3237                         load_super(rdev, NULL, super_minor);
3238                 if (err == -EINVAL) {
3239                         printk(KERN_WARNING
3240                                 "md: %s does not have a valid v%d.%d "
3241                                "superblock, not importing!\n",
3242                                 bdevname(rdev->bdev,b),
3243                                super_format, super_minor);
3244                         goto abort_free;
3245                 }
3246                 if (err < 0) {
3247                         printk(KERN_WARNING
3248                                 "md: could not read %s's sb, not importing!\n",
3249                                 bdevname(rdev->bdev,b));
3250                         goto abort_free;
3251                 }
3252         }
3253
3254         return rdev;
3255
3256 abort_free:
3257         if (rdev->bdev)
3258                 unlock_rdev(rdev);
3259         md_rdev_clear(rdev);
3260         kfree(rdev);
3261         return ERR_PTR(err);
3262 }
3263
3264 /*
3265  * Check a full RAID array for plausibility
3266  */
3267
3268 static void analyze_sbs(struct mddev *mddev)
3269 {
3270         int i;
3271         struct md_rdev *rdev, *freshest, *tmp;
3272         char b[BDEVNAME_SIZE];
3273
3274         freshest = NULL;
3275         rdev_for_each_safe(rdev, tmp, mddev)
3276                 switch (super_types[mddev->major_version].
3277                         load_super(rdev, freshest, mddev->minor_version)) {
3278                 case 1:
3279                         freshest = rdev;
3280                         break;
3281                 case 0:
3282                         break;
3283                 default:
3284                         printk( KERN_ERR \
3285                                 "md: fatal superblock inconsistency in %s"
3286                                 " -- removing from array\n",
3287                                 bdevname(rdev->bdev,b));
3288                         md_kick_rdev_from_array(rdev);
3289                 }
3290
3291         super_types[mddev->major_version].
3292                 validate_super(mddev, freshest);
3293
3294         i = 0;
3295         rdev_for_each_safe(rdev, tmp, mddev) {
3296                 if (mddev->max_disks &&
3297                     (rdev->desc_nr >= mddev->max_disks ||
3298                      i > mddev->max_disks)) {
3299                         printk(KERN_WARNING
3300                                "md: %s: %s: only %d devices permitted\n",
3301                                mdname(mddev), bdevname(rdev->bdev, b),
3302                                mddev->max_disks);
3303                         md_kick_rdev_from_array(rdev);
3304                         continue;
3305                 }
3306                 if (rdev != freshest) {
3307                         if (super_types[mddev->major_version].
3308                             validate_super(mddev, rdev)) {
3309                                 printk(KERN_WARNING "md: kicking non-fresh %s"
3310                                         " from array!\n",
3311                                         bdevname(rdev->bdev,b));
3312                                 md_kick_rdev_from_array(rdev);
3313                                 continue;
3314                         }
3315                 }
3316                 if (mddev->level == LEVEL_MULTIPATH) {
3317                         rdev->desc_nr = i++;
3318                         rdev->raid_disk = rdev->desc_nr;
3319                         set_bit(In_sync, &rdev->flags);
3320                 } else if (rdev->raid_disk >=
3321                             (mddev->raid_disks - min(0, mddev->delta_disks)) &&
3322                            !test_bit(Journal, &rdev->flags)) {
3323                         rdev->raid_disk = -1;
3324                         clear_bit(In_sync, &rdev->flags);
3325                 }
3326         }
3327 }
3328
3329 /* Read a fixed-point number.
3330  * Numbers in sysfs attributes should be in "standard" units where
3331  * possible, so time should be in seconds.
3332  * However we internally use a a much smaller unit such as
3333  * milliseconds or jiffies.
3334  * This function takes a decimal number with a possible fractional
3335  * component, and produces an integer which is the result of
3336  * multiplying that number by 10^'scale'.
3337  * all without any floating-point arithmetic.
3338  */
3339 int strict_strtoul_scaled(const char *cp, unsigned long *res, int scale)
3340 {
3341         unsigned long result = 0;
3342         long decimals = -1;
3343         while (isdigit(*cp) || (*cp == '.' && decimals < 0)) {
3344                 if (*cp == '.')
3345                         decimals = 0;
3346                 else if (decimals < scale) {
3347                         unsigned int value;
3348                         value = *cp - '0';
3349                         result = result * 10 + value;
3350                         if (decimals >= 0)
3351                                 decimals++;
3352                 }
3353                 cp++;
3354         }
3355         if (*cp == '\n')
3356                 cp++;
3357         if (*cp)
3358                 return -EINVAL;
3359         if (decimals < 0)
3360                 decimals = 0;
3361         while (decimals < scale) {
3362                 result *= 10;
3363                 decimals ++;
3364         }
3365         *res = result;
3366         return 0;
3367 }
3368
3369 static ssize_t
3370 safe_delay_show(struct mddev *mddev, char *page)
3371 {
3372         int msec = (mddev->safemode_delay*1000)/HZ;
3373         return sprintf(page, "%d.%03d\n", msec/1000, msec%1000);
3374 }
3375 static ssize_t
3376 safe_delay_store(struct mddev *mddev, const char *cbuf, size_t len)
3377 {
3378         unsigned long msec;
3379
3380         if (mddev_is_clustered(mddev)) {
3381                 pr_info("md: Safemode is disabled for clustered mode\n");
3382                 return -EINVAL;
3383         }
3384
3385         if (strict_strtoul_scaled(cbuf, &msec, 3) < 0)
3386                 return -EINVAL;
3387         if (msec == 0)
3388                 mddev->safemode_delay = 0;
3389         else {
3390                 unsigned long old_delay = mddev->safemode_delay;
3391                 unsigned long new_delay = (msec*HZ)/1000;
3392
3393                 if (new_delay == 0)
3394                         new_delay = 1;
3395                 mddev->safemode_delay = new_delay;
3396                 if (new_delay < old_delay || old_delay == 0)
3397                         mod_timer(&mddev->safemode_timer, jiffies+1);
3398         }
3399         return len;
3400 }
3401 static struct md_sysfs_entry md_safe_delay =
3402 __ATTR(safe_mode_delay, S_IRUGO|S_IWUSR,safe_delay_show, safe_delay_store);
3403
3404 static ssize_t
3405 level_show(struct mddev *mddev, char *page)
3406 {
3407         struct md_personality *p;
3408         int ret;
3409         spin_lock(&mddev->lock);
3410         p = mddev->pers;
3411         if (p)
3412                 ret = sprintf(page, "%s\n", p->name);
3413         else if (mddev->clevel[0])
3414                 ret = sprintf(page, "%s\n", mddev->clevel);
3415         else if (mddev->level != LEVEL_NONE)
3416                 ret = sprintf(page, "%d\n", mddev->level);
3417         else
3418                 ret = 0;
3419         spin_unlock(&mddev->lock);
3420         return ret;
3421 }
3422
3423 static ssize_t
3424 level_store(struct mddev *mddev, const char *buf, size_t len)
3425 {
3426         char clevel[16];
3427         ssize_t rv;
3428         size_t slen = len;
3429         struct md_personality *pers, *oldpers;
3430         long level;
3431         void *priv, *oldpriv;
3432         struct md_rdev *rdev;
3433
3434         if (slen == 0 || slen >= sizeof(clevel))
3435                 return -EINVAL;
3436
3437         rv = mddev_lock(mddev);
3438         if (rv)
3439                 return rv;
3440
3441         if (mddev->pers == NULL) {
3442                 strncpy(mddev->clevel, buf, slen);
3443                 if (mddev->clevel[slen-1] == '\n')
3444                         slen--;
3445                 mddev->clevel[slen] = 0;
3446                 mddev->level = LEVEL_NONE;
3447                 rv = len;
3448                 goto out_unlock;
3449         }
3450         rv = -EROFS;
3451         if (mddev->ro)
3452                 goto out_unlock;
3453
3454         /* request to change the personality.  Need to ensure:
3455          *  - array is not engaged in resync/recovery/reshape
3456          *  - old personality can be suspended
3457          *  - new personality will access other array.
3458          */
3459
3460         rv = -EBUSY;
3461         if (mddev->sync_thread ||
3462             test_bit(MD_RECOVERY_RUNNING, &mddev->recovery) ||
3463             mddev->reshape_position != MaxSector ||
3464             mddev->sysfs_active)
3465                 goto out_unlock;
3466
3467         rv = -EINVAL;
3468         if (!mddev->pers->quiesce) {
3469                 printk(KERN_WARNING "md: %s: %s does not support online personality change\n",
3470                        mdname(mddev), mddev->pers->name);
3471                 goto out_unlock;
3472         }
3473
3474         /* Now find the new personality */
3475         strncpy(clevel, buf, slen);
3476         if (clevel[slen-1] == '\n')
3477                 slen--;
3478         clevel[slen] = 0;
3479         if (kstrtol(clevel, 10, &level))
3480                 level = LEVEL_NONE;
3481
3482         if (request_module("md-%s", clevel) != 0)
3483                 request_module("md-level-%s", clevel);
3484         spin_lock(&pers_lock);
3485         pers = find_pers(level, clevel);
3486         if (!pers || !try_module_get(pers->owner)) {
3487                 spin_unlock(&pers_lock);
3488                 printk(KERN_WARNING "md: personality %s not loaded\n", clevel);
3489                 rv = -EINVAL;
3490                 goto out_unlock;
3491         }
3492         spin_unlock(&pers_lock);
3493
3494         if (pers == mddev->pers) {
3495                 /* Nothing to do! */
3496                 module_put(pers->owner);
3497                 rv = len;
3498                 goto out_unlock;
3499         }
3500         if (!pers->takeover) {
3501                 module_put(pers->owner);
3502                 printk(KERN_WARNING "md: %s: %s does not support personality takeover\n",
3503                        mdname(mddev), clevel);
3504                 rv = -EINVAL;
3505                 goto out_unlock;
3506         }
3507
3508         rdev_for_each(rdev, mddev)
3509                 rdev->new_raid_disk = rdev->raid_disk;
3510
3511         /* ->takeover must set new_* and/or delta_disks
3512          * if it succeeds, and may set them when it fails.
3513          */
3514         priv = pers->takeover(mddev);
3515         if (IS_ERR(priv)) {
3516                 mddev->new_level = mddev->level;
3517                 mddev->new_layout = mddev->layout;
3518                 mddev->new_chunk_sectors = mddev->chunk_sectors;
3519                 mddev->raid_disks -= mddev->delta_disks;
3520                 mddev->delta_disks = 0;
3521                 mddev->reshape_backwards = 0;
3522                 module_put(pers->owner);
3523                 printk(KERN_WARNING "md: %s: %s would not accept array\n",
3524                        mdname(mddev), clevel);
3525                 rv = PTR_ERR(priv);
3526                 goto out_unlock;
3527         }
3528
3529         /* Looks like we have a winner */
3530         mddev_suspend(mddev);
3531         mddev_detach(mddev);
3532
3533         spin_lock(&mddev->lock);
3534         oldpers = mddev->pers;
3535         oldpriv = mddev->private;
3536         mddev->pers = pers;
3537         mddev->private = priv;
3538         strlcpy(mddev->clevel, pers->name, sizeof(mddev->clevel));
3539         mddev->level = mddev->new_level;
3540         mddev->layout = mddev->new_layout;
3541         mddev->chunk_sectors = mddev->new_chunk_sectors;
3542         mddev->delta_disks = 0;
3543         mddev->reshape_backwards = 0;
3544         mddev->degraded = 0;
3545         spin_unlock(&mddev->lock);
3546
3547         if (oldpers->sync_request == NULL &&
3548             mddev->external) {
3549                 /* We are converting from a no-redundancy array
3550                  * to a redundancy array and metadata is managed
3551                  * externally so we need to be sure that writes
3552                  * won't block due to a need to transition
3553                  *      clean->dirty
3554                  * until external management is started.
3555                  */
3556                 mddev->in_sync = 0;
3557                 mddev->safemode_delay = 0;
3558                 mddev->safemode = 0;
3559         }
3560
3561         oldpers->free(mddev, oldpriv);
3562
3563         if (oldpers->sync_request == NULL &&
3564             pers->sync_request != NULL) {
3565                 /* need to add the md_redundancy_group */
3566                 if (sysfs_create_group(&mddev->kobj, &md_redundancy_group))
3567                         printk(KERN_WARNING
3568                                "md: cannot register extra attributes for %s\n",
3569                                mdname(mddev));
3570                 mddev->sysfs_action = sysfs_get_dirent(mddev->kobj.sd, "sync_action");
3571         }
3572         if (oldpers->sync_request != NULL &&
3573             pers->sync_request == NULL) {
3574                 /* need to remove the md_redundancy_group */
3575                 if (mddev->to_remove == NULL)
3576                         mddev->to_remove = &md_redundancy_group;
3577         }
3578
3579         rdev_for_each(rdev, mddev) {
3580                 if (rdev->raid_disk < 0)
3581                         continue;
3582                 if (rdev->new_raid_disk >= mddev->raid_disks)
3583                         rdev->new_raid_disk = -1;
3584                 if (rdev->new_raid_disk == rdev->raid_disk)
3585                         continue;
3586                 sysfs_unlink_rdev(mddev, rdev);
3587         }
3588         rdev_for_each(rdev, mddev) {
3589                 if (rdev->raid_disk < 0)
3590                         continue;
3591                 if (rdev->new_raid_disk == rdev->raid_disk)
3592                         continue;
3593                 rdev->raid_disk = rdev->new_raid_disk;
3594                 if (rdev->raid_disk < 0)
3595                         clear_bit(In_sync, &rdev->flags);
3596                 else {
3597                         if (sysfs_link_rdev(mddev, rdev))
3598                                 printk(KERN_WARNING "md: cannot register rd%d"
3599                                        " for %s after level change\n",
3600                                        rdev->raid_disk, mdname(mddev));
3601                 }
3602         }
3603
3604         if (pers->sync_request == NULL) {
3605                 /* this is now an array without redundancy, so
3606                  * it must always be in_sync
3607                  */
3608                 mddev->in_sync = 1;
3609                 del_timer_sync(&mddev->safemode_timer);
3610         }
3611         blk_set_stacking_limits(&mddev->queue->limits);
3612         pers->run(mddev);
3613         set_bit(MD_CHANGE_DEVS, &mddev->flags);
3614         mddev_resume(mddev);
3615         if (!mddev->thread)
3616                 md_update_sb(mddev, 1);
3617         sysfs_notify(&mddev->kobj, NULL, "level");
3618         md_new_event(mddev);
3619         rv = len;
3620 out_unlock:
3621         mddev_unlock(mddev);
3622         return rv;
3623 }
3624
3625 static struct md_sysfs_entry md_level =
3626 __ATTR(level, S_IRUGO|S_IWUSR, level_show, level_store);
3627
3628 static ssize_t
3629 layout_show(struct mddev *mddev, char *page)
3630 {
3631         /* just a number, not meaningful for all levels */
3632         if (mddev->reshape_position != MaxSector &&
3633             mddev->layout != mddev->new_layout)
3634                 return sprintf(page, "%d (%d)\n",
3635                                mddev->new_layout, mddev->layout);
3636         return sprintf(page, "%d\n", mddev->layout);
3637 }
3638
3639 static ssize_t
3640 layout_store(struct mddev *mddev, const char *buf, size_t len)
3641 {
3642         unsigned int n;
3643         int err;
3644
3645         err = kstrtouint(buf, 10, &n);
3646         if (err < 0)
3647                 return err;
3648         err = mddev_lock(mddev);
3649         if (err)
3650                 return err;
3651
3652         if (mddev->pers) {
3653                 if (mddev->pers->check_reshape == NULL)
3654                         err = -EBUSY;
3655                 else if (mddev->ro)
3656                         err = -EROFS;
3657                 else {
3658                         mddev->new_layout = n;
3659                         err = mddev->pers->check_reshape(mddev);
3660                         if (err)
3661                                 mddev->new_layout = mddev->layout;
3662                 }
3663         } else {
3664                 mddev->new_layout = n;
3665                 if (mddev->reshape_position == MaxSector)
3666                         mddev->layout = n;
3667         }
3668         mddev_unlock(mddev);
3669         return err ?: len;
3670 }
3671 static struct md_sysfs_entry md_layout =
3672 __ATTR(layout, S_IRUGO|S_IWUSR, layout_show, layout_store);
3673
3674 static ssize_t
3675 raid_disks_show(struct mddev *mddev, char *page)
3676 {
3677         if (mddev->raid_disks == 0)
3678                 return 0;
3679         if (mddev->reshape_position != MaxSector &&
3680             mddev->delta_disks != 0)
3681                 return sprintf(page, "%d (%d)\n", mddev->raid_disks,
3682                                mddev->raid_disks - mddev->delta_disks);
3683         return sprintf(page, "%d\n", mddev->raid_disks);
3684 }
3685
3686 static int update_raid_disks(struct mddev *mddev, int raid_disks);
3687
3688 static ssize_t
3689 raid_disks_store(struct mddev *mddev, const char *buf, size_t len)
3690 {
3691         unsigned int n;
3692         int err;
3693
3694         err = kstrtouint(buf, 10, &n);
3695         if (err < 0)
3696                 return err;
3697
3698         err = mddev_lock(mddev);
3699         if (err)
3700                 return err;
3701         if (mddev->pers)
3702                 err = update_raid_disks(mddev, n);
3703         else if (mddev->reshape_position != MaxSector) {
3704                 struct md_rdev *rdev;
3705                 int olddisks = mddev->raid_disks - mddev->delta_disks;
3706
3707                 err = -EINVAL;
3708                 rdev_for_each(rdev, mddev) {
3709                         if (olddisks < n &&
3710                             rdev->data_offset < rdev->new_data_offset)
3711                                 goto out_unlock;
3712                         if (olddisks > n &&
3713                             rdev->data_offset > rdev->new_data_offset)
3714                                 goto out_unlock;
3715                 }
3716                 err = 0;
3717                 mddev->delta_disks = n - olddisks;
3718                 mddev->raid_disks = n;
3719                 mddev->reshape_backwards = (mddev->delta_disks < 0);
3720         } else
3721                 mddev->raid_disks = n;
3722 out_unlock:
3723         mddev_unlock(mddev);
3724         return err ? err : len;
3725 }
3726 static struct md_sysfs_entry md_raid_disks =
3727 __ATTR(raid_disks, S_IRUGO|S_IWUSR, raid_disks_show, raid_disks_store);
3728
3729 static ssize_t
3730 chunk_size_show(struct mddev *mddev, char *page)
3731 {
3732         if (mddev->reshape_position != MaxSector &&
3733             mddev->chunk_sectors != mddev->new_chunk_sectors)
3734                 return sprintf(page, "%d (%d)\n",
3735                                mddev->new_chunk_sectors << 9,
3736                                mddev->chunk_sectors << 9);
3737         return sprintf(page, "%d\n", mddev->chunk_sectors << 9);
3738 }
3739
3740 static ssize_t
3741 chunk_size_store(struct mddev *mddev, const char *buf, size_t len)
3742 {
3743         unsigned long n;
3744         int err;
3745
3746         err = kstrtoul(buf, 10, &n);
3747         if (err < 0)
3748                 return err;
3749
3750         err = mddev_lock(mddev);
3751         if (err)
3752                 return err;
3753         if (mddev->pers) {
3754                 if (mddev->pers->check_reshape == NULL)
3755                         err = -EBUSY;
3756                 else if (mddev->ro)
3757                         err = -EROFS;
3758                 else {
3759                         mddev->new_chunk_sectors = n >> 9;
3760                         err = mddev->pers->check_reshape(mddev);
3761                         if (err)
3762                                 mddev->new_chunk_sectors = mddev->chunk_sectors;
3763                 }
3764         } else {
3765                 mddev->new_chunk_sectors = n >> 9;
3766                 if (mddev->reshape_position == MaxSector)
3767                         mddev->chunk_sectors = n >> 9;
3768         }
3769         mddev_unlock(mddev);
3770         return err ?: len;
3771 }
3772 static struct md_sysfs_entry md_chunk_size =
3773 __ATTR(chunk_size, S_IRUGO|S_IWUSR, chunk_size_show, chunk_size_store);
3774
3775 static ssize_t
3776 resync_start_show(struct mddev *mddev, char *page)
3777 {
3778         if (mddev->recovery_cp == MaxSector)
3779                 return sprintf(page, "none\n");
3780         return sprintf(page, "%llu\n", (unsigned long long)mddev->recovery_cp);
3781 }
3782
3783 static ssize_t
3784 resync_start_store(struct mddev *mddev, const char *buf, size_t len)
3785 {
3786         unsigned long long n;
3787         int err;
3788
3789         if (cmd_match(buf, "none"))
3790                 n = MaxSector;
3791         else {
3792                 err = kstrtoull(buf, 10, &n);
3793                 if (err < 0)
3794                         return err;
3795                 if (n != (sector_t)n)
3796                         return -EINVAL;
3797         }
3798
3799         err = mddev_lock(mddev);
3800         if (err)
3801                 return err;
3802         if (mddev->pers && !test_bit(MD_RECOVERY_FROZEN, &mddev->recovery))
3803                 err = -EBUSY;
3804
3805         if (!err) {
3806                 mddev->recovery_cp = n;
3807                 if (mddev->pers)
3808                         set_bit(MD_CHANGE_CLEAN, &mddev->flags);
3809         }
3810         mddev_unlock(mddev);
3811         return err ?: len;
3812 }
3813 static struct md_sysfs_entry md_resync_start =
3814 __ATTR_PREALLOC(resync_start, S_IRUGO|S_IWUSR,
3815                 resync_start_show, resync_start_store);
3816
3817 /*
3818  * The array state can be:
3819  *
3820  * clear
3821  *     No devices, no size, no level
3822  *     Equivalent to STOP_ARRAY ioctl
3823  * inactive
3824  *     May have some settings, but array is not active
3825  *        all IO results in error
3826  *     When written, doesn't tear down array, but just stops it
3827  * suspended (not supported yet)
3828  *     All IO requests will block. The array can be reconfigured.
3829  *     Writing this, if accepted, will block until array is quiescent
3830  * readonly
3831  *     no resync can happen.  no superblocks get written.
3832  *     write requests fail
3833  * read-auto
3834  *     like readonly, but behaves like 'clean' on a write request.
3835  *
3836  * clean - no pending writes, but otherwise active.
3837  *     When written to inactive array, starts without resync
3838  *     If a write request arrives then
3839  *       if metadata is known, mark 'dirty' and switch to 'active'.
3840  *       if not known, block and switch to write-pending
3841  *     If written to an active array that has pending writes, then fails.
3842  * active
3843  *     fully active: IO and resync can be happening.
3844  *     When written to inactive array, starts with resync
3845  *
3846  * write-pending
3847  *     clean, but writes are blocked waiting for 'active' to be written.
3848  *
3849  * active-idle
3850  *     like active, but no writes have been seen for a while (100msec).
3851  *
3852  */
3853 enum array_state { clear, inactive, suspended, readonly, read_auto, clean, active,
3854                    write_pending, active_idle, bad_word};
3855 static char *array_states[] = {
3856         "clear", "inactive", "suspended", "readonly", "read-auto", "clean", "active",
3857         "write-pending", "active-idle", NULL };
3858
3859 static int match_word(const char *word, char **list)
3860 {
3861         int n;
3862         for (n=0; list[n]; n++)
3863                 if (cmd_match(word, list[n]))
3864                         break;
3865         return n;
3866 }
3867
3868 static ssize_t
3869 array_state_show(struct mddev *mddev, char *page)
3870 {
3871         enum array_state st = inactive;
3872
3873         if (mddev->pers)
3874                 switch(mddev->ro) {
3875                 case 1:
3876                         st = readonly;
3877                         break;
3878                 case 2:
3879                         st = read_auto;
3880                         break;
3881                 case 0:
3882                         if (mddev->in_sync)
3883                                 st = clean;
3884                         else if (test_bit(MD_CHANGE_PENDING, &mddev->flags))
3885                                 st = write_pending;
3886                         else if (mddev->safemode)
3887                                 st = active_idle;
3888                         else
3889                                 st = active;
3890                 }
3891         else {
3892                 if (list_empty(&mddev->disks) &&
3893                     mddev->raid_disks == 0 &&
3894                     mddev->dev_sectors == 0)
3895                         st = clear;
3896                 else
3897                         st = inactive;
3898         }
3899         return sprintf(page, "%s\n", array_states[st]);
3900 }
3901
3902 static int do_md_stop(struct mddev *mddev, int ro, struct block_device *bdev);
3903 static int md_set_readonly(struct mddev *mddev, struct block_device *bdev);
3904 static int do_md_run(struct mddev *mddev);
3905 static int restart_array(struct mddev *mddev);
3906
3907 static ssize_t
3908 array_state_store(struct mddev *mddev, const char *buf, size_t len)
3909 {
3910         int err;
3911         enum array_state st = match_word(buf, array_states);
3912
3913         if (mddev->pers && (st == active || st == clean) && mddev->ro != 1) {
3914                 /* don't take reconfig_mutex when toggling between
3915                  * clean and active
3916                  */
3917                 spin_lock(&mddev->lock);
3918                 if (st == active) {
3919                         restart_array(mddev);
3920                         clear_bit(MD_CHANGE_PENDING, &mddev->flags);
3921                         wake_up(&mddev->sb_wait);
3922                         err = 0;
3923                 } else /* st == clean */ {
3924                         restart_array(mddev);
3925                         if (atomic_read(&mddev->writes_pending) == 0) {
3926                                 if (mddev->in_sync == 0) {
3927                                         mddev->in_sync = 1;
3928                                         if (mddev->safemode == 1)
3929                                                 mddev->safemode = 0;
3930                                         set_bit(MD_CHANGE_CLEAN, &mddev->flags);
3931                                 }
3932                                 err = 0;
3933                         } else
3934                                 err = -EBUSY;
3935                 }
3936                 spin_unlock(&mddev->lock);
3937                 return err ?: len;
3938         }
3939         err = mddev_lock(mddev);
3940         if (err)
3941                 return err;
3942         err = -EINVAL;
3943         switch(st) {
3944         case bad_word:
3945                 break;
3946         case clear:
3947                 /* stopping an active array */
3948                 err = do_md_stop(mddev, 0, NULL);
3949                 break;
3950         case inactive:
3951                 /* stopping an active array */
3952                 if (mddev->pers)
3953                         err = do_md_stop(mddev, 2, NULL);
3954                 else
3955                         err = 0; /* already inactive */
3956                 break;
3957         case suspended:
3958                 break; /* not supported yet */
3959         case readonly:
3960                 if (mddev->pers)
3961                         err = md_set_readonly(mddev, NULL);
3962                 else {
3963                         mddev->ro = 1;
3964                         set_disk_ro(mddev->gendisk, 1);
3965                         err = do_md_run(mddev);
3966                 }
3967                 break;
3968         case read_auto:
3969                 if (mddev->pers) {
3970                         if (mddev->ro == 0)
3971                                 err = md_set_readonly(mddev, NULL);
3972                         else if (mddev->ro == 1)
3973                                 err = restart_array(mddev);
3974                         if (err == 0) {
3975                                 mddev->ro = 2;
3976                                 set_disk_ro(mddev->gendisk, 0);
3977                         }
3978                 } else {
3979                         mddev->ro = 2;
3980                         err = do_md_run(mddev);
3981                 }
3982                 break;
3983         case clean:
3984                 if (mddev->pers) {
3985                         err = restart_array(mddev);
3986                         if (err)
3987                                 break;
3988                         spin_lock(&mddev->lock);
3989                         if (atomic_read(&mddev->writes_pending) == 0) {
3990                                 if (mddev->in_sync == 0) {
3991                                         mddev->in_sync = 1;
3992                                         if (mddev->safemode == 1)
3993                                                 mddev->safemode = 0;
3994                                         set_bit(MD_CHANGE_CLEAN, &mddev->flags);
3995                                 }
3996                                 err = 0;
3997                         } else
3998                                 err = -EBUSY;
3999                         spin_unlock(&mddev->lock);
4000                 } else
4001                         err = -EINVAL;
4002                 break;
4003         case active:
4004                 if (mddev->pers) {
4005                         err = restart_array(mddev);
4006                         if (err)
4007                                 break;
4008                         clear_bit(MD_CHANGE_PENDING, &mddev->flags);
4009                         wake_up(&mddev->sb_wait);
4010                         err = 0;
4011                 } else {
4012                         mddev->ro = 0;
4013                         set_disk_ro(mddev->gendisk, 0);
4014                         err = do_md_run(mddev);
4015                 }
4016                 break;
4017         case write_pending:
4018         case active_idle:
4019                 /* these cannot be set */
4020                 break;
4021         }
4022
4023         if (!err) {
4024                 if (mddev->hold_active == UNTIL_IOCTL)
4025                         mddev->hold_active = 0;
4026                 sysfs_notify_dirent_safe(mddev->sysfs_state);
4027         }
4028         mddev_unlock(mddev);
4029         return err ?: len;
4030 }
4031 static struct md_sysfs_entry md_array_state =
4032 __ATTR_PREALLOC(array_state, S_IRUGO|S_IWUSR, array_state_show, array_state_store);
4033
4034 static ssize_t
4035 max_corrected_read_errors_show(struct mddev *mddev, char *page) {
4036         return sprintf(page, "%d\n",
4037                        atomic_read(&mddev->max_corr_read_errors));
4038 }
4039
4040 static ssize_t
4041 max_corrected_read_errors_store(struct mddev *mddev, const char *buf, size_t len)
4042 {
4043         unsigned int n;
4044         int rv;
4045
4046         rv = kstrtouint(buf, 10, &n);
4047         if (rv < 0)
4048                 return rv;
4049         atomic_set(&mddev->max_corr_read_errors, n);
4050         return len;
4051 }
4052
4053 static struct md_sysfs_entry max_corr_read_errors =
4054 __ATTR(max_read_errors, S_IRUGO|S_IWUSR, max_corrected_read_errors_show,
4055         max_corrected_read_errors_store);
4056
4057 static ssize_t
4058 null_show(struct mddev *mddev, char *page)
4059 {
4060         return -EINVAL;
4061 }
4062
4063 static ssize_t
4064 new_dev_store(struct mddev *mddev, const char *buf, size_t len)
4065 {
4066         /* buf must be %d:%d\n? giving major and minor numbers */
4067         /* The new device is added to the array.
4068          * If the array has a persistent superblock, we read the
4069          * superblock to initialise info and check validity.
4070          * Otherwise, only checking done is that in bind_rdev_to_array,
4071          * which mainly checks size.
4072          */
4073         char *e;
4074         int major = simple_strtoul(buf, &e, 10);
4075         int minor;
4076         dev_t dev;
4077         struct md_rdev *rdev;
4078         int err;
4079
4080         if (!*buf || *e != ':' || !e[1] || e[1] == '\n')
4081                 return -EINVAL;
4082         minor = simple_strtoul(e+1, &e, 10);
4083         if (*e && *e != '\n')
4084                 return -EINVAL;
4085         dev = MKDEV(major, minor);
4086         if (major != MAJOR(dev) ||
4087             minor != MINOR(dev))
4088                 return -EOVERFLOW;
4089
4090         flush_workqueue(md_misc_wq);
4091
4092         err = mddev_lock(mddev);
4093         if (err)
4094                 return err;
4095         if (mddev->persistent) {
4096                 rdev = md_import_device(dev, mddev->major_version,
4097                                         mddev->minor_version);
4098                 if (!IS_ERR(rdev) && !list_empty(&mddev->disks)) {
4099                         struct md_rdev *rdev0
4100                                 = list_entry(mddev->disks.next,
4101                                              struct md_rdev, same_set);
4102                         err = super_types[mddev->major_version]
4103                                 .load_super(rdev, rdev0, mddev->minor_version);
4104                         if (err < 0)
4105                                 goto out;
4106                 }
4107         } else if (mddev->external)
4108                 rdev = md_import_device(dev, -2, -1);
4109         else
4110                 rdev = md_import_device(dev, -1, -1);
4111
4112         if (IS_ERR(rdev)) {
4113                 mddev_unlock(mddev);
4114                 return PTR_ERR(rdev);
4115         }
4116         err = bind_rdev_to_array(rdev, mddev);
4117  out:
4118         if (err)
4119                 export_rdev(rdev);
4120         mddev_unlock(mddev);
4121         return err ? err : len;
4122 }
4123
4124 static struct md_sysfs_entry md_new_device =
4125 __ATTR(new_dev, S_IWUSR, null_show, new_dev_store);
4126
4127 static ssize_t
4128 bitmap_store(struct mddev *mddev, const char *buf, size_t len)
4129 {
4130         char *end;
4131         unsigned long chunk, end_chunk;
4132         int err;
4133
4134         err = mddev_lock(mddev);
4135         if (err)
4136                 return err;
4137         if (!mddev->bitmap)
4138                 goto out;
4139         /* buf should be <chunk> <chunk> ... or <chunk>-<chunk> ... (range) */
4140         while (*buf) {
4141                 chunk = end_chunk = simple_strtoul(buf, &end, 0);
4142                 if (buf == end) break;
4143                 if (*end == '-') { /* range */
4144                         buf = end + 1;
4145                         end_chunk = simple_strtoul(buf, &end, 0);
4146                         if (buf == end) break;
4147                 }
4148                 if (*end && !isspace(*end)) break;
4149                 bitmap_dirty_bits(mddev->bitmap, chunk, end_chunk);
4150                 buf = skip_spaces(end);
4151         }
4152         bitmap_unplug(mddev->bitmap); /* flush the bits to disk */
4153 out:
4154         mddev_unlock(mddev);
4155         return len;
4156 }
4157
4158 static struct md_sysfs_entry md_bitmap =
4159 __ATTR(bitmap_set_bits, S_IWUSR, null_show, bitmap_store);
4160
4161 static ssize_t
4162 size_show(struct mddev *mddev, char *page)
4163 {
4164         return sprintf(page, "%llu\n",
4165                 (unsigned long long)mddev->dev_sectors / 2);
4166 }
4167
4168 static int update_size(struct mddev *mddev, sector_t num_sectors);
4169
4170 static ssize_t
4171 size_store(struct mddev *mddev, const char *buf, size_t len)
4172 {
4173         /* If array is inactive, we can reduce the component size, but
4174          * not increase it (except from 0).
4175          * If array is active, we can try an on-line resize
4176          */
4177         sector_t sectors;
4178         int err = strict_blocks_to_sectors(buf, &sectors);
4179
4180         if (err < 0)
4181                 return err;
4182         err = mddev_lock(mddev);
4183         if (err)
4184                 return err;
4185         if (mddev->pers) {
4186                 err = update_size(mddev, sectors);
4187                 md_update_sb(mddev, 1);
4188         } else {
4189                 if (mddev->dev_sectors == 0 ||
4190                     mddev->dev_sectors > sectors)
4191                         mddev->dev_sectors = sectors;
4192                 else
4193                         err = -ENOSPC;
4194         }
4195         mddev_unlock(mddev);
4196         return err ? err : len;
4197 }
4198
4199 static struct md_sysfs_entry md_size =
4200 __ATTR(component_size, S_IRUGO|S_IWUSR, size_show, size_store);
4201
4202 /* Metadata version.
4203  * This is one of
4204  *   'none' for arrays with no metadata (good luck...)
4205  *   'external' for arrays with externally managed metadata,
4206  * or N.M for internally known formats
4207  */
4208 static ssize_t
4209 metadata_show(struct mddev *mddev, char *page)
4210 {
4211         if (mddev->persistent)
4212                 return sprintf(page, "%d.%d\n",
4213                                mddev->major_version, mddev->minor_version);
4214         else if (mddev->external)
4215                 return sprintf(page, "external:%s\n", mddev->metadata_type);
4216         else
4217                 return sprintf(page, "none\n");
4218 }
4219
4220 static ssize_t
4221 metadata_store(struct mddev *mddev, const char *buf, size_t len)
4222 {
4223         int major, minor;
4224         char *e;
4225         int err;
4226         /* Changing the details of 'external' metadata is
4227          * always permitted.  Otherwise there must be
4228          * no devices attached to the array.
4229          */
4230
4231         err = mddev_lock(mddev);
4232         if (err)
4233                 return err;
4234         err = -EBUSY;
4235         if (mddev->external && strncmp(buf, "external:", 9) == 0)
4236                 ;
4237         else if (!list_empty(&mddev->disks))
4238                 goto out_unlock;
4239
4240         err = 0;
4241         if (cmd_match(buf, "none")) {
4242                 mddev->persistent = 0;
4243                 mddev->external = 0;
4244                 mddev->major_version = 0;
4245                 mddev->minor_version = 90;
4246                 goto out_unlock;
4247         }
4248         if (strncmp(buf, "external:", 9) == 0) {
4249                 size_t namelen = len-9;
4250                 if (namelen >= sizeof(mddev->metadata_type))
4251                         namelen = sizeof(mddev->metadata_type)-1;
4252                 strncpy(mddev->metadata_type, buf+9, namelen);
4253                 mddev->metadata_type[namelen] = 0;
4254                 if (namelen && mddev->metadata_type[namelen-1] == '\n')
4255                         mddev->metadata_type[--namelen] = 0;
4256                 mddev->persistent = 0;
4257                 mddev->external = 1;
4258                 mddev->major_version = 0;
4259                 mddev->minor_version = 90;
4260                 goto out_unlock;
4261         }
4262         major = simple_strtoul(buf, &e, 10);
4263         err = -EINVAL;
4264         if (e==buf || *e != '.')
4265                 goto out_unlock;
4266         buf = e+1;
4267         minor = simple_strtoul(buf, &e, 10);
4268         if (e==buf || (*e && *e != '\n') )
4269                 goto out_unlock;
4270         err = -ENOENT;
4271         if (major >= ARRAY_SIZE(super_types) || super_types[major].name == NULL)
4272                 goto out_unlock;
4273         mddev->major_version = major;
4274         mddev->minor_version = minor;
4275         mddev->persistent = 1;
4276         mddev->external = 0;
4277         err = 0;
4278 out_unlock:
4279         mddev_unlock(mddev);
4280         return err ?: len;
4281 }
4282
4283 static struct md_sysfs_entry md_metadata =
4284 __ATTR_PREALLOC(metadata_version, S_IRUGO|S_IWUSR, metadata_show, metadata_store);
4285
4286 static ssize_t
4287 action_show(struct mddev *mddev, char *page)
4288 {
4289         char *type = "idle";
4290         unsigned long recovery = mddev->recovery;
4291         if (test_bit(MD_RECOVERY_FROZEN, &recovery))
4292                 type = "frozen";
4293         else if (test_bit(MD_RECOVERY_RUNNING, &recovery) ||
4294             (!mddev->ro && test_bit(MD_RECOVERY_NEEDED, &recovery))) {
4295                 if (test_bit(MD_RECOVERY_RESHAPE, &recovery))
4296                         type = "reshape";
4297                 else if (test_bit(MD_RECOVERY_SYNC, &recovery)) {
4298                         if (!test_bit(MD_RECOVERY_REQUESTED, &recovery))
4299                                 type = "resync";
4300                         else if (test_bit(MD_RECOVERY_CHECK, &recovery))
4301                                 type = "check";
4302                         else
4303                                 type = "repair";
4304                 } else if (test_bit(MD_RECOVERY_RECOVER, &recovery))
4305                         type = "recover";
4306                 else if (mddev->reshape_position != MaxSector)
4307                         type = "reshape";
4308         }
4309         return sprintf(page, "%s\n", type);
4310 }
4311
4312 static ssize_t
4313 action_store(struct mddev *mddev, const char *page, size_t len)
4314 {
4315         if (!mddev->pers || !mddev->pers->sync_request)
4316                 return -EINVAL;
4317
4318
4319         if (cmd_match(page, "idle") || cmd_match(page, "frozen")) {
4320                 if (cmd_match(page, "frozen"))
4321                         set_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
4322                 else
4323                         clear_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
4324                 if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery) &&
4325                     mddev_lock(mddev) == 0) {
4326                         flush_workqueue(md_misc_wq);
4327                         if (mddev->sync_thread) {
4328                                 set_bit(MD_RECOVERY_INTR, &mddev->recovery);
4329                                 md_reap_sync_thread(mddev);
4330                         }
4331                         mddev_unlock(mddev);
4332                 }
4333         } else if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery))
4334                 return -EBUSY;
4335         else if (cmd_match(page, "resync"))
4336                 clear_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
4337         else if (cmd_match(page, "recover")) {
4338                 clear_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
4339                 set_bit(MD_RECOVERY_RECOVER, &mddev->recovery);
4340         } else if (cmd_match(page, "reshape")) {
4341                 int err;
4342                 if (mddev->pers->start_reshape == NULL)
4343                         return -EINVAL;
4344                 err = mddev_lock(mddev);
4345                 if (!err) {
4346                         if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery))
4347                                 err =  -EBUSY;
4348                         else {
4349                                 clear_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
4350                                 err = mddev->pers->start_reshape(mddev);
4351                         }
4352                         mddev_unlock(mddev);
4353                 }
4354                 if (err)
4355                         return err;
4356                 sysfs_notify(&mddev->kobj, NULL, "degraded");
4357         } else {
4358                 if (cmd_match(page, "check"))
4359                         set_bit(MD_RECOVERY_CHECK, &mddev->recovery);
4360                 else if (!cmd_match(page, "repair"))
4361                         return -EINVAL;
4362                 clear_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
4363                 set_bit(MD_RECOVERY_REQUESTED, &mddev->recovery);
4364                 set_bit(MD_RECOVERY_SYNC, &mddev->recovery);
4365         }
4366         if (mddev->ro == 2) {
4367                 /* A write to sync_action is enough to justify
4368                  * canceling read-auto mode
4369                  */
4370                 mddev->ro = 0;
4371                 md_wakeup_thread(mddev->sync_thread);
4372         }
4373         set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
4374         md_wakeup_thread(mddev->thread);
4375         sysfs_notify_dirent_safe(mddev->sysfs_action);
4376         return len;
4377 }
4378
4379 static struct md_sysfs_entry md_scan_mode =
4380 __ATTR_PREALLOC(sync_action, S_IRUGO|S_IWUSR, action_show, action_store);
4381
4382 static ssize_t
4383 last_sync_action_show(struct mddev *mddev, char *page)
4384 {
4385         return sprintf(page, "%s\n", mddev->last_sync_action);
4386 }
4387
4388 static struct md_sysfs_entry md_last_scan_mode = __ATTR_RO(last_sync_action);
4389
4390 static ssize_t
4391 mismatch_cnt_show(struct mddev *mddev, char *page)
4392 {
4393         return sprintf(page, "%llu\n",
4394                        (unsigned long long)
4395                        atomic64_read(&mddev->resync_mismatches));
4396 }
4397
4398 static struct md_sysfs_entry md_mismatches = __ATTR_RO(mismatch_cnt);
4399
4400 static ssize_t
4401 sync_min_show(struct mddev *mddev, char *page)
4402 {
4403         return sprintf(page, "%d (%s)\n", speed_min(mddev),
4404                        mddev->sync_speed_min ? "local": "system");
4405 }
4406
4407 static ssize_t
4408 sync_min_store(struct mddev *mddev, const char *buf, size_t len)
4409 {
4410         unsigned int min;
4411         int rv;
4412
4413         if (strncmp(buf, "system", 6)==0) {
4414                 min = 0;
4415         } else {
4416                 rv = kstrtouint(buf, 10, &min);
4417                 if (rv < 0)
4418                         return rv;
4419                 if (min == 0)
4420                         return -EINVAL;
4421         }
4422         mddev->sync_speed_min = min;
4423         return len;
4424 }
4425
4426 static struct md_sysfs_entry md_sync_min =
4427 __ATTR(sync_speed_min, S_IRUGO|S_IWUSR, sync_min_show, sync_min_store);
4428
4429 static ssize_t
4430 sync_max_show(struct mddev *mddev, char *page)
4431 {
4432         return sprintf(page, "%d (%s)\n", speed_max(mddev),
4433                        mddev->sync_speed_max ? "local": "system");
4434 }
4435
4436 static ssize_t
4437 sync_max_store(struct mddev *mddev, const char *buf, size_t len)
4438 {
4439         unsigned int max;
4440         int rv;
4441
4442         if (strncmp(buf, "system", 6)==0) {
4443                 max = 0;
4444         } else {
4445                 rv = kstrtouint(buf, 10, &max);
4446                 if (rv < 0)
4447                         return rv;
4448                 if (max == 0)
4449                         return -EINVAL;
4450         }
4451         mddev->sync_speed_max = max;
4452         return len;
4453 }
4454
4455 static struct md_sysfs_entry md_sync_max =
4456 __ATTR(sync_speed_max, S_IRUGO|S_IWUSR, sync_max_show, sync_max_store);
4457
4458 static ssize_t
4459 degraded_show(struct mddev *mddev, char *page)
4460 {
4461         return sprintf(page, "%d\n", mddev->degraded);
4462 }
4463 static struct md_sysfs_entry md_degraded = __ATTR_RO(degraded);
4464
4465 static ssize_t
4466 sync_force_parallel_show(struct mddev *mddev, char *page)
4467 {
4468         return sprintf(page, "%d\n", mddev->parallel_resync);
4469 }
4470
4471 static ssize_t
4472 sync_force_parallel_store(struct mddev *mddev, const char *buf, size_t len)
4473 {
4474         long n;
4475
4476         if (kstrtol(buf, 10, &n))
4477                 return -EINVAL;
4478
4479         if (n != 0 && n != 1)
4480                 return -EINVAL;
4481
4482         mddev->parallel_resync = n;
4483
4484         if (mddev->sync_thread)
4485                 wake_up(&resync_wait);
4486
4487         return len;
4488 }
4489
4490 /* force parallel resync, even with shared block devices */
4491 static struct md_sysfs_entry md_sync_force_parallel =
4492 __ATTR(sync_force_parallel, S_IRUGO|S_IWUSR,
4493        sync_force_parallel_show, sync_force_parallel_store);
4494
4495 static ssize_t
4496 sync_speed_show(struct mddev *mddev, char *page)
4497 {
4498         unsigned long resync, dt, db;
4499         if (mddev->curr_resync == 0)
4500                 return sprintf(page, "none\n");
4501         resync = mddev->curr_mark_cnt - atomic_read(&mddev->recovery_active);
4502         dt = (jiffies - mddev->resync_mark) / HZ;
4503         if (!dt) dt++;
4504         db = resync - mddev->resync_mark_cnt;
4505         return sprintf(page, "%lu\n", db/dt/2); /* K/sec */
4506 }
4507
4508 static struct md_sysfs_entry md_sync_speed = __ATTR_RO(sync_speed);
4509
4510 static ssize_t
4511 sync_completed_show(struct mddev *mddev, char *page)
4512 {
4513         unsigned long long max_sectors, resync;
4514
4515         if (!test_bit(MD_RECOVERY_RUNNING, &mddev->recovery))
4516                 return sprintf(page, "none\n");
4517
4518         if (mddev->curr_resync == 1 ||
4519             mddev->curr_resync == 2)
4520                 return sprintf(page, "delayed\n");
4521
4522         if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery) ||
4523             test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery))
4524                 max_sectors = mddev->resync_max_sectors;
4525         else
4526                 max_sectors = mddev->dev_sectors;
4527
4528         resync = mddev->curr_resync_completed;
4529         return sprintf(page, "%llu / %llu\n", resync, max_sectors);
4530 }
4531
4532 static struct md_sysfs_entry md_sync_completed =
4533         __ATTR_PREALLOC(sync_completed, S_IRUGO, sync_completed_show, NULL);
4534
4535 static ssize_t
4536 min_sync_show(struct mddev *mddev, char *page)
4537 {
4538         return sprintf(page, "%llu\n",
4539                        (unsigned long long)mddev->resync_min);
4540 }
4541 static ssize_t
4542 min_sync_store(struct mddev *mddev, const char *buf, size_t len)
4543 {
4544         unsigned long long min;
4545         int err;
4546
4547         if (kstrtoull(buf, 10, &min))
4548                 return -EINVAL;
4549
4550         spin_lock(&mddev->lock);
4551         err = -EINVAL;
4552         if (min > mddev->resync_max)
4553                 goto out_unlock;
4554
4555         err = -EBUSY;
4556         if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery))
4557                 goto out_unlock;
4558
4559         /* Round down to multiple of 4K for safety */
4560         mddev->resync_min = round_down(min, 8);
4561         err = 0;
4562
4563 out_unlock:
4564         spin_unlock(&mddev->lock);
4565         return err ?: len;
4566 }
4567
4568 static struct md_sysfs_entry md_min_sync =
4569 __ATTR(sync_min, S_IRUGO|S_IWUSR, min_sync_show, min_sync_store);
4570
4571 static ssize_t
4572 max_sync_show(struct mddev *mddev, char *page)
4573 {
4574         if (mddev->resync_max == MaxSector)
4575                 return sprintf(page, "max\n");
4576         else
4577                 return sprintf(page, "%llu\n",
4578                                (unsigned long long)mddev->resync_max);
4579 }
4580 static ssize_t
4581 max_sync_store(struct mddev *mddev, const char *buf, size_t len)
4582 {
4583         int err;
4584         spin_lock(&mddev->lock);
4585         if (strncmp(buf, "max", 3) == 0)
4586                 mddev->resync_max = MaxSector;
4587         else {
4588                 unsigned long long max;
4589                 int chunk;
4590
4591                 err = -EINVAL;
4592                 if (kstrtoull(buf, 10, &max))
4593                         goto out_unlock;
4594                 if (max < mddev->resync_min)
4595                         goto out_unlock;
4596
4597                 err = -EBUSY;
4598                 if (max < mddev->resync_max &&
4599                     mddev->ro == 0 &&
4600                     test_bit(MD_RECOVERY_RUNNING, &mddev->recovery))
4601                         goto out_unlock;
4602
4603                 /* Must be a multiple of chunk_size */
4604                 chunk = mddev->chunk_sectors;
4605                 if (chunk) {
4606                         sector_t temp = max;
4607
4608                         err = -EINVAL;
4609                         if (sector_div(temp, chunk))
4610                                 goto out_unlock;
4611                 }
4612                 mddev->resync_max = max;
4613         }
4614         wake_up(&mddev->recovery_wait);
4615         err = 0;
4616 out_unlock:
4617         spin_unlock(&mddev->lock);
4618         return err ?: len;
4619 }
4620
4621 static struct md_sysfs_entry md_max_sync =
4622 __ATTR(sync_max, S_IRUGO|S_IWUSR, max_sync_show, max_sync_store);
4623
4624 static ssize_t
4625 suspend_lo_show(struct mddev *mddev, char *page)
4626 {
4627         return sprintf(page, "%llu\n", (unsigned long long)mddev->suspend_lo);
4628 }
4629
4630 static ssize_t
4631 suspend_lo_store(struct mddev *mddev, const char *buf, size_t len)
4632 {
4633         unsigned long long old, new;
4634         int err;
4635
4636         err = kstrtoull(buf, 10, &new);
4637         if (err < 0)
4638                 return err;
4639         if (new != (sector_t)new)
4640                 return -EINVAL;
4641
4642         err = mddev_lock(mddev);
4643         if (err)
4644                 return err;
4645         err = -EINVAL;
4646         if (mddev->pers == NULL ||
4647             mddev->pers->quiesce == NULL)
4648                 goto unlock;
4649         old = mddev->suspend_lo;
4650         mddev->suspend_lo = new;
4651         if (new >= old)
4652                 /* Shrinking suspended region */
4653                 mddev->pers->quiesce(mddev, 2);
4654         else {
4655                 /* Expanding suspended region - need to wait */
4656                 mddev->pers->quiesce(mddev, 1);
4657                 mddev->pers->quiesce(mddev, 0);
4658         }
4659         err = 0;
4660 unlock:
4661         mddev_unlock(mddev);
4662         return err ?: len;
4663 }
4664 static struct md_sysfs_entry md_suspend_lo =
4665 __ATTR(suspend_lo, S_IRUGO|S_IWUSR, suspend_lo_show, suspend_lo_store);
4666
4667 static ssize_t
4668 suspend_hi_show(struct mddev *mddev, char *page)
4669 {
4670         return sprintf(page, "%llu\n", (unsigned long long)mddev->suspend_hi);
4671 }
4672
4673 static ssize_t
4674 suspend_hi_store(struct mddev *mddev, const char *buf, size_t len)
4675 {
4676         unsigned long long old, new;
4677         int err;
4678
4679         err = kstrtoull(buf, 10, &new);
4680         if (err < 0)
4681                 return err;
4682         if (new != (sector_t)new)
4683                 return -EINVAL;
4684
4685         err = mddev_lock(mddev);
4686         if (err)
4687                 return err;
4688         err = -EINVAL;
4689         if (mddev->pers == NULL ||
4690             mddev->pers->quiesce == NULL)
4691                 goto unlock;
4692         old = mddev->suspend_hi;
4693         mddev->suspend_hi = new;
4694         if (new <= old)
4695                 /* Shrinking suspended region */
4696                 mddev->pers->quiesce(mddev, 2);
4697         else {
4698                 /* Expanding suspended region - need to wait */
4699                 mddev->pers->quiesce(mddev, 1);
4700                 mddev->pers->quiesce(mddev, 0);
4701         }
4702         err = 0;
4703 unlock:
4704         mddev_unlock(mddev);
4705         return err ?: len;
4706 }
4707 static struct md_sysfs_entry md_suspend_hi =
4708 __ATTR(suspend_hi, S_IRUGO|S_IWUSR, suspend_hi_show, suspend_hi_store);
4709
4710 static ssize_t
4711 reshape_position_show(struct mddev *mddev, char *page)
4712 {
4713         if (mddev->reshape_position != MaxSector)
4714                 return sprintf(page, "%llu\n",
4715                                (unsigned long long)mddev->reshape_position);
4716         strcpy(page, "none\n");
4717         return 5;
4718 }
4719
4720 static ssize_t
4721 reshape_position_store(struct mddev *mddev, const char *buf, size_t len)
4722 {
4723         struct md_rdev *rdev;
4724         unsigned long long new;
4725         int err;
4726
4727         err = kstrtoull(buf, 10, &new);
4728         if (err < 0)
4729                 return err;
4730         if (new != (sector_t)new)
4731                 return -EINVAL;
4732         err = mddev_lock(mddev);
4733         if (err)
4734                 return err;
4735         err = -EBUSY;
4736         if (mddev->pers)
4737                 goto unlock;
4738         mddev->reshape_position = new;
4739         mddev->delta_disks = 0;
4740         mddev->reshape_backwards = 0;
4741         mddev->new_level = mddev->level;
4742         mddev->new_layout = mddev->layout;
4743         mddev->new_chunk_sectors = mddev->chunk_sectors;
4744         rdev_for_each(rdev, mddev)
4745                 rdev->new_data_offset = rdev->data_offset;
4746         err = 0;
4747 unlock:
4748         mddev_unlock(mddev);
4749         return err ?: len;
4750 }
4751
4752 static struct md_sysfs_entry md_reshape_position =
4753 __ATTR(reshape_position, S_IRUGO|S_IWUSR, reshape_position_show,
4754        reshape_position_store);
4755
4756 static ssize_t
4757 reshape_direction_show(struct mddev *mddev, char *page)
4758 {
4759         return sprintf(page, "%s\n",
4760                        mddev->reshape_backwards ? "backwards" : "forwards");
4761 }
4762
4763 static ssize_t
4764 reshape_direction_store(struct mddev *mddev, const char *buf, size_t len)
4765 {
4766         int backwards = 0;
4767         int err;
4768
4769         if (cmd_match(buf, "forwards"))
4770                 backwards = 0;
4771         else if (cmd_match(buf, "backwards"))
4772                 backwards = 1;
4773         else
4774                 return -EINVAL;
4775         if (mddev->reshape_backwards == backwards)
4776                 return len;
4777
4778         err = mddev_lock(mddev);
4779         if (err)
4780                 return err;
4781         /* check if we are allowed to change */
4782         if (mddev->delta_disks)
4783                 err = -EBUSY;
4784         else if (mddev->persistent &&
4785             mddev->major_version == 0)
4786                 err =  -EINVAL;
4787         else
4788                 mddev->reshape_backwards = backwards;
4789         mddev_unlock(mddev);
4790         return err ?: len;
4791 }
4792
4793 static struct md_sysfs_entry md_reshape_direction =
4794 __ATTR(reshape_direction, S_IRUGO|S_IWUSR, reshape_direction_show,
4795        reshape_direction_store);
4796
4797 static ssize_t
4798 array_size_show(struct mddev *mddev, char *page)
4799 {
4800         if (mddev->external_size)
4801                 return sprintf(page, "%llu\n",
4802                                (unsigned long long)mddev->array_sectors/2);
4803         else
4804                 return sprintf(page, "default\n");
4805 }
4806
4807 static ssize_t
4808 array_size_store(struct mddev *mddev, const char *buf, size_t len)
4809 {
4810         sector_t sectors;
4811         int err;
4812
4813         err = mddev_lock(mddev);
4814         if (err)
4815                 return err;
4816
4817         if (strncmp(buf, "default", 7) == 0) {
4818                 if (mddev->pers)
4819                         sectors = mddev->pers->size(mddev, 0, 0);
4820                 else
4821                         sectors = mddev->array_sectors;
4822
4823                 mddev->external_size = 0;
4824         } else {
4825                 if (strict_blocks_to_sectors(buf, &sectors) < 0)
4826                         err = -EINVAL;
4827                 else if (mddev->pers && mddev->pers->size(mddev, 0, 0) < sectors)
4828                         err = -E2BIG;
4829                 else
4830                         mddev->external_size = 1;
4831         }
4832
4833         if (!err) {
4834                 mddev->array_sectors = sectors;
4835                 if (mddev->pers) {
4836                         set_capacity(mddev->gendisk, mddev->array_sectors);
4837                         revalidate_disk(mddev->gendisk);
4838                 }
4839         }
4840         mddev_unlock(mddev);
4841         return err ?: len;
4842 }
4843
4844 static struct md_sysfs_entry md_array_size =
4845 __ATTR(array_size, S_IRUGO|S_IWUSR, array_size_show,
4846        array_size_store);
4847
4848 static struct attribute *md_default_attrs[] = {
4849         &md_level.attr,
4850         &md_layout.attr,
4851         &md_raid_disks.attr,
4852         &md_chunk_size.attr,
4853         &md_size.attr,
4854         &md_resync_start.attr,
4855         &md_metadata.attr,
4856         &md_new_device.attr,
4857         &md_safe_delay.attr,
4858         &md_array_state.attr,
4859         &md_reshape_position.attr,
4860         &md_reshape_direction.attr,
4861         &md_array_size.attr,
4862         &max_corr_read_errors.attr,
4863         NULL,
4864 };
4865
4866 static struct attribute *md_redundancy_attrs[] = {
4867         &md_scan_mode.attr,
4868         &md_last_scan_mode.attr,
4869         &md_mismatches.attr,
4870         &md_sync_min.attr,
4871         &md_sync_max.attr,
4872         &md_sync_speed.attr,
4873         &md_sync_force_parallel.attr,
4874         &md_sync_completed.attr,
4875         &md_min_sync.attr,
4876         &md_max_sync.attr,
4877         &md_suspend_lo.attr,
4878         &md_suspend_hi.attr,
4879         &md_bitmap.attr,
4880         &md_degraded.attr,
4881         NULL,
4882 };
4883 static struct attribute_group md_redundancy_group = {
4884         .name = NULL,
4885         .attrs = md_redundancy_attrs,
4886 };
4887
4888 static ssize_t
4889 md_attr_show(struct kobject *kobj, struct attribute *attr, char *page)
4890 {
4891         struct md_sysfs_entry *entry = container_of(attr, struct md_sysfs_entry, attr);
4892         struct mddev *mddev = container_of(kobj, struct mddev, kobj);
4893         ssize_t rv;
4894
4895         if (!entry->show)
4896                 return -EIO;
4897         spin_lock(&all_mddevs_lock);
4898         if (list_empty(&mddev->all_mddevs)) {
4899                 spin_unlock(&all_mddevs_lock);
4900                 return -EBUSY;
4901         }
4902         mddev_get(mddev);
4903         spin_unlock(&all_mddevs_lock);
4904
4905         rv = entry->show(mddev, page);
4906         mddev_put(mddev);
4907         return rv;
4908 }
4909
4910 static ssize_t
4911 md_attr_store(struct kobject *kobj, struct attribute *attr,
4912               const char *page, size_t length)
4913 {
4914         struct md_sysfs_entry *entry = container_of(attr, struct md_sysfs_entry, attr);
4915         struct mddev *mddev = container_of(kobj, struct mddev, kobj);
4916         ssize_t rv;
4917
4918         if (!entry->store)
4919                 return -EIO;
4920         if (!capable(CAP_SYS_ADMIN))
4921                 return -EACCES;
4922         spin_lock(&all_mddevs_lock);
4923         if (list_empty(&mddev->all_mddevs)) {
4924                 spin_unlock(&all_mddevs_lock);
4925                 return -EBUSY;
4926         }
4927         mddev_get(mddev);
4928         spin_unlock(&all_mddevs_lock);
4929         rv = entry->store(mddev, page, length);
4930         mddev_put(mddev);
4931         return rv;
4932 }
4933
4934 static void md_free(struct kobject *ko)
4935 {
4936         struct mddev *mddev = container_of(ko, struct mddev, kobj);
4937
4938         if (mddev->sysfs_state)
4939                 sysfs_put(mddev->sysfs_state);
4940
4941         if (mddev->queue)
4942                 blk_cleanup_queue(mddev->queue);
4943         if (mddev->gendisk) {
4944                 del_gendisk(mddev->gendisk);
4945                 put_disk(mddev->gendisk);
4946         }
4947
4948         kfree(mddev);
4949 }
4950
4951 static const struct sysfs_ops md_sysfs_ops = {
4952         .show   = md_attr_show,
4953         .store  = md_attr_store,
4954 };
4955 static struct kobj_type md_ktype = {
4956         .release        = md_free,
4957         .sysfs_ops      = &md_sysfs_ops,
4958         .default_attrs  = md_default_attrs,
4959 };
4960
4961 int mdp_major = 0;
4962
4963 static void mddev_delayed_delete(struct work_struct *ws)
4964 {
4965         struct mddev *mddev = container_of(ws, struct mddev, del_work);
4966
4967         sysfs_remove_group(&mddev->kobj, &md_bitmap_group);
4968         kobject_del(&mddev->kobj);
4969         kobject_put(&mddev->kobj);
4970 }
4971
4972 static int md_alloc(dev_t dev, char *name)
4973 {
4974         static DEFINE_MUTEX(disks_mutex);
4975         struct mddev *mddev = mddev_find(dev);
4976         struct gendisk *disk;
4977         int partitioned;
4978         int shift;
4979         int unit;
4980         int error;
4981
4982         if (!mddev)
4983                 return -ENODEV;
4984
4985         partitioned = (MAJOR(mddev->unit) != MD_MAJOR);
4986         shift = partitioned ? MdpMinorShift : 0;
4987         unit = MINOR(mddev->unit) >> shift;
4988
4989         /* wait for any previous instance of this device to be
4990          * completely removed (mddev_delayed_delete).
4991          */
4992         flush_workqueue(md_misc_wq);
4993
4994         mutex_lock(&disks_mutex);
4995         error = -EEXIST;
4996         if (mddev->gendisk)
4997                 goto abort;
4998
4999         if (name) {
5000                 /* Need to ensure that 'name' is not a duplicate.
5001                  */
5002                 struct mddev *mddev2;
5003                 spin_lock(&all_mddevs_lock);
5004
5005                 list_for_each_entry(mddev2, &all_mddevs, all_mddevs)
5006                         if (mddev2->gendisk &&
5007                             strcmp(mddev2->gendisk->disk_name, name) == 0) {
5008                                 spin_unlock(&all_mddevs_lock);
5009                                 goto abort;
5010                         }
5011                 spin_unlock(&all_mddevs_lock);
5012         }
5013
5014         error = -ENOMEM;
5015         mddev->queue = blk_alloc_queue(GFP_KERNEL);
5016         if (!mddev->queue)
5017                 goto abort;
5018         mddev->queue->queuedata = mddev;
5019
5020         blk_queue_make_request(mddev->queue, md_make_request);
5021         blk_set_stacking_limits(&mddev->queue->limits);
5022
5023         disk = alloc_disk(1 << shift);
5024         if (!disk) {
5025                 blk_cleanup_queue(mddev->queue);
5026                 mddev->queue = NULL;
5027                 goto abort;
5028         }
5029         disk->major = MAJOR(mddev->unit);
5030         disk->first_minor = unit << shift;
5031         if (name)
5032                 strcpy(disk->disk_name, name);
5033         else if (partitioned)
5034                 sprintf(disk->disk_name, "md_d%d", unit);
5035         else
5036                 sprintf(disk->disk_name, "md%d", unit);
5037         disk->fops = &md_fops;
5038         disk->private_data = mddev;
5039         disk->queue = mddev->queue;
5040         blk_queue_flush(mddev->queue, REQ_FLUSH | REQ_FUA);
5041         /* Allow extended partitions.  This makes the
5042          * 'mdp' device redundant, but we can't really
5043          * remove it now.
5044          */
5045         disk->flags |= GENHD_FL_EXT_DEVT;
5046         mddev->gendisk = disk;
5047         /* As soon as we call add_disk(), another thread could get
5048          * through to md_open, so make sure it doesn't get too far
5049          */
5050         mutex_lock(&mddev->open_mutex);
5051         add_disk(disk);
5052
5053         error = kobject_init_and_add(&mddev->kobj, &md_ktype,
5054                                      &disk_to_dev(disk)->kobj, "%s", "md");
5055         if (error) {
5056                 /* This isn't possible, but as kobject_init_and_add is marked
5057                  * __must_check, we must do something with the result
5058                  */
5059                 printk(KERN_WARNING "md: cannot register %s/md - name in use\n",
5060                        disk->disk_name);
5061                 error = 0;
5062         }
5063         if (mddev->kobj.sd &&
5064             sysfs_create_group(&mddev->kobj, &md_bitmap_group))
5065                 printk(KERN_DEBUG "pointless warning\n");
5066         mutex_unlock(&mddev->open_mutex);
5067  abort:
5068         mutex_unlock(&disks_mutex);
5069         if (!error && mddev->kobj.sd) {
5070                 kobject_uevent(&mddev->kobj, KOBJ_ADD);
5071                 mddev->sysfs_state = sysfs_get_dirent_safe(mddev->kobj.sd, "array_state");
5072         }
5073         mddev_put(mddev);
5074         return error;
5075 }
5076
5077 static struct kobject *md_probe(dev_t dev, int *part, void *data)
5078 {
5079         md_alloc(dev, NULL);
5080         return NULL;
5081 }
5082
5083 static int add_named_array(const char *val, struct kernel_param *kp)
5084 {
5085         /* val must be "md_*" where * is not all digits.
5086          * We allocate an array with a large free minor number, and
5087          * set the name to val.  val must not already be an active name.
5088          */
5089         int len = strlen(val);
5090         char buf[DISK_NAME_LEN];
5091
5092         while (len && val[len-1] == '\n')
5093                 len--;
5094         if (len >= DISK_NAME_LEN)
5095                 return -E2BIG;
5096         strlcpy(buf, val, len+1);
5097         if (strncmp(buf, "md_", 3) != 0)
5098                 return -EINVAL;
5099         return md_alloc(0, buf);
5100 }
5101
5102 static void md_safemode_timeout(unsigned long data)
5103 {
5104         struct mddev *mddev = (struct mddev *) data;
5105
5106         if (!atomic_read(&mddev->writes_pending)) {
5107                 mddev->safemode = 1;
5108                 if (mddev->external)
5109                         sysfs_notify_dirent_safe(mddev->sysfs_state);
5110         }
5111         md_wakeup_thread(mddev->thread);
5112 }
5113
5114 static int start_dirty_degraded;
5115
5116 int md_run(struct mddev *mddev)
5117 {
5118         int err;
5119         struct md_rdev *rdev;
5120         struct md_personality *pers;
5121
5122         if (list_empty(&mddev->disks))
5123                 /* cannot run an array with no devices.. */
5124                 return -EINVAL;
5125
5126         if (mddev->pers)
5127                 return -EBUSY;
5128         /* Cannot run until previous stop completes properly */
5129         if (mddev->sysfs_active)
5130                 return -EBUSY;
5131
5132         /*
5133          * Analyze all RAID superblock(s)
5134          */
5135         if (!mddev->raid_disks) {
5136                 if (!mddev->persistent)
5137                         return -EINVAL;
5138                 analyze_sbs(mddev);
5139         }
5140
5141         if (mddev->level != LEVEL_NONE)
5142                 request_module("md-level-%d", mddev->level);
5143         else if (mddev->clevel[0])
5144                 request_module("md-%s", mddev->clevel);
5145
5146         /*
5147          * Drop all container device buffers, from now on
5148          * the only valid external interface is through the md
5149          * device.
5150          */
5151         rdev_for_each(rdev, mddev) {
5152                 if (test_bit(Faulty, &rdev->flags))
5153                         continue;
5154                 sync_blockdev(rdev->bdev);
5155                 invalidate_bdev(rdev->bdev);
5156
5157                 /* perform some consistency tests on the device.
5158                  * We don't want the data to overlap the metadata,
5159                  * Internal Bitmap issues have been handled elsewhere.
5160                  */
5161                 if (rdev->meta_bdev) {
5162                         /* Nothing to check */;
5163                 } else if (rdev->data_offset < rdev->sb_start) {
5164                         if (mddev->dev_sectors &&
5165                             rdev->data_offset + mddev->dev_sectors
5166                             > rdev->sb_start) {
5167                                 printk("md: %s: data overlaps metadata\n",
5168                                        mdname(mddev));
5169                                 return -EINVAL;
5170                         }
5171                 } else {
5172                         if (rdev->sb_start + rdev->sb_size/512
5173                             > rdev->data_offset) {
5174                                 printk("md: %s: metadata overlaps data\n",
5175                                        mdname(mddev));
5176                                 return -EINVAL;
5177                         }
5178                 }
5179                 sysfs_notify_dirent_safe(rdev->sysfs_state);
5180         }
5181
5182         if (mddev->bio_set == NULL)
5183                 mddev->bio_set = bioset_create(BIO_POOL_SIZE, 0);
5184
5185         spin_lock(&pers_lock);
5186         pers = find_pers(mddev->level, mddev->clevel);
5187         if (!pers || !try_module_get(pers->owner)) {
5188                 spin_unlock(&pers_lock);
5189                 if (mddev->level != LEVEL_NONE)
5190                         printk(KERN_WARNING "md: personality for level %d is not loaded!\n",
5191                                mddev->level);
5192                 else
5193                         printk(KERN_WARNING "md: personality for level %s is not loaded!\n",
5194                                mddev->clevel);
5195                 return -EINVAL;
5196         }
5197         spin_unlock(&pers_lock);
5198         if (mddev->level != pers->level) {
5199                 mddev->level = pers->level;
5200                 mddev->new_level = pers->level;
5201         }
5202         strlcpy(mddev->clevel, pers->name, sizeof(mddev->clevel));
5203
5204         if (mddev->reshape_position != MaxSector &&
5205             pers->start_reshape == NULL) {
5206                 /* This personality cannot handle reshaping... */
5207                 module_put(pers->owner);
5208                 return -EINVAL;
5209         }
5210
5211         if (pers->sync_request) {
5212                 /* Warn if this is a potentially silly
5213                  * configuration.
5214                  */
5215                 char b[BDEVNAME_SIZE], b2[BDEVNAME_SIZE];
5216                 struct md_rdev *rdev2;
5217                 int warned = 0;
5218
5219                 rdev_for_each(rdev, mddev)
5220                         rdev_for_each(rdev2, mddev) {
5221                                 if (rdev < rdev2 &&
5222                                     rdev->bdev->bd_contains ==
5223                                     rdev2->bdev->bd_contains) {
5224                                         printk(KERN_WARNING
5225                                                "%s: WARNING: %s appears to be"
5226                                                " on the same physical disk as"
5227                                                " %s.\n",
5228                                                mdname(mddev),
5229                                                bdevname(rdev->bdev,b),
5230                                                bdevname(rdev2->bdev,b2));
5231                                         warned = 1;
5232                                 }
5233                         }
5234
5235                 if (warned)
5236                         printk(KERN_WARNING
5237                                "True protection against single-disk"
5238                                " failure might be compromised.\n");
5239         }
5240
5241         mddev->recovery = 0;
5242         /* may be over-ridden by personality */
5243         mddev->resync_max_sectors = mddev->dev_sectors;
5244
5245         mddev->ok_start_degraded = start_dirty_degraded;
5246
5247         if (start_readonly && mddev->ro == 0)
5248                 mddev->ro = 2; /* read-only, but switch on first write */
5249
5250         err = pers->run(mddev);
5251         if (err)
5252                 printk(KERN_ERR "md: pers->run() failed ...\n");
5253         else if (pers->size(mddev, 0, 0) < mddev->array_sectors) {
5254                 WARN_ONCE(!mddev->external_size, "%s: default size too small,"
5255                           " but 'external_size' not in effect?\n", __func__);
5256                 printk(KERN_ERR
5257                        "md: invalid array_size %llu > default size %llu\n",
5258                        (unsigned long long)mddev->array_sectors / 2,
5259                        (unsigned long long)pers->size(mddev, 0, 0) / 2);
5260                 err = -EINVAL;
5261         }
5262         if (err == 0 && pers->sync_request &&
5263             (mddev->bitmap_info.file || mddev->bitmap_info.offset)) {
5264                 struct bitmap *bitmap;
5265
5266                 bitmap = bitmap_create(mddev, -1);
5267                 if (IS_ERR(bitmap)) {
5268                         err = PTR_ERR(bitmap);
5269                         printk(KERN_ERR "%s: failed to create bitmap (%d)\n",
5270                                mdname(mddev), err);
5271                 } else
5272                         mddev->bitmap = bitmap;
5273
5274         }
5275         if (err) {
5276                 mddev_detach(mddev);
5277                 if (mddev->private)
5278                         pers->free(mddev, mddev->private);
5279                 mddev->private = NULL;
5280                 module_put(pers->owner);
5281                 bitmap_destroy(mddev);
5282                 return err;
5283         }
5284         if (mddev->queue) {
5285                 mddev->queue->backing_dev_info.congested_data = mddev;
5286                 mddev->queue->backing_dev_info.congested_fn = md_congested;
5287         }
5288         if (pers->sync_request) {
5289                 if (mddev->kobj.sd &&
5290                     sysfs_create_group(&mddev->kobj, &md_redundancy_group))
5291                         printk(KERN_WARNING
5292                                "md: cannot register extra attributes for %s\n",
5293                                mdname(mddev));
5294                 mddev->sysfs_action = sysfs_get_dirent_safe(mddev->kobj.sd, "sync_action");
5295         } else if (mddev->ro == 2) /* auto-readonly not meaningful */
5296                 mddev->ro = 0;
5297
5298         atomic_set(&mddev->writes_pending,0);
5299         atomic_set(&mddev->max_corr_read_errors,
5300                    MD_DEFAULT_MAX_CORRECTED_READ_ERRORS);
5301         mddev->safemode = 0;
5302         if (mddev_is_clustered(mddev))
5303                 mddev->safemode_delay = 0;
5304         else
5305                 mddev->safemode_delay = (200 * HZ)/1000 +1; /* 200 msec delay */
5306         mddev->in_sync = 1;
5307         smp_wmb();
5308         spin_lock(&mddev->lock);
5309         mddev->pers = pers;
5310         spin_unlock(&mddev->lock);
5311         rdev_for_each(rdev, mddev)
5312                 if (rdev->raid_disk >= 0)
5313                         if (sysfs_link_rdev(mddev, rdev))
5314                                 /* failure here is OK */;
5315
5316         if (mddev->degraded && !mddev->ro)
5317                 /* This ensures that recovering status is reported immediately
5318                  * via sysfs - until a lack of spares is confirmed.
5319                  */
5320                 set_bit(MD_RECOVERY_RECOVER, &mddev->recovery);
5321         set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
5322
5323         if (mddev->flags & MD_UPDATE_SB_FLAGS)
5324                 md_update_sb(mddev, 0);
5325
5326         md_new_event(mddev);
5327         sysfs_notify_dirent_safe(mddev->sysfs_state);
5328         sysfs_notify_dirent_safe(mddev->sysfs_action);
5329         sysfs_notify(&mddev->kobj, NULL, "degraded");
5330         return 0;
5331 }
5332 EXPORT_SYMBOL_GPL(md_run);
5333
5334 static int do_md_run(struct mddev *mddev)
5335 {
5336         int err;
5337
5338         err = md_run(mddev);
5339         if (err)
5340                 goto out;
5341         err = bitmap_load(mddev);
5342         if (err) {
5343                 bitmap_destroy(mddev);
5344                 goto out;
5345         }
5346
5347         if (mddev_is_clustered(mddev))
5348                 md_allow_write(mddev);
5349
5350         md_wakeup_thread(mddev->thread);
5351         md_wakeup_thread(mddev->sync_thread); /* possibly kick off a reshape */
5352
5353         set_capacity(mddev->gendisk, mddev->array_sectors);
5354         revalidate_disk(mddev->gendisk);
5355         mddev->changed = 1;
5356         kobject_uevent(&disk_to_dev(mddev->gendisk)->kobj, KOBJ_CHANGE);
5357 out:
5358         return err;
5359 }
5360
5361 static int restart_array(struct mddev *mddev)
5362 {
5363         struct gendisk *disk = mddev->gendisk;
5364
5365         /* Complain if it has no devices */
5366         if (list_empty(&mddev->disks))
5367                 return -ENXIO;
5368         if (!mddev->pers)
5369                 return -EINVAL;
5370         if (!mddev->ro)
5371                 return -EBUSY;
5372         if (test_bit(MD_HAS_JOURNAL, &mddev->flags)) {
5373                 struct md_rdev *rdev;
5374                 bool has_journal = false;
5375
5376                 rcu_read_lock();
5377                 rdev_for_each_rcu(rdev, mddev) {
5378                         if (test_bit(Journal, &rdev->flags) &&
5379                             !test_bit(Faulty, &rdev->flags)) {
5380                                 has_journal = true;
5381                                 break;
5382                         }
5383                 }
5384                 rcu_read_unlock();
5385
5386                 /* Don't restart rw with journal missing/faulty */
5387                 if (!has_journal)
5388                         return -EINVAL;
5389         }
5390
5391         mddev->safemode = 0;
5392         mddev->ro = 0;
5393         set_disk_ro(disk, 0);
5394         printk(KERN_INFO "md: %s switched to read-write mode.\n",
5395                 mdname(mddev));
5396         /* Kick recovery or resync if necessary */
5397         set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
5398         md_wakeup_thread(mddev->thread);
5399         md_wakeup_thread(mddev->sync_thread);
5400         sysfs_notify_dirent_safe(mddev->sysfs_state);
5401         return 0;
5402 }
5403
5404 static void md_clean(struct mddev *mddev)
5405 {
5406         mddev->array_sectors = 0;
5407         mddev->external_size = 0;
5408         mddev->dev_sectors = 0;
5409         mddev->raid_disks = 0;
5410         mddev->recovery_cp = 0;
5411         mddev->resync_min = 0;
5412         mddev->resync_max = MaxSector;
5413         mddev->reshape_position = MaxSector;
5414         mddev->external = 0;
5415         mddev->persistent = 0;
5416         mddev->level = LEVEL_NONE;
5417         mddev->clevel[0] = 0;
5418         mddev->flags = 0;
5419         mddev->ro = 0;
5420         mddev->metadata_type[0] = 0;
5421         mddev->chunk_sectors = 0;
5422         mddev->ctime = mddev->utime = 0;
5423         mddev->layout = 0;
5424         mddev->max_disks = 0;
5425         mddev->events = 0;
5426         mddev->can_decrease_events = 0;
5427         mddev->delta_disks = 0;
5428         mddev->reshape_backwards = 0;
5429         mddev->new_level = LEVEL_NONE;
5430         mddev->new_layout = 0;
5431         mddev->new_chunk_sectors = 0;
5432         mddev->curr_resync = 0;
5433         atomic64_set(&mddev->resync_mismatches, 0);
5434         mddev->suspend_lo = mddev->suspend_hi = 0;
5435         mddev->sync_speed_min = mddev->sync_speed_max = 0;
5436         mddev->recovery = 0;
5437         mddev->in_sync = 0;
5438         mddev->changed = 0;
5439         mddev->degraded = 0;
5440         mddev->safemode = 0;
5441         mddev->private = NULL;
5442         mddev->bitmap_info.offset = 0;
5443         mddev->bitmap_info.default_offset = 0;
5444         mddev->bitmap_info.default_space = 0;
5445         mddev->bitmap_info.chunksize = 0;
5446         mddev->bitmap_info.daemon_sleep = 0;
5447         mddev->bitmap_info.max_write_behind = 0;
5448 }
5449
5450 static void __md_stop_writes(struct mddev *mddev)
5451 {
5452         set_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
5453         flush_workqueue(md_misc_wq);
5454         if (mddev->sync_thread) {
5455                 set_bit(MD_RECOVERY_INTR, &mddev->recovery);
5456                 md_reap_sync_thread(mddev);
5457         }
5458
5459         del_timer_sync(&mddev->safemode_timer);
5460
5461         bitmap_flush(mddev);
5462         md_super_wait(mddev);
5463
5464         if (mddev->ro == 0 &&
5465             ((!mddev->in_sync && !mddev_is_clustered(mddev)) ||
5466              (mddev->flags & MD_UPDATE_SB_FLAGS))) {
5467                 /* mark array as shutdown cleanly */
5468                 if (!mddev_is_clustered(mddev))
5469                         mddev->in_sync = 1;
5470                 md_update_sb(mddev, 1);
5471         }
5472 }
5473
5474 void md_stop_writes(struct mddev *mddev)
5475 {
5476         mddev_lock_nointr(mddev);
5477         __md_stop_writes(mddev);
5478         mddev_unlock(mddev);
5479 }
5480 EXPORT_SYMBOL_GPL(md_stop_writes);
5481
5482 static void mddev_detach(struct mddev *mddev)
5483 {
5484         struct bitmap *bitmap = mddev->bitmap;
5485         /* wait for behind writes to complete */
5486         if (bitmap && atomic_read(&bitmap->behind_writes) > 0) {
5487                 printk(KERN_INFO "md:%s: behind writes in progress - waiting to stop.\n",
5488                        mdname(mddev));
5489                 /* need to kick something here to make sure I/O goes? */
5490                 wait_event(bitmap->behind_wait,
5491                            atomic_read(&bitmap->behind_writes) == 0);
5492         }
5493         if (mddev->pers && mddev->pers->quiesce) {
5494                 mddev->pers->quiesce(mddev, 1);
5495                 mddev->pers->quiesce(mddev, 0);
5496         }
5497         md_unregister_thread(&mddev->thread);
5498         if (mddev->queue)
5499                 blk_sync_queue(mddev->queue); /* the unplug fn references 'conf'*/
5500 }
5501
5502 static void __md_stop(struct mddev *mddev)
5503 {
5504         struct md_personality *pers = mddev->pers;
5505         mddev_detach(mddev);
5506         /* Ensure ->event_work is done */
5507         flush_workqueue(md_misc_wq);
5508         spin_lock(&mddev->lock);
5509         mddev->pers = NULL;
5510         spin_unlock(&mddev->lock);
5511         pers->free(mddev, mddev->private);
5512         mddev->private = NULL;
5513         if (pers->sync_request && mddev->to_remove == NULL)
5514                 mddev->to_remove = &md_redundancy_group;
5515         module_put(pers->owner);
5516         clear_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
5517 }
5518
5519 void md_stop(struct mddev *mddev)
5520 {
5521         /* stop the array and free an attached data structures.
5522          * This is called from dm-raid
5523          */
5524         __md_stop(mddev);
5525         bitmap_destroy(mddev);
5526         if (mddev->bio_set)
5527                 bioset_free(mddev->bio_set);
5528 }
5529
5530 EXPORT_SYMBOL_GPL(md_stop);
5531
5532 static int md_set_readonly(struct mddev *mddev, struct block_device *bdev)
5533 {
5534         int err = 0;
5535         int did_freeze = 0;
5536
5537         if (!test_bit(MD_RECOVERY_FROZEN, &mddev->recovery)) {
5538                 did_freeze = 1;
5539                 set_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
5540                 md_wakeup_thread(mddev->thread);
5541         }
5542         if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery))
5543                 set_bit(MD_RECOVERY_INTR, &mddev->recovery);
5544         if (mddev->sync_thread)
5545                 /* Thread might be blocked waiting for metadata update
5546                  * which will now never happen */
5547                 wake_up_process(mddev->sync_thread->tsk);
5548
5549         if (mddev->external && test_bit(MD_CHANGE_PENDING, &mddev->flags))
5550                 return -EBUSY;
5551         mddev_unlock(mddev);
5552         wait_event(resync_wait, !test_bit(MD_RECOVERY_RUNNING,
5553                                           &mddev->recovery));
5554         wait_event(mddev->sb_wait,
5555                    !test_bit(MD_CHANGE_PENDING, &mddev->flags));
5556         mddev_lock_nointr(mddev);
5557
5558         mutex_lock(&mddev->open_mutex);
5559         if ((mddev->pers && atomic_read(&mddev->openers) > !!bdev) ||
5560             mddev->sync_thread ||
5561             test_bit(MD_RECOVERY_RUNNING, &mddev->recovery) ||
5562             (bdev && !test_bit(MD_STILL_CLOSED, &mddev->flags))) {
5563                 printk("md: %s still in use.\n",mdname(mddev));
5564                 if (did_freeze) {
5565                         clear_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
5566                         set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
5567                         md_wakeup_thread(mddev->thread);
5568                 }
5569                 err = -EBUSY;
5570                 goto out;
5571         }
5572         if (mddev->pers) {
5573                 __md_stop_writes(mddev);
5574
5575                 err  = -ENXIO;
5576                 if (mddev->ro==1)
5577                         goto out;
5578                 mddev->ro = 1;
5579                 set_disk_ro(mddev->gendisk, 1);
5580                 clear_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
5581                 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
5582                 md_wakeup_thread(mddev->thread);
5583                 sysfs_notify_dirent_safe(mddev->sysfs_state);
5584                 err = 0;
5585         }
5586 out:
5587         mutex_unlock(&mddev->open_mutex);
5588         return err;
5589 }
5590
5591 /* mode:
5592  *   0 - completely stop and dis-assemble array
5593  *   2 - stop but do not disassemble array
5594  */
5595 static int do_md_stop(struct mddev *mddev, int mode,
5596                       struct block_device *bdev)
5597 {
5598         struct gendisk *disk = mddev->gendisk;
5599         struct md_rdev *rdev;
5600         int did_freeze = 0;
5601
5602         if (!test_bit(MD_RECOVERY_FROZEN, &mddev->recovery)) {
5603                 did_freeze = 1;
5604                 set_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
5605                 md_wakeup_thread(mddev->thread);
5606         }
5607         if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery))
5608                 set_bit(MD_RECOVERY_INTR, &mddev->recovery);
5609         if (mddev->sync_thread)
5610                 /* Thread might be blocked waiting for metadata update
5611                  * which will now never happen */
5612                 wake_up_process(mddev->sync_thread->tsk);
5613
5614         mddev_unlock(mddev);
5615         wait_event(resync_wait, (mddev->sync_thread == NULL &&
5616                                  !test_bit(MD_RECOVERY_RUNNING,
5617                                            &mddev->recovery)));
5618         mddev_lock_nointr(mddev);
5619
5620         mutex_lock(&mddev->open_mutex);
5621         if ((mddev->pers && atomic_read(&mddev->openers) > !!bdev) ||
5622             mddev->sysfs_active ||
5623             mddev->sync_thread ||
5624             test_bit(MD_RECOVERY_RUNNING, &mddev->recovery) ||
5625             (bdev && !test_bit(MD_STILL_CLOSED, &mddev->flags))) {
5626                 printk("md: %s still in use.\n",mdname(mddev));
5627                 mutex_unlock(&mddev->open_mutex);
5628                 if (did_freeze) {
5629                         clear_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
5630                         set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
5631                         md_wakeup_thread(mddev->thread);
5632                 }
5633                 return -EBUSY;
5634         }
5635         if (mddev->pers) {
5636                 if (mddev->ro)
5637                         set_disk_ro(disk, 0);
5638
5639                 __md_stop_writes(mddev);
5640                 __md_stop(mddev);
5641                 mddev->queue->backing_dev_info.congested_fn = NULL;
5642
5643                 /* tell userspace to handle 'inactive' */
5644                 sysfs_notify_dirent_safe(mddev->sysfs_state);
5645
5646                 rdev_for_each(rdev, mddev)
5647                         if (rdev->raid_disk >= 0)
5648                                 sysfs_unlink_rdev(mddev, rdev);
5649
5650                 set_capacity(disk, 0);
5651                 mutex_unlock(&mddev->open_mutex);
5652                 mddev->changed = 1;
5653                 revalidate_disk(disk);
5654
5655                 if (mddev->ro)
5656                         mddev->ro = 0;
5657         } else
5658                 mutex_unlock(&mddev->open_mutex);
5659         /*
5660          * Free resources if final stop
5661          */
5662         if (mode == 0) {
5663                 printk(KERN_INFO "md: %s stopped.\n", mdname(mddev));
5664
5665                 bitmap_destroy(mddev);
5666                 if (mddev->bitmap_info.file) {
5667                         struct file *f = mddev->bitmap_info.file;
5668                         spin_lock(&mddev->lock);
5669                         mddev->bitmap_info.file = NULL;
5670                         spin_unlock(&mddev->lock);
5671                         fput(f);
5672                 }
5673                 mddev->bitmap_info.offset = 0;
5674
5675                 export_array(mddev);
5676
5677                 md_clean(mddev);
5678                 kobject_uevent(&disk_to_dev(mddev->gendisk)->kobj, KOBJ_CHANGE);
5679                 if (mddev->hold_active == UNTIL_STOP)
5680                         mddev->hold_active = 0;
5681         }
5682         md_new_event(mddev);
5683         sysfs_notify_dirent_safe(mddev->sysfs_state);
5684         return 0;
5685 }
5686
5687 #ifndef MODULE
5688 static void autorun_array(struct mddev *mddev)
5689 {
5690         struct md_rdev *rdev;
5691         int err;
5692
5693         if (list_empty(&mddev->disks))
5694                 return;
5695
5696         printk(KERN_INFO "md: running: ");
5697
5698         rdev_for_each(rdev, mddev) {
5699                 char b[BDEVNAME_SIZE];
5700                 printk("<%s>", bdevname(rdev->bdev,b));
5701         }
5702         printk("\n");
5703
5704         err = do_md_run(mddev);
5705         if (err) {
5706                 printk(KERN_WARNING "md: do_md_run() returned %d\n", err);
5707                 do_md_stop(mddev, 0, NULL);
5708         }
5709 }
5710
5711 /*
5712  * lets try to run arrays based on all disks that have arrived
5713  * until now. (those are in pending_raid_disks)
5714  *
5715  * the method: pick the first pending disk, collect all disks with
5716  * the same UUID, remove all from the pending list and put them into
5717  * the 'same_array' list. Then order this list based on superblock
5718  * update time (freshest comes first), kick out 'old' disks and
5719  * compare superblocks. If everything's fine then run it.
5720  *
5721  * If "unit" is allocated, then bump its reference count
5722  */
5723 static void autorun_devices(int part)
5724 {
5725         struct md_rdev *rdev0, *rdev, *tmp;
5726         struct mddev *mddev;
5727         char b[BDEVNAME_SIZE];
5728
5729         printk(KERN_INFO "md: autorun ...\n");
5730         while (!list_empty(&pending_raid_disks)) {
5731                 int unit;
5732                 dev_t dev;
5733                 LIST_HEAD(candidates);
5734                 rdev0 = list_entry(pending_raid_disks.next,
5735                                          struct md_rdev, same_set);
5736
5737                 printk(KERN_INFO "md: considering %s ...\n",
5738                         bdevname(rdev0->bdev,b));
5739                 INIT_LIST_HEAD(&candidates);
5740                 rdev_for_each_list(rdev, tmp, &pending_raid_disks)
5741                         if (super_90_load(rdev, rdev0, 0) >= 0) {
5742                                 printk(KERN_INFO "md:  adding %s ...\n",
5743                                         bdevname(rdev->bdev,b));
5744                                 list_move(&rdev->same_set, &candidates);
5745                         }
5746                 /*
5747                  * now we have a set of devices, with all of them having
5748                  * mostly sane superblocks. It's time to allocate the
5749                  * mddev.
5750                  */
5751                 if (part) {
5752                         dev = MKDEV(mdp_major,
5753                                     rdev0->preferred_minor << MdpMinorShift);
5754                         unit = MINOR(dev) >> MdpMinorShift;
5755                 } else {
5756                         dev = MKDEV(MD_MAJOR, rdev0->preferred_minor);
5757                         unit = MINOR(dev);
5758                 }
5759                 if (rdev0->preferred_minor != unit) {
5760                         printk(KERN_INFO "md: unit number in %s is bad: %d\n",
5761                                bdevname(rdev0->bdev, b), rdev0->preferred_minor);
5762                         break;
5763                 }
5764
5765                 md_probe(dev, NULL, NULL);
5766                 mddev = mddev_find(dev);
5767                 if (!mddev || !mddev->gendisk) {
5768                         if (mddev)
5769                                 mddev_put(mddev);
5770                         printk(KERN_ERR
5771                                 "md: cannot allocate memory for md drive.\n");
5772                         break;
5773                 }
5774                 if (mddev_lock(mddev))
5775                         printk(KERN_WARNING "md: %s locked, cannot run\n",
5776                                mdname(mddev));
5777                 else if (mddev->raid_disks || mddev->major_version
5778                          || !list_empty(&mddev->disks)) {
5779                         printk(KERN_WARNING
5780                                 "md: %s already running, cannot run %s\n",
5781                                 mdname(mddev), bdevname(rdev0->bdev,b));
5782                         mddev_unlock(mddev);
5783                 } else {
5784                         printk(KERN_INFO "md: created %s\n", mdname(mddev));
5785                         mddev->persistent = 1;
5786                         rdev_for_each_list(rdev, tmp, &candidates) {
5787                                 list_del_init(&rdev->same_set);
5788                                 if (bind_rdev_to_array(rdev, mddev))
5789                                         export_rdev(rdev);
5790                         }
5791                         autorun_array(mddev);
5792                         mddev_unlock(mddev);
5793                 }
5794                 /* on success, candidates will be empty, on error
5795                  * it won't...
5796                  */
5797                 rdev_for_each_list(rdev, tmp, &candidates) {
5798                         list_del_init(&rdev->same_set);
5799                         export_rdev(rdev);
5800                 }
5801                 mddev_put(mddev);
5802         }
5803         printk(KERN_INFO "md: ... autorun DONE.\n");
5804 }
5805 #endif /* !MODULE */
5806
5807 static int get_version(void __user *arg)
5808 {
5809         mdu_version_t ver;
5810
5811         ver.major = MD_MAJOR_VERSION;
5812         ver.minor = MD_MINOR_VERSION;
5813         ver.patchlevel = MD_PATCHLEVEL_VERSION;
5814
5815         if (copy_to_user(arg, &ver, sizeof(ver)))
5816                 return -EFAULT;
5817
5818         return 0;
5819 }
5820
5821 static int get_array_info(struct mddev *mddev, void __user *arg)
5822 {
5823         mdu_array_info_t info;
5824         int nr,working,insync,failed,spare;
5825         struct md_rdev *rdev;
5826
5827         nr = working = insync = failed = spare = 0;
5828         rcu_read_lock();
5829         rdev_for_each_rcu(rdev, mddev) {
5830                 nr++;
5831                 if (test_bit(Faulty, &rdev->flags))
5832                         failed++;
5833                 else {
5834                         working++;
5835                         if (test_bit(In_sync, &rdev->flags))
5836                                 insync++;
5837                         else
5838                                 spare++;
5839                 }
5840         }
5841         rcu_read_unlock();
5842
5843         info.major_version = mddev->major_version;
5844         info.minor_version = mddev->minor_version;
5845         info.patch_version = MD_PATCHLEVEL_VERSION;
5846         info.ctime         = clamp_t(time64_t, mddev->ctime, 0, U32_MAX);
5847         info.level         = mddev->level;
5848         info.size          = mddev->dev_sectors / 2;
5849         if (info.size != mddev->dev_sectors / 2) /* overflow */
5850                 info.size = -1;
5851         info.nr_disks      = nr;
5852         info.raid_disks    = mddev->raid_disks;
5853         info.md_minor      = mddev->md_minor;
5854         info.not_persistent= !mddev->persistent;
5855
5856         info.utime         = clamp_t(time64_t, mddev->utime, 0, U32_MAX);
5857         info.state         = 0;
5858         if (mddev->in_sync)
5859                 info.state = (1<<MD_SB_CLEAN);
5860         if (mddev->bitmap && mddev->bitmap_info.offset)
5861                 info.state |= (1<<MD_SB_BITMAP_PRESENT);
5862         if (mddev_is_clustered(mddev))
5863                 info.state |= (1<<MD_SB_CLUSTERED);
5864         info.active_disks  = insync;
5865         info.working_disks = working;
5866         info.failed_disks  = failed;
5867         info.spare_disks   = spare;
5868
5869         info.layout        = mddev->layout;
5870         info.chunk_size    = mddev->chunk_sectors << 9;
5871
5872         if (copy_to_user(arg, &info, sizeof(info)))
5873                 return -EFAULT;
5874
5875         return 0;
5876 }
5877
5878 static int get_bitmap_file(struct mddev *mddev, void __user * arg)
5879 {
5880         mdu_bitmap_file_t *file = NULL; /* too big for stack allocation */
5881         char *ptr;
5882         int err;
5883
5884         file = kzalloc(sizeof(*file), GFP_NOIO);
5885         if (!file)
5886                 return -ENOMEM;
5887
5888         err = 0;
5889         spin_lock(&mddev->lock);
5890         /* bitmap enabled */
5891         if (mddev->bitmap_info.file) {
5892                 ptr = file_path(mddev->bitmap_info.file, file->pathname,
5893                                 sizeof(file->pathname));
5894                 if (IS_ERR(ptr))
5895                         err = PTR_ERR(ptr);
5896                 else
5897                         memmove(file->pathname, ptr,
5898                                 sizeof(file->pathname)-(ptr-file->pathname));
5899         }
5900         spin_unlock(&mddev->lock);
5901
5902         if (err == 0 &&
5903             copy_to_user(arg, file, sizeof(*file)))
5904                 err = -EFAULT;
5905
5906         kfree(file);
5907         return err;
5908 }
5909
5910 static int get_disk_info(struct mddev *mddev, void __user * arg)
5911 {
5912         mdu_disk_info_t info;
5913         struct md_rdev *rdev;
5914
5915         if (copy_from_user(&info, arg, sizeof(info)))
5916                 return -EFAULT;
5917
5918         rcu_read_lock();
5919         rdev = md_find_rdev_nr_rcu(mddev, info.number);
5920         if (rdev) {
5921                 info.major = MAJOR(rdev->bdev->bd_dev);
5922                 info.minor = MINOR(rdev->bdev->bd_dev);
5923                 info.raid_disk = rdev->raid_disk;
5924                 info.state = 0;
5925                 if (test_bit(Faulty, &rdev->flags))
5926                         info.state |= (1<<MD_DISK_FAULTY);
5927                 else if (test_bit(In_sync, &rdev->flags)) {
5928                         info.state |= (1<<MD_DISK_ACTIVE);
5929                         info.state |= (1<<MD_DISK_SYNC);
5930                 }
5931                 if (test_bit(Journal, &rdev->flags))
5932                         info.state |= (1<<MD_DISK_JOURNAL);
5933                 if (test_bit(WriteMostly, &rdev->flags))
5934                         info.state |= (1<<MD_DISK_WRITEMOSTLY);
5935         } else {
5936                 info.major = info.minor = 0;
5937                 info.raid_disk = -1;
5938                 info.state = (1<<MD_DISK_REMOVED);
5939         }
5940         rcu_read_unlock();
5941
5942         if (copy_to_user(arg, &info, sizeof(info)))
5943                 return -EFAULT;
5944
5945         return 0;
5946 }
5947
5948 static int add_new_disk(struct mddev *mddev, mdu_disk_info_t *info)
5949 {
5950         char b[BDEVNAME_SIZE], b2[BDEVNAME_SIZE];
5951         struct md_rdev *rdev;
5952         dev_t dev = MKDEV(info->major,info->minor);
5953
5954         if (mddev_is_clustered(mddev) &&
5955                 !(info->state & ((1 << MD_DISK_CLUSTER_ADD) | (1 << MD_DISK_CANDIDATE)))) {
5956                 pr_err("%s: Cannot add to clustered mddev.\n",
5957                                mdname(mddev));
5958                 return -EINVAL;
5959         }
5960
5961         if (info->major != MAJOR(dev) || info->minor != MINOR(dev))
5962                 return -EOVERFLOW;
5963
5964         if (!mddev->raid_disks) {
5965                 int err;
5966                 /* expecting a device which has a superblock */
5967                 rdev = md_import_device(dev, mddev->major_version, mddev->minor_version);
5968                 if (IS_ERR(rdev)) {
5969                         printk(KERN_WARNING
5970                                 "md: md_import_device returned %ld\n",
5971                                 PTR_ERR(rdev));
5972                         return PTR_ERR(rdev);
5973                 }
5974                 if (!list_empty(&mddev->disks)) {
5975                         struct md_rdev *rdev0
5976                                 = list_entry(mddev->disks.next,
5977                                              struct md_rdev, same_set);
5978                         err = super_types[mddev->major_version]
5979                                 .load_super(rdev, rdev0, mddev->minor_version);
5980                         if (err < 0) {
5981                                 printk(KERN_WARNING
5982                                         "md: %s has different UUID to %s\n",
5983                                         bdevname(rdev->bdev,b),
5984                                         bdevname(rdev0->bdev,b2));
5985                                 export_rdev(rdev);
5986                                 return -EINVAL;
5987                         }
5988                 }
5989                 err = bind_rdev_to_array(rdev, mddev);
5990                 if (err)
5991                         export_rdev(rdev);
5992                 return err;
5993         }
5994
5995         /*
5996          * add_new_disk can be used once the array is assembled
5997          * to add "hot spares".  They must already have a superblock
5998          * written
5999          */
6000         if (mddev->pers) {
6001                 int err;
6002                 if (!mddev->pers->hot_add_disk) {
6003                         printk(KERN_WARNING
6004                                 "%s: personality does not support diskops!\n",
6005                                mdname(mddev));
6006                         return -EINVAL;
6007                 }
6008                 if (mddev->persistent)
6009                         rdev = md_import_device(dev, mddev->major_version,
6010                                                 mddev->minor_version);
6011                 else
6012                         rdev = md_import_device(dev, -1, -1);
6013                 if (IS_ERR(rdev)) {
6014                         printk(KERN_WARNING
6015                                 "md: md_import_device returned %ld\n",
6016                                 PTR_ERR(rdev));
6017                         return PTR_ERR(rdev);
6018                 }
6019                 /* set saved_raid_disk if appropriate */
6020                 if (!mddev->persistent) {
6021                         if (info->state & (1<<MD_DISK_SYNC)  &&
6022                             info->raid_disk < mddev->raid_disks) {
6023                                 rdev->raid_disk = info->raid_disk;
6024                                 set_bit(In_sync, &rdev->flags);
6025                                 clear_bit(Bitmap_sync, &rdev->flags);
6026                         } else
6027                                 rdev->raid_disk = -1;
6028                         rdev->saved_raid_disk = rdev->raid_disk;
6029                 } else
6030                         super_types[mddev->major_version].
6031                                 validate_super(mddev, rdev);
6032                 if ((info->state & (1<<MD_DISK_SYNC)) &&
6033                      rdev->raid_disk != info->raid_disk) {
6034                         /* This was a hot-add request, but events doesn't
6035                          * match, so reject it.
6036                          */
6037                         export_rdev(rdev);
6038                         return -EINVAL;
6039                 }
6040
6041                 clear_bit(In_sync, &rdev->flags); /* just to be sure */
6042                 if (info->state & (1<<MD_DISK_WRITEMOSTLY))
6043                         set_bit(WriteMostly, &rdev->flags);
6044                 else
6045                         clear_bit(WriteMostly, &rdev->flags);
6046
6047                 if (info->state & (1<<MD_DISK_JOURNAL)) {
6048                         struct md_rdev *rdev2;
6049                         bool has_journal = false;
6050
6051                         /* make sure no existing journal disk */
6052                         rdev_for_each(rdev2, mddev) {
6053                                 if (test_bit(Journal, &rdev2->flags)) {
6054                                         has_journal = true;
6055                                         break;
6056                                 }
6057                         }
6058                         if (has_journal) {
6059                                 export_rdev(rdev);
6060                                 return -EBUSY;
6061                         }
6062                         set_bit(Journal, &rdev->flags);
6063                 }
6064                 /*
6065                  * check whether the device shows up in other nodes
6066                  */
6067                 if (mddev_is_clustered(mddev)) {
6068                         if (info->state & (1 << MD_DISK_CANDIDATE))
6069                                 set_bit(Candidate, &rdev->flags);
6070                         else if (info->state & (1 << MD_DISK_CLUSTER_ADD)) {
6071                                 /* --add initiated by this node */
6072                                 err = md_cluster_ops->add_new_disk(mddev, rdev);
6073                                 if (err) {
6074                                         export_rdev(rdev);
6075                                         return err;
6076                                 }
6077                         }
6078                 }
6079
6080                 rdev->raid_disk = -1;
6081                 err = bind_rdev_to_array(rdev, mddev);
6082
6083                 if (err)
6084                         export_rdev(rdev);
6085
6086                 if (mddev_is_clustered(mddev)) {
6087                         if (info->state & (1 << MD_DISK_CANDIDATE))
6088                                 md_cluster_ops->new_disk_ack(mddev, (err == 0));
6089                         else {
6090                                 if (err)
6091                                         md_cluster_ops->add_new_disk_cancel(mddev);
6092                                 else
6093                                         err = add_bound_rdev(rdev);
6094                         }
6095
6096                 } else if (!err)
6097                         err = add_bound_rdev(rdev);
6098
6099                 return err;
6100         }
6101
6102         /* otherwise, add_new_disk is only allowed
6103          * for major_version==0 superblocks
6104          */
6105         if (mddev->major_version != 0) {
6106                 printk(KERN_WARNING "%s: ADD_NEW_DISK not supported\n",
6107                        mdname(mddev));
6108                 return -EINVAL;
6109         }
6110
6111         if (!(info->state & (1<<MD_DISK_FAULTY))) {
6112                 int err;
6113                 rdev = md_import_device(dev, -1, 0);
6114                 if (IS_ERR(rdev)) {
6115                         printk(KERN_WARNING
6116                                 "md: error, md_import_device() returned %ld\n",
6117                                 PTR_ERR(rdev));
6118                         return PTR_ERR(rdev);
6119                 }
6120                 rdev->desc_nr = info->number;
6121                 if (info->raid_disk < mddev->raid_disks)
6122                         rdev->raid_disk = info->raid_disk;
6123                 else
6124                         rdev->raid_disk = -1;
6125
6126                 if (rdev->raid_disk < mddev->raid_disks)
6127                         if (info->state & (1<<MD_DISK_SYNC))
6128                                 set_bit(In_sync, &rdev->flags);
6129
6130                 if (info->state & (1<<MD_DISK_WRITEMOSTLY))
6131                         set_bit(WriteMostly, &rdev->flags);
6132
6133                 if (!mddev->persistent) {
6134                         printk(KERN_INFO "md: nonpersistent superblock ...\n");
6135                         rdev->sb_start = i_size_read(rdev->bdev->bd_inode) / 512;
6136                 } else
6137                         rdev->sb_start = calc_dev_sboffset(rdev);
6138                 rdev->sectors = rdev->sb_start;
6139
6140                 err = bind_rdev_to_array(rdev, mddev);
6141                 if (err) {
6142                         export_rdev(rdev);
6143                         return err;
6144                 }
6145         }
6146
6147         return 0;
6148 }
6149
6150 static int hot_remove_disk(struct mddev *mddev, dev_t dev)
6151 {
6152         char b[BDEVNAME_SIZE];
6153         struct md_rdev *rdev;
6154
6155         rdev = find_rdev(mddev, dev);
6156         if (!rdev)
6157                 return -ENXIO;
6158
6159         if (rdev->raid_disk < 0)
6160                 goto kick_rdev;
6161
6162         clear_bit(Blocked, &rdev->flags);
6163         remove_and_add_spares(mddev, rdev);
6164
6165         if (rdev->raid_disk >= 0)
6166                 goto busy;
6167
6168 kick_rdev:
6169         if (mddev_is_clustered(mddev))
6170                 md_cluster_ops->remove_disk(mddev, rdev);
6171
6172         md_kick_rdev_from_array(rdev);
6173         md_update_sb(mddev, 1);
6174         md_new_event(mddev);
6175
6176         return 0;
6177 busy:
6178         printk(KERN_WARNING "md: cannot remove active disk %s from %s ...\n",
6179                 bdevname(rdev->bdev,b), mdname(mddev));
6180         return -EBUSY;
6181 }
6182
6183 static int hot_add_disk(struct mddev *mddev, dev_t dev)
6184 {
6185         char b[BDEVNAME_SIZE];
6186         int err;
6187         struct md_rdev *rdev;
6188
6189         if (!mddev->pers)
6190                 return -ENODEV;
6191
6192         if (mddev->major_version != 0) {
6193                 printk(KERN_WARNING "%s: HOT_ADD may only be used with"
6194                         " version-0 superblocks.\n",
6195                         mdname(mddev));
6196                 return -EINVAL;
6197         }
6198         if (!mddev->pers->hot_add_disk) {
6199                 printk(KERN_WARNING
6200                         "%s: personality does not support diskops!\n",
6201                         mdname(mddev));
6202                 return -EINVAL;
6203         }
6204
6205         rdev = md_import_device(dev, -1, 0);
6206         if (IS_ERR(rdev)) {
6207                 printk(KERN_WARNING
6208                         "md: error, md_import_device() returned %ld\n",
6209                         PTR_ERR(rdev));
6210                 return -EINVAL;
6211         }
6212
6213         if (mddev->persistent)
6214                 rdev->sb_start = calc_dev_sboffset(rdev);
6215         else
6216                 rdev->sb_start = i_size_read(rdev->bdev->bd_inode) / 512;
6217
6218         rdev->sectors = rdev->sb_start;
6219
6220         if (test_bit(Faulty, &rdev->flags)) {
6221                 printk(KERN_WARNING
6222                         "md: can not hot-add faulty %s disk to %s!\n",
6223                         bdevname(rdev->bdev,b), mdname(mddev));
6224                 err = -EINVAL;
6225                 goto abort_export;
6226         }
6227
6228         clear_bit(In_sync, &rdev->flags);
6229         rdev->desc_nr = -1;
6230         rdev->saved_raid_disk = -1;
6231         err = bind_rdev_to_array(rdev, mddev);
6232         if (err)
6233                 goto abort_export;
6234
6235         /*
6236          * The rest should better be atomic, we can have disk failures
6237          * noticed in interrupt contexts ...
6238          */
6239
6240         rdev->raid_disk = -1;
6241
6242         md_update_sb(mddev, 1);
6243         /*
6244          * Kick recovery, maybe this spare has to be added to the
6245          * array immediately.
6246          */
6247         set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
6248         md_wakeup_thread(mddev->thread);
6249         md_new_event(mddev);
6250         return 0;
6251
6252 abort_export:
6253         export_rdev(rdev);
6254         return err;
6255 }
6256
6257 static int set_bitmap_file(struct mddev *mddev, int fd)
6258 {
6259         int err = 0;
6260
6261         if (mddev->pers) {
6262                 if (!mddev->pers->quiesce || !mddev->thread)
6263                         return -EBUSY;
6264                 if (mddev->recovery || mddev->sync_thread)
6265                         return -EBUSY;
6266                 /* we should be able to change the bitmap.. */
6267         }
6268
6269         if (fd >= 0) {
6270                 struct inode *inode;
6271                 struct file *f;
6272
6273                 if (mddev->bitmap || mddev->bitmap_info.file)
6274                         return -EEXIST; /* cannot add when bitmap is present */
6275                 f = fget(fd);
6276
6277                 if (f == NULL) {
6278                         printk(KERN_ERR "%s: error: failed to get bitmap file\n",
6279                                mdname(mddev));
6280                         return -EBADF;
6281                 }
6282
6283                 inode = f->f_mapping->host;
6284                 if (!S_ISREG(inode->i_mode)) {
6285                         printk(KERN_ERR "%s: error: bitmap file must be a regular file\n",
6286                                mdname(mddev));
6287                         err = -EBADF;
6288                 } else if (!(f->f_mode & FMODE_WRITE)) {
6289                         printk(KERN_ERR "%s: error: bitmap file must open for write\n",
6290                                mdname(mddev));
6291                         err = -EBADF;
6292                 } else if (atomic_read(&inode->i_writecount) != 1) {
6293                         printk(KERN_ERR "%s: error: bitmap file is already in use\n",
6294                                mdname(mddev));
6295                         err = -EBUSY;
6296                 }
6297                 if (err) {
6298                         fput(f);
6299                         return err;
6300                 }
6301                 mddev->bitmap_info.file = f;
6302                 mddev->bitmap_info.offset = 0; /* file overrides offset */
6303         } else if (mddev->bitmap == NULL)
6304                 return -ENOENT; /* cannot remove what isn't there */
6305         err = 0;
6306         if (mddev->pers) {
6307                 mddev->pers->quiesce(mddev, 1);
6308                 if (fd >= 0) {
6309                         struct bitmap *bitmap;
6310
6311                         bitmap = bitmap_create(mddev, -1);
6312                         if (!IS_ERR(bitmap)) {
6313                                 mddev->bitmap = bitmap;
6314                                 err = bitmap_load(mddev);
6315                         } else
6316                                 err = PTR_ERR(bitmap);
6317                 }
6318                 if (fd < 0 || err) {
6319                         bitmap_destroy(mddev);
6320                         fd = -1; /* make sure to put the file */
6321                 }
6322                 mddev->pers->quiesce(mddev, 0);
6323         }
6324         if (fd < 0) {
6325                 struct file *f = mddev->bitmap_info.file;
6326                 if (f) {
6327                         spin_lock(&mddev->lock);
6328                         mddev->bitmap_info.file = NULL;
6329                         spin_unlock(&mddev->lock);
6330                         fput(f);
6331                 }
6332         }
6333
6334         return err;
6335 }
6336
6337 /*
6338  * set_array_info is used two different ways
6339  * The original usage is when creating a new array.
6340  * In this usage, raid_disks is > 0 and it together with
6341  *  level, size, not_persistent,layout,chunksize determine the
6342  *  shape of the array.
6343  *  This will always create an array with a type-0.90.0 superblock.
6344  * The newer usage is when assembling an array.
6345  *  In this case raid_disks will be 0, and the major_version field is
6346  *  use to determine which style super-blocks are to be found on the devices.
6347  *  The minor and patch _version numbers are also kept incase the
6348  *  super_block handler wishes to interpret them.
6349  */
6350 static int set_array_info(struct mddev *mddev, mdu_array_info_t *info)
6351 {
6352
6353         if (info->raid_disks == 0) {
6354                 /* just setting version number for superblock loading */
6355                 if (info->major_version < 0 ||
6356                     info->major_version >= ARRAY_SIZE(super_types) ||
6357                     super_types[info->major_version].name == NULL) {
6358                         /* maybe try to auto-load a module? */
6359                         printk(KERN_INFO
6360                                 "md: superblock version %d not known\n",
6361                                 info->major_version);
6362                         return -EINVAL;
6363                 }
6364                 mddev->major_version = info->major_version;
6365                 mddev->minor_version = info->minor_version;
6366                 mddev->patch_version = info->patch_version;
6367                 mddev->persistent = !info->not_persistent;
6368                 /* ensure mddev_put doesn't delete this now that there
6369                  * is some minimal configuration.
6370                  */
6371                 mddev->ctime         = ktime_get_real_seconds();
6372                 return 0;
6373         }
6374         mddev->major_version = MD_MAJOR_VERSION;
6375         mddev->minor_version = MD_MINOR_VERSION;
6376         mddev->patch_version = MD_PATCHLEVEL_VERSION;
6377         mddev->ctime         = ktime_get_real_seconds();
6378
6379         mddev->level         = info->level;
6380         mddev->clevel[0]     = 0;
6381         mddev->dev_sectors   = 2 * (sector_t)info->size;
6382         mddev->raid_disks    = info->raid_disks;
6383         /* don't set md_minor, it is determined by which /dev/md* was
6384          * openned
6385          */
6386         if (info->state & (1<<MD_SB_CLEAN))
6387                 mddev->recovery_cp = MaxSector;
6388         else
6389                 mddev->recovery_cp = 0;
6390         mddev->persistent    = ! info->not_persistent;
6391         mddev->external      = 0;
6392
6393         mddev->layout        = info->layout;
6394         mddev->chunk_sectors = info->chunk_size >> 9;
6395
6396         mddev->max_disks     = MD_SB_DISKS;
6397
6398         if (mddev->persistent)
6399                 mddev->flags         = 0;
6400         set_bit(MD_CHANGE_DEVS, &mddev->flags);
6401
6402         mddev->bitmap_info.default_offset = MD_SB_BYTES >> 9;
6403         mddev->bitmap_info.default_space = 64*2 - (MD_SB_BYTES >> 9);
6404         mddev->bitmap_info.offset = 0;
6405
6406         mddev->reshape_position = MaxSector;
6407
6408         /*
6409          * Generate a 128 bit UUID
6410          */
6411         get_random_bytes(mddev->uuid, 16);
6412
6413         mddev->new_level = mddev->level;
6414         mddev->new_chunk_sectors = mddev->chunk_sectors;
6415         mddev->new_layout = mddev->layout;
6416         mddev->delta_disks = 0;
6417         mddev->reshape_backwards = 0;
6418
6419         return 0;
6420 }
6421
6422 void md_set_array_sectors(struct mddev *mddev, sector_t array_sectors)
6423 {
6424         WARN(!mddev_is_locked(mddev), "%s: unlocked mddev!\n", __func__);
6425
6426         if (mddev->external_size)
6427                 return;
6428
6429         mddev->array_sectors = array_sectors;
6430 }
6431 EXPORT_SYMBOL(md_set_array_sectors);
6432
6433 static int update_size(struct mddev *mddev, sector_t num_sectors)
6434 {
6435         struct md_rdev *rdev;
6436         int rv;
6437         int fit = (num_sectors == 0);
6438
6439         if (mddev->pers->resize == NULL)
6440                 return -EINVAL;
6441         /* The "num_sectors" is the number of sectors of each device that
6442          * is used.  This can only make sense for arrays with redundancy.
6443          * linear and raid0 always use whatever space is available. We can only
6444          * consider changing this number if no resync or reconstruction is
6445          * happening, and if the new size is acceptable. It must fit before the
6446          * sb_start or, if that is <data_offset, it must fit before the size
6447          * of each device.  If num_sectors is zero, we find the largest size
6448          * that fits.
6449          */
6450         if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery) ||
6451             mddev->sync_thread)
6452                 return -EBUSY;
6453         if (mddev->ro)
6454                 return -EROFS;
6455
6456         rdev_for_each(rdev, mddev) {
6457                 sector_t avail = rdev->sectors;
6458
6459                 if (fit && (num_sectors == 0 || num_sectors > avail))
6460                         num_sectors = avail;
6461                 if (avail < num_sectors)
6462                         return -ENOSPC;
6463         }
6464         rv = mddev->pers->resize(mddev, num_sectors);
6465         if (!rv)
6466                 revalidate_disk(mddev->gendisk);
6467         return rv;
6468 }
6469
6470 static int update_raid_disks(struct mddev *mddev, int raid_disks)
6471 {
6472         int rv;
6473         struct md_rdev *rdev;
6474         /* change the number of raid disks */
6475         if (mddev->pers->check_reshape == NULL)
6476                 return -EINVAL;
6477         if (mddev->ro)
6478                 return -EROFS;
6479         if (raid_disks <= 0 ||
6480             (mddev->max_disks && raid_disks >= mddev->max_disks))
6481                 return -EINVAL;
6482         if (mddev->sync_thread ||
6483             test_bit(MD_RECOVERY_RUNNING, &mddev->recovery) ||
6484             mddev->reshape_position != MaxSector)
6485                 return -EBUSY;
6486
6487         rdev_for_each(rdev, mddev) {
6488                 if (mddev->raid_disks < raid_disks &&
6489                     rdev->data_offset < rdev->new_data_offset)
6490                         return -EINVAL;
6491                 if (mddev->raid_disks > raid_disks &&
6492                     rdev->data_offset > rdev->new_data_offset)
6493                         return -EINVAL;
6494         }
6495
6496         mddev->delta_disks = raid_disks - mddev->raid_disks;
6497         if (mddev->delta_disks < 0)
6498                 mddev->reshape_backwards = 1;
6499         else if (mddev->delta_disks > 0)
6500                 mddev->reshape_backwards = 0;
6501
6502         rv = mddev->pers->check_reshape(mddev);
6503         if (rv < 0) {
6504                 mddev->delta_disks = 0;
6505                 mddev->reshape_backwards = 0;
6506         }
6507         return rv;
6508 }
6509
6510 /*
6511  * update_array_info is used to change the configuration of an
6512  * on-line array.
6513  * The version, ctime,level,size,raid_disks,not_persistent, layout,chunk_size
6514  * fields in the info are checked against the array.
6515  * Any differences that cannot be handled will cause an error.
6516  * Normally, only one change can be managed at a time.
6517  */
6518 static int update_array_info(struct mddev *mddev, mdu_array_info_t *info)
6519 {
6520         int rv = 0;
6521         int cnt = 0;
6522         int state = 0;
6523
6524         /* calculate expected state,ignoring low bits */
6525         if (mddev->bitmap && mddev->bitmap_info.offset)
6526                 state |= (1 << MD_SB_BITMAP_PRESENT);
6527
6528         if (mddev->major_version != info->major_version ||
6529             mddev->minor_version != info->minor_version ||
6530 /*          mddev->patch_version != info->patch_version || */
6531             mddev->ctime         != info->ctime         ||
6532             mddev->level         != info->level         ||
6533 /*          mddev->layout        != info->layout        || */
6534             mddev->persistent    != !info->not_persistent ||
6535             mddev->chunk_sectors != info->chunk_size >> 9 ||
6536             /* ignore bottom 8 bits of state, and allow SB_BITMAP_PRESENT to change */
6537             ((state^info->state) & 0xfffffe00)
6538                 )
6539                 return -EINVAL;
6540         /* Check there is only one change */
6541         if (info->size >= 0 && mddev->dev_sectors / 2 != info->size)
6542                 cnt++;
6543         if (mddev->raid_disks != info->raid_disks)
6544                 cnt++;
6545         if (mddev->layout != info->layout)
6546                 cnt++;
6547         if ((state ^ info->state) & (1<<MD_SB_BITMAP_PRESENT))
6548                 cnt++;
6549         if (cnt == 0)
6550                 return 0;
6551         if (cnt > 1)
6552                 return -EINVAL;
6553
6554         if (mddev->layout != info->layout) {
6555                 /* Change layout
6556                  * we don't need to do anything at the md level, the
6557                  * personality will take care of it all.
6558                  */
6559                 if (mddev->pers->check_reshape == NULL)
6560                         return -EINVAL;
6561                 else {
6562                         mddev->new_layout = info->layout;
6563                         rv = mddev->pers->check_reshape(mddev);
6564                         if (rv)
6565                                 mddev->new_layout = mddev->layout;
6566                         return rv;
6567                 }
6568         }
6569         if (info->size >= 0 && mddev->dev_sectors / 2 != info->size)
6570                 rv = update_size(mddev, (sector_t)info->size * 2);
6571
6572         if (mddev->raid_disks    != info->raid_disks)
6573                 rv = update_raid_disks(mddev, info->raid_disks);
6574
6575         if ((state ^ info->state) & (1<<MD_SB_BITMAP_PRESENT)) {
6576                 if (mddev->pers->quiesce == NULL || mddev->thread == NULL) {
6577                         rv = -EINVAL;
6578                         goto err;
6579                 }
6580                 if (mddev->recovery || mddev->sync_thread) {
6581                         rv = -EBUSY;
6582                         goto err;
6583                 }
6584                 if (info->state & (1<<MD_SB_BITMAP_PRESENT)) {
6585                         struct bitmap *bitmap;
6586                         /* add the bitmap */
6587                         if (mddev->bitmap) {
6588                                 rv = -EEXIST;
6589                                 goto err;
6590                         }
6591                         if (mddev->bitmap_info.default_offset == 0) {
6592                                 rv = -EINVAL;
6593                                 goto err;
6594                         }
6595                         mddev->bitmap_info.offset =
6596                                 mddev->bitmap_info.default_offset;
6597                         mddev->bitmap_info.space =
6598                                 mddev->bitmap_info.default_space;
6599                         mddev->pers->quiesce(mddev, 1);
6600                         bitmap = bitmap_create(mddev, -1);
6601                         if (!IS_ERR(bitmap)) {
6602                                 mddev->bitmap = bitmap;
6603                                 rv = bitmap_load(mddev);
6604                         } else
6605                                 rv = PTR_ERR(bitmap);
6606                         if (rv)
6607                                 bitmap_destroy(mddev);
6608                         mddev->pers->quiesce(mddev, 0);
6609                 } else {
6610                         /* remove the bitmap */
6611                         if (!mddev->bitmap) {
6612                                 rv = -ENOENT;
6613                                 goto err;
6614                         }
6615                         if (mddev->bitmap->storage.file) {
6616                                 rv = -EINVAL;
6617                                 goto err;
6618                         }
6619                         if (mddev->bitmap_info.nodes) {
6620                                 /* hold PW on all the bitmap lock */
6621                                 if (md_cluster_ops->lock_all_bitmaps(mddev) <= 0) {
6622                                         printk("md: can't change bitmap to none since the"
6623                                                " array is in use by more than one node\n");
6624                                         rv = -EPERM;
6625                                         md_cluster_ops->unlock_all_bitmaps(mddev);
6626                                         goto err;
6627                                 }
6628
6629                                 mddev->bitmap_info.nodes = 0;
6630                                 md_cluster_ops->leave(mddev);
6631                         }
6632                         mddev->pers->quiesce(mddev, 1);
6633                         bitmap_destroy(mddev);
6634                         mddev->pers->quiesce(mddev, 0);
6635                         mddev->bitmap_info.offset = 0;
6636                 }
6637         }
6638         md_update_sb(mddev, 1);
6639         return rv;
6640 err:
6641         return rv;
6642 }
6643
6644 static int set_disk_faulty(struct mddev *mddev, dev_t dev)
6645 {
6646         struct md_rdev *rdev;
6647         int err = 0;
6648
6649         if (mddev->pers == NULL)
6650                 return -ENODEV;
6651
6652         rcu_read_lock();
6653         rdev = find_rdev_rcu(mddev, dev);
6654         if (!rdev)
6655                 err =  -ENODEV;
6656         else {
6657                 md_error(mddev, rdev);
6658                 if (!test_bit(Faulty, &rdev->flags))
6659                         err = -EBUSY;
6660         }
6661         rcu_read_unlock();
6662         return err;
6663 }
6664
6665 /*
6666  * We have a problem here : there is no easy way to give a CHS
6667  * virtual geometry. We currently pretend that we have a 2 heads
6668  * 4 sectors (with a BIG number of cylinders...). This drives
6669  * dosfs just mad... ;-)
6670  */
6671 static int md_getgeo(struct block_device *bdev, struct hd_geometry *geo)
6672 {
6673         struct mddev *mddev = bdev->bd_disk->private_data;
6674
6675         geo->heads = 2;
6676         geo->sectors = 4;
6677         geo->cylinders = mddev->array_sectors / 8;
6678         return 0;
6679 }
6680
6681 static inline bool md_ioctl_valid(unsigned int cmd)
6682 {
6683         switch (cmd) {
6684         case ADD_NEW_DISK:
6685         case BLKROSET:
6686         case GET_ARRAY_INFO:
6687         case GET_BITMAP_FILE:
6688         case GET_DISK_INFO:
6689         case HOT_ADD_DISK:
6690         case HOT_REMOVE_DISK:
6691         case RAID_AUTORUN:
6692         case RAID_VERSION:
6693         case RESTART_ARRAY_RW:
6694         case RUN_ARRAY:
6695         case SET_ARRAY_INFO:
6696         case SET_BITMAP_FILE:
6697         case SET_DISK_FAULTY:
6698         case STOP_ARRAY:
6699         case STOP_ARRAY_RO:
6700         case CLUSTERED_DISK_NACK:
6701                 return true;
6702         default:
6703                 return false;
6704         }
6705 }
6706
6707 static int md_ioctl(struct block_device *bdev, fmode_t mode,
6708                         unsigned int cmd, unsigned long arg)
6709 {
6710         int err = 0;
6711         void __user *argp = (void __user *)arg;
6712         struct mddev *mddev = NULL;
6713         int ro;
6714
6715         if (!md_ioctl_valid(cmd))
6716                 return -ENOTTY;
6717
6718         switch (cmd) {
6719         case RAID_VERSION:
6720         case GET_ARRAY_INFO:
6721         case GET_DISK_INFO:
6722                 break;
6723         default:
6724                 if (!capable(CAP_SYS_ADMIN))
6725                         return -EACCES;
6726         }
6727
6728         /*
6729          * Commands dealing with the RAID driver but not any
6730          * particular array:
6731          */
6732         switch (cmd) {
6733         case RAID_VERSION:
6734                 err = get_version(argp);
6735                 goto out;
6736
6737 #ifndef MODULE
6738         case RAID_AUTORUN:
6739                 err = 0;
6740                 autostart_arrays(arg);
6741                 goto out;
6742 #endif
6743         default:;
6744         }
6745
6746         /*
6747          * Commands creating/starting a new array:
6748          */
6749
6750         mddev = bdev->bd_disk->private_data;
6751
6752         if (!mddev) {
6753                 BUG();
6754                 goto out;
6755         }
6756
6757         /* Some actions do not requires the mutex */
6758         switch (cmd) {
6759         case GET_ARRAY_INFO:
6760                 if (!mddev->raid_disks && !mddev->external)
6761                         err = -ENODEV;
6762                 else
6763                         err = get_array_info(mddev, argp);
6764                 goto out;
6765
6766         case GET_DISK_INFO:
6767                 if (!mddev->raid_disks && !mddev->external)
6768                         err = -ENODEV;
6769                 else
6770                         err = get_disk_info(mddev, argp);
6771                 goto out;
6772
6773         case SET_DISK_FAULTY:
6774                 err = set_disk_faulty(mddev, new_decode_dev(arg));
6775                 goto out;
6776
6777         case GET_BITMAP_FILE:
6778                 err = get_bitmap_file(mddev, argp);
6779                 goto out;
6780
6781         }
6782
6783         if (cmd == ADD_NEW_DISK)
6784                 /* need to ensure md_delayed_delete() has completed */
6785                 flush_workqueue(md_misc_wq);
6786
6787         if (cmd == HOT_REMOVE_DISK)
6788                 /* need to ensure recovery thread has run */
6789                 wait_event_interruptible_timeout(mddev->sb_wait,
6790                                                  !test_bit(MD_RECOVERY_NEEDED,
6791                                                            &mddev->flags),
6792                                                  msecs_to_jiffies(5000));
6793         if (cmd == STOP_ARRAY || cmd == STOP_ARRAY_RO) {
6794                 /* Need to flush page cache, and ensure no-one else opens
6795                  * and writes
6796                  */
6797                 mutex_lock(&mddev->open_mutex);
6798                 if (mddev->pers && atomic_read(&mddev->openers) > 1) {
6799                         mutex_unlock(&mddev->open_mutex);
6800                         err = -EBUSY;
6801                         goto out;
6802                 }
6803                 set_bit(MD_STILL_CLOSED, &mddev->flags);
6804                 mutex_unlock(&mddev->open_mutex);
6805                 sync_blockdev(bdev);
6806         }
6807         err = mddev_lock(mddev);
6808         if (err) {
6809                 printk(KERN_INFO
6810                         "md: ioctl lock interrupted, reason %d, cmd %d\n",
6811                         err, cmd);
6812                 goto out;
6813         }
6814
6815         if (cmd == SET_ARRAY_INFO) {
6816                 mdu_array_info_t info;
6817                 if (!arg)
6818                         memset(&info, 0, sizeof(info));
6819                 else if (copy_from_user(&info, argp, sizeof(info))) {
6820                         err = -EFAULT;
6821                         goto unlock;
6822                 }
6823                 if (mddev->pers) {
6824                         err = update_array_info(mddev, &info);
6825                         if (err) {
6826                                 printk(KERN_WARNING "md: couldn't update"
6827                                        " array info. %d\n", err);
6828                                 goto unlock;
6829                         }
6830                         goto unlock;
6831                 }
6832                 if (!list_empty(&mddev->disks)) {
6833                         printk(KERN_WARNING
6834                                "md: array %s already has disks!\n",
6835                                mdname(mddev));
6836                         err = -EBUSY;
6837                         goto unlock;
6838                 }
6839                 if (mddev->raid_disks) {
6840                         printk(KERN_WARNING
6841                                "md: array %s already initialised!\n",
6842                                mdname(mddev));
6843                         err = -EBUSY;
6844                         goto unlock;
6845                 }
6846                 err = set_array_info(mddev, &info);
6847                 if (err) {
6848                         printk(KERN_WARNING "md: couldn't set"
6849                                " array info. %d\n", err);
6850                         goto unlock;
6851                 }
6852                 goto unlock;
6853         }
6854
6855         /*
6856          * Commands querying/configuring an existing array:
6857          */
6858         /* if we are not initialised yet, only ADD_NEW_DISK, STOP_ARRAY,
6859          * RUN_ARRAY, and GET_ and SET_BITMAP_FILE are allowed */
6860         if ((!mddev->raid_disks && !mddev->external)
6861             && cmd != ADD_NEW_DISK && cmd != STOP_ARRAY
6862             && cmd != RUN_ARRAY && cmd != SET_BITMAP_FILE
6863             && cmd != GET_BITMAP_FILE) {
6864                 err = -ENODEV;
6865                 goto unlock;
6866         }
6867
6868         /*
6869          * Commands even a read-only array can execute:
6870          */
6871         switch (cmd) {
6872         case RESTART_ARRAY_RW:
6873                 err = restart_array(mddev);
6874                 goto unlock;
6875
6876         case STOP_ARRAY:
6877                 err = do_md_stop(mddev, 0, bdev);
6878                 goto unlock;
6879
6880         case STOP_ARRAY_RO:
6881                 err = md_set_readonly(mddev, bdev);
6882                 goto unlock;
6883
6884         case HOT_REMOVE_DISK:
6885                 err = hot_remove_disk(mddev, new_decode_dev(arg));
6886                 goto unlock;
6887
6888         case ADD_NEW_DISK:
6889                 /* We can support ADD_NEW_DISK on read-only arrays
6890                  * on if we are re-adding a preexisting device.
6891                  * So require mddev->pers and MD_DISK_SYNC.
6892                  */
6893                 if (mddev->pers) {
6894                         mdu_disk_info_t info;
6895                         if (copy_from_user(&info, argp, sizeof(info)))
6896                                 err = -EFAULT;
6897                         else if (!(info.state & (1<<MD_DISK_SYNC)))
6898                                 /* Need to clear read-only for this */
6899                                 break;
6900                         else
6901                                 err = add_new_disk(mddev, &info);
6902                         goto unlock;
6903                 }
6904                 break;
6905
6906         case BLKROSET:
6907                 if (get_user(ro, (int __user *)(arg))) {
6908                         err = -EFAULT;
6909                         goto unlock;
6910                 }
6911                 err = -EINVAL;
6912
6913                 /* if the bdev is going readonly the value of mddev->ro
6914                  * does not matter, no writes are coming
6915                  */
6916                 if (ro)
6917                         goto unlock;
6918
6919                 /* are we are already prepared for writes? */
6920                 if (mddev->ro != 1)
6921                         goto unlock;
6922
6923                 /* transitioning to readauto need only happen for
6924                  * arrays that call md_write_start
6925                  */
6926                 if (mddev->pers) {
6927                         err = restart_array(mddev);
6928                         if (err == 0) {
6929                                 mddev->ro = 2;
6930                                 set_disk_ro(mddev->gendisk, 0);
6931                         }
6932                 }
6933                 goto unlock;
6934         }
6935
6936         /*
6937          * The remaining ioctls are changing the state of the
6938          * superblock, so we do not allow them on read-only arrays.
6939          */
6940         if (mddev->ro && mddev->pers) {
6941                 if (mddev->ro == 2) {
6942                         mddev->ro = 0;
6943                         sysfs_notify_dirent_safe(mddev->sysfs_state);
6944                         set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
6945                         /* mddev_unlock will wake thread */
6946                         /* If a device failed while we were read-only, we
6947                          * need to make sure the metadata is updated now.
6948                          */
6949                         if (test_bit(MD_CHANGE_DEVS, &mddev->flags)) {
6950                                 mddev_unlock(mddev);
6951                                 wait_event(mddev->sb_wait,
6952                                            !test_bit(MD_CHANGE_DEVS, &mddev->flags) &&
6953                                            !test_bit(MD_CHANGE_PENDING, &mddev->flags));
6954                                 mddev_lock_nointr(mddev);
6955                         }
6956                 } else {
6957                         err = -EROFS;
6958                         goto unlock;
6959                 }
6960         }
6961
6962         switch (cmd) {
6963         case ADD_NEW_DISK:
6964         {
6965                 mdu_disk_info_t info;
6966                 if (copy_from_user(&info, argp, sizeof(info)))
6967                         err = -EFAULT;
6968                 else
6969                         err = add_new_disk(mddev, &info);
6970                 goto unlock;
6971         }
6972
6973         case CLUSTERED_DISK_NACK:
6974                 if (mddev_is_clustered(mddev))
6975                         md_cluster_ops->new_disk_ack(mddev, false);
6976                 else
6977                         err = -EINVAL;
6978                 goto unlock;
6979
6980         case HOT_ADD_DISK:
6981                 err = hot_add_disk(mddev, new_decode_dev(arg));
6982                 goto unlock;
6983
6984         case RUN_ARRAY:
6985                 err = do_md_run(mddev);
6986                 goto unlock;
6987
6988         case SET_BITMAP_FILE:
6989                 err = set_bitmap_file(mddev, (int)arg);
6990                 goto unlock;
6991
6992         default:
6993                 err = -EINVAL;
6994                 goto unlock;
6995         }
6996
6997 unlock:
6998         if (mddev->hold_active == UNTIL_IOCTL &&
6999             err != -EINVAL)
7000                 mddev->hold_active = 0;
7001         mddev_unlock(mddev);
7002 out:
7003         return err;
7004 }
7005 #ifdef CONFIG_COMPAT
7006 static int md_compat_ioctl(struct block_device *bdev, fmode_t mode,
7007                     unsigned int cmd, unsigned long arg)
7008 {
7009         switch (cmd) {
7010         case HOT_REMOVE_DISK:
7011         case HOT_ADD_DISK:
7012         case SET_DISK_FAULTY:
7013         case SET_BITMAP_FILE:
7014                 /* These take in integer arg, do not convert */
7015                 break;
7016         default:
7017                 arg = (unsigned long)compat_ptr(arg);
7018                 break;
7019         }
7020
7021         return md_ioctl(bdev, mode, cmd, arg);
7022 }
7023 #endif /* CONFIG_COMPAT */
7024
7025 static int md_open(struct block_device *bdev, fmode_t mode)
7026 {
7027         /*
7028          * Succeed if we can lock the mddev, which confirms that
7029          * it isn't being stopped right now.
7030          */
7031         struct mddev *mddev = mddev_find(bdev->bd_dev);
7032         int err;
7033
7034         if (!mddev)
7035                 return -ENODEV;
7036
7037         if (mddev->gendisk != bdev->bd_disk) {
7038                 /* we are racing with mddev_put which is discarding this
7039                  * bd_disk.
7040                  */
7041                 mddev_put(mddev);
7042                 /* Wait until bdev->bd_disk is definitely gone */
7043                 flush_workqueue(md_misc_wq);
7044                 /* Then retry the open from the top */
7045                 return -ERESTARTSYS;
7046         }
7047         BUG_ON(mddev != bdev->bd_disk->private_data);
7048
7049         if ((err = mutex_lock_interruptible(&mddev->open_mutex)))
7050                 goto out;
7051
7052         err = 0;
7053         atomic_inc(&mddev->openers);
7054         clear_bit(MD_STILL_CLOSED, &mddev->flags);
7055         mutex_unlock(&mddev->open_mutex);
7056
7057         check_disk_change(bdev);
7058  out:
7059         return err;
7060 }
7061
7062 static void md_release(struct gendisk *disk, fmode_t mode)
7063 {
7064         struct mddev *mddev = disk->private_data;
7065
7066         BUG_ON(!mddev);
7067         atomic_dec(&mddev->openers);
7068         mddev_put(mddev);
7069 }
7070
7071 static int md_media_changed(struct gendisk *disk)
7072 {
7073         struct mddev *mddev = disk->private_data;
7074
7075         return mddev->changed;
7076 }
7077
7078 static int md_revalidate(struct gendisk *disk)
7079 {
7080         struct mddev *mddev = disk->private_data;
7081
7082         mddev->changed = 0;
7083         return 0;
7084 }
7085 static const struct block_device_operations md_fops =
7086 {
7087         .owner          = THIS_MODULE,
7088         .open           = md_open,
7089         .release        = md_release,
7090         .ioctl          = md_ioctl,
7091 #ifdef CONFIG_COMPAT
7092         .compat_ioctl   = md_compat_ioctl,
7093 #endif
7094         .getgeo         = md_getgeo,
7095         .media_changed  = md_media_changed,
7096         .revalidate_disk= md_revalidate,
7097 };
7098
7099 static int md_thread(void *arg)
7100 {
7101         struct md_thread *thread = arg;
7102
7103         /*
7104          * md_thread is a 'system-thread', it's priority should be very
7105          * high. We avoid resource deadlocks individually in each
7106          * raid personality. (RAID5 does preallocation) We also use RR and
7107          * the very same RT priority as kswapd, thus we will never get
7108          * into a priority inversion deadlock.
7109          *
7110          * we definitely have to have equal or higher priority than
7111          * bdflush, otherwise bdflush will deadlock if there are too
7112          * many dirty RAID5 blocks.
7113          */
7114
7115         allow_signal(SIGKILL);
7116         while (!kthread_should_stop()) {
7117
7118                 /* We need to wait INTERRUPTIBLE so that
7119                  * we don't add to the load-average.
7120                  * That means we need to be sure no signals are
7121                  * pending
7122                  */
7123                 if (signal_pending(current))
7124                         flush_signals(current);
7125
7126                 wait_event_interruptible_timeout
7127                         (thread->wqueue,
7128                          test_bit(THREAD_WAKEUP, &thread->flags)
7129                          || kthread_should_stop(),
7130                          thread->timeout);
7131
7132                 clear_bit(THREAD_WAKEUP, &thread->flags);
7133                 if (!kthread_should_stop())
7134                         thread->run(thread);
7135         }
7136
7137         return 0;
7138 }
7139
7140 void md_wakeup_thread(struct md_thread *thread)
7141 {
7142         if (thread) {
7143                 pr_debug("md: waking up MD thread %s.\n", thread->tsk->comm);
7144                 set_bit(THREAD_WAKEUP, &thread->flags);
7145                 wake_up(&thread->wqueue);
7146         }
7147 }
7148 EXPORT_SYMBOL(md_wakeup_thread);
7149
7150 struct md_thread *md_register_thread(void (*run) (struct md_thread *),
7151                 struct mddev *mddev, const char *name)
7152 {
7153         struct md_thread *thread;
7154
7155         thread = kzalloc(sizeof(struct md_thread), GFP_KERNEL);
7156         if (!thread)
7157                 return NULL;
7158
7159         init_waitqueue_head(&thread->wqueue);
7160
7161         thread->run = run;
7162         thread->mddev = mddev;
7163         thread->timeout = MAX_SCHEDULE_TIMEOUT;
7164         thread->tsk = kthread_run(md_thread, thread,
7165                                   "%s_%s",
7166                                   mdname(thread->mddev),
7167                                   name);
7168         if (IS_ERR(thread->tsk)) {
7169                 kfree(thread);
7170                 return NULL;
7171         }
7172         return thread;
7173 }
7174 EXPORT_SYMBOL(md_register_thread);
7175
7176 void md_unregister_thread(struct md_thread **threadp)
7177 {
7178         struct md_thread *thread = *threadp;
7179         if (!thread)
7180                 return;
7181         pr_debug("interrupting MD-thread pid %d\n", task_pid_nr(thread->tsk));
7182         /* Locking ensures that mddev_unlock does not wake_up a
7183          * non-existent thread
7184          */
7185         spin_lock(&pers_lock);
7186         *threadp = NULL;
7187         spin_unlock(&pers_lock);
7188
7189         kthread_stop(thread->tsk);
7190         kfree(thread);
7191 }
7192 EXPORT_SYMBOL(md_unregister_thread);
7193
7194 void md_error(struct mddev *mddev, struct md_rdev *rdev)
7195 {
7196         if (!rdev || test_bit(Faulty, &rdev->flags))
7197                 return;
7198
7199         if (!mddev->pers || !mddev->pers->error_handler)
7200                 return;
7201         mddev->pers->error_handler(mddev,rdev);
7202         if (mddev->degraded)
7203                 set_bit(MD_RECOVERY_RECOVER, &mddev->recovery);
7204         sysfs_notify_dirent_safe(rdev->sysfs_state);
7205         set_bit(MD_RECOVERY_INTR, &mddev->recovery);
7206         set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
7207         md_wakeup_thread(mddev->thread);
7208         if (mddev->event_work.func)
7209                 queue_work(md_misc_wq, &mddev->event_work);
7210         md_new_event(mddev);
7211 }
7212 EXPORT_SYMBOL(md_error);
7213
7214 /* seq_file implementation /proc/mdstat */
7215
7216 static void status_unused(struct seq_file *seq)
7217 {
7218         int i = 0;
7219         struct md_rdev *rdev;
7220
7221         seq_printf(seq, "unused devices: ");
7222
7223         list_for_each_entry(rdev, &pending_raid_disks, same_set) {
7224                 char b[BDEVNAME_SIZE];
7225                 i++;
7226                 seq_printf(seq, "%s ",
7227                               bdevname(rdev->bdev,b));
7228         }
7229         if (!i)
7230                 seq_printf(seq, "<none>");
7231
7232         seq_printf(seq, "\n");
7233 }
7234
7235 static int status_resync(struct seq_file *seq, struct mddev *mddev)
7236 {
7237         sector_t max_sectors, resync, res;
7238         unsigned long dt, db;
7239         sector_t rt;
7240         int scale;
7241         unsigned int per_milli;
7242
7243         if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery) ||
7244             test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery))
7245                 max_sectors = mddev->resync_max_sectors;
7246         else
7247                 max_sectors = mddev->dev_sectors;
7248
7249         resync = mddev->curr_resync;
7250         if (resync <= 3) {
7251                 if (test_bit(MD_RECOVERY_DONE, &mddev->recovery))
7252                         /* Still cleaning up */
7253                         resync = max_sectors;
7254         } else
7255                 resync -= atomic_read(&mddev->recovery_active);
7256
7257         if (resync == 0) {
7258                 if (mddev->recovery_cp < MaxSector) {
7259                         seq_printf(seq, "\tresync=PENDING");
7260                         return 1;
7261                 }
7262                 return 0;
7263         }
7264         if (resync < 3) {
7265                 seq_printf(seq, "\tresync=DELAYED");
7266                 return 1;
7267         }
7268
7269         WARN_ON(max_sectors == 0);
7270         /* Pick 'scale' such that (resync>>scale)*1000 will fit
7271          * in a sector_t, and (max_sectors>>scale) will fit in a
7272          * u32, as those are the requirements for sector_div.
7273          * Thus 'scale' must be at least 10
7274          */
7275         scale = 10;
7276         if (sizeof(sector_t) > sizeof(unsigned long)) {
7277                 while ( max_sectors/2 > (1ULL<<(scale+32)))
7278                         scale++;
7279         }
7280         res = (resync>>scale)*1000;
7281         sector_div(res, (u32)((max_sectors>>scale)+1));
7282
7283         per_milli = res;
7284         {
7285                 int i, x = per_milli/50, y = 20-x;
7286                 seq_printf(seq, "[");
7287                 for (i = 0; i < x; i++)
7288                         seq_printf(seq, "=");
7289                 seq_printf(seq, ">");
7290                 for (i = 0; i < y; i++)
7291                         seq_printf(seq, ".");
7292                 seq_printf(seq, "] ");
7293         }
7294         seq_printf(seq, " %s =%3u.%u%% (%llu/%llu)",
7295                    (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery)?
7296                     "reshape" :
7297                     (test_bit(MD_RECOVERY_CHECK, &mddev->recovery)?
7298                      "check" :
7299                      (test_bit(MD_RECOVERY_SYNC, &mddev->recovery) ?
7300                       "resync" : "recovery"))),
7301                    per_milli/10, per_milli % 10,
7302                    (unsigned long long) resync/2,
7303                    (unsigned long long) max_sectors/2);
7304
7305         /*
7306          * dt: time from mark until now
7307          * db: blocks written from mark until now
7308          * rt: remaining time
7309          *
7310          * rt is a sector_t, so could be 32bit or 64bit.
7311          * So we divide before multiply in case it is 32bit and close
7312          * to the limit.
7313          * We scale the divisor (db) by 32 to avoid losing precision
7314          * near the end of resync when the number of remaining sectors
7315          * is close to 'db'.
7316          * We then divide rt by 32 after multiplying by db to compensate.
7317          * The '+1' avoids division by zero if db is very small.
7318          */
7319         dt = ((jiffies - mddev->resync_mark) / HZ);
7320         if (!dt) dt++;
7321         db = (mddev->curr_mark_cnt - atomic_read(&mddev->recovery_active))
7322                 - mddev->resync_mark_cnt;
7323
7324         rt = max_sectors - resync;    /* number of remaining sectors */
7325         sector_div(rt, db/32+1);
7326         rt *= dt;
7327         rt >>= 5;
7328
7329         seq_printf(seq, " finish=%lu.%lumin", (unsigned long)rt / 60,
7330                    ((unsigned long)rt % 60)/6);
7331
7332         seq_printf(seq, " speed=%ldK/sec", db/2/dt);
7333         return 1;
7334 }
7335
7336 static void *md_seq_start(struct seq_file *seq, loff_t *pos)
7337 {
7338         struct list_head *tmp;
7339         loff_t l = *pos;
7340         struct mddev *mddev;
7341
7342         if (l >= 0x10000)
7343                 return NULL;
7344         if (!l--)
7345                 /* header */
7346                 return (void*)1;
7347
7348         spin_lock(&all_mddevs_lock);
7349         list_for_each(tmp,&all_mddevs)
7350                 if (!l--) {
7351                         mddev = list_entry(tmp, struct mddev, all_mddevs);
7352                         mddev_get(mddev);
7353                         spin_unlock(&all_mddevs_lock);
7354                         return mddev;
7355                 }
7356         spin_unlock(&all_mddevs_lock);
7357         if (!l--)
7358                 return (void*)2;/* tail */
7359         return NULL;
7360 }
7361
7362 static void *md_seq_next(struct seq_file *seq, void *v, loff_t *pos)
7363 {
7364         struct list_head *tmp;
7365         struct mddev *next_mddev, *mddev = v;
7366
7367         ++*pos;
7368         if (v == (void*)2)
7369                 return NULL;
7370
7371         spin_lock(&all_mddevs_lock);
7372         if (v == (void*)1)
7373                 tmp = all_mddevs.next;
7374         else
7375                 tmp = mddev->all_mddevs.next;
7376         if (tmp != &all_mddevs)
7377                 next_mddev = mddev_get(list_entry(tmp,struct mddev,all_mddevs));
7378         else {
7379                 next_mddev = (void*)2;
7380                 *pos = 0x10000;
7381         }
7382         spin_unlock(&all_mddevs_lock);
7383
7384         if (v != (void*)1)
7385                 mddev_put(mddev);
7386         return next_mddev;
7387
7388 }
7389
7390 static void md_seq_stop(struct seq_file *seq, void *v)
7391 {
7392         struct mddev *mddev = v;
7393
7394         if (mddev && v != (void*)1 && v != (void*)2)
7395                 mddev_put(mddev);
7396 }
7397
7398 static int md_seq_show(struct seq_file *seq, void *v)
7399 {
7400         struct mddev *mddev = v;
7401         sector_t sectors;
7402         struct md_rdev *rdev;
7403
7404         if (v == (void*)1) {
7405                 struct md_personality *pers;
7406                 seq_printf(seq, "Personalities : ");
7407                 spin_lock(&pers_lock);
7408                 list_for_each_entry(pers, &pers_list, list)
7409                         seq_printf(seq, "[%s] ", pers->name);
7410
7411                 spin_unlock(&pers_lock);
7412                 seq_printf(seq, "\n");
7413                 seq->poll_event = atomic_read(&md_event_count);
7414                 return 0;
7415         }
7416         if (v == (void*)2) {
7417                 status_unused(seq);
7418                 return 0;
7419         }
7420
7421         spin_lock(&mddev->lock);
7422         if (mddev->pers || mddev->raid_disks || !list_empty(&mddev->disks)) {
7423                 seq_printf(seq, "%s : %sactive", mdname(mddev),
7424                                                 mddev->pers ? "" : "in");
7425                 if (mddev->pers) {
7426                         if (mddev->ro==1)
7427                                 seq_printf(seq, " (read-only)");
7428                         if (mddev->ro==2)
7429                                 seq_printf(seq, " (auto-read-only)");
7430                         seq_printf(seq, " %s", mddev->pers->name);
7431                 }
7432
7433                 sectors = 0;
7434                 rcu_read_lock();
7435                 rdev_for_each_rcu(rdev, mddev) {
7436                         char b[BDEVNAME_SIZE];
7437                         seq_printf(seq, " %s[%d]",
7438                                 bdevname(rdev->bdev,b), rdev->desc_nr);
7439                         if (test_bit(WriteMostly, &rdev->flags))
7440                                 seq_printf(seq, "(W)");
7441                         if (test_bit(Journal, &rdev->flags))
7442                                 seq_printf(seq, "(J)");
7443                         if (test_bit(Faulty, &rdev->flags)) {
7444                                 seq_printf(seq, "(F)");
7445                                 continue;
7446                         }
7447                         if (rdev->raid_disk < 0)
7448                                 seq_printf(seq, "(S)"); /* spare */
7449                         if (test_bit(Replacement, &rdev->flags))
7450                                 seq_printf(seq, "(R)");
7451                         sectors += rdev->sectors;
7452                 }
7453                 rcu_read_unlock();
7454
7455                 if (!list_empty(&mddev->disks)) {
7456                         if (mddev->pers)
7457                                 seq_printf(seq, "\n      %llu blocks",
7458                                            (unsigned long long)
7459                                            mddev->array_sectors / 2);
7460                         else
7461                                 seq_printf(seq, "\n      %llu blocks",
7462                                            (unsigned long long)sectors / 2);
7463                 }
7464                 if (mddev->persistent) {
7465                         if (mddev->major_version != 0 ||
7466                             mddev->minor_version != 90) {
7467                                 seq_printf(seq," super %d.%d",
7468                                            mddev->major_version,
7469                                            mddev->minor_version);
7470                         }
7471                 } else if (mddev->external)
7472                         seq_printf(seq, " super external:%s",
7473                                    mddev->metadata_type);
7474                 else
7475                         seq_printf(seq, " super non-persistent");
7476
7477                 if (mddev->pers) {
7478                         mddev->pers->status(seq, mddev);
7479                         seq_printf(seq, "\n      ");
7480                         if (mddev->pers->sync_request) {
7481                                 if (status_resync(seq, mddev))
7482                                         seq_printf(seq, "\n      ");
7483                         }
7484                 } else
7485                         seq_printf(seq, "\n       ");
7486
7487                 bitmap_status(seq, mddev->bitmap);
7488
7489                 seq_printf(seq, "\n");
7490         }
7491         spin_unlock(&mddev->lock);
7492
7493         return 0;
7494 }
7495
7496 static const struct seq_operations md_seq_ops = {
7497         .start  = md_seq_start,
7498         .next   = md_seq_next,
7499         .stop   = md_seq_stop,
7500         .show   = md_seq_show,
7501 };
7502
7503 static int md_seq_open(struct inode *inode, struct file *file)
7504 {
7505         struct seq_file *seq;
7506         int error;
7507
7508         error = seq_open(file, &md_seq_ops);
7509         if (error)
7510                 return error;
7511
7512         seq = file->private_data;
7513         seq->poll_event = atomic_read(&md_event_count);
7514         return error;
7515 }
7516
7517 static int md_unloading;
7518 static unsigned int mdstat_poll(struct file *filp, poll_table *wait)
7519 {
7520         struct seq_file *seq = filp->private_data;
7521         int mask;
7522
7523         if (md_unloading)
7524                 return POLLIN|POLLRDNORM|POLLERR|POLLPRI;
7525         poll_wait(filp, &md_event_waiters, wait);
7526
7527         /* always allow read */
7528         mask = POLLIN | POLLRDNORM;
7529
7530         if (seq->poll_event != atomic_read(&md_event_count))
7531                 mask |= POLLERR | POLLPRI;
7532         return mask;
7533 }
7534
7535 static const struct file_operations md_seq_fops = {
7536         .owner          = THIS_MODULE,
7537         .open           = md_seq_open,
7538         .read           = seq_read,
7539         .llseek         = seq_lseek,
7540         .release        = seq_release_private,
7541         .poll           = mdstat_poll,
7542 };
7543
7544 int register_md_personality(struct md_personality *p)
7545 {
7546         printk(KERN_INFO "md: %s personality registered for level %d\n",
7547                                                 p->name, p->level);
7548         spin_lock(&pers_lock);
7549         list_add_tail(&p->list, &pers_list);
7550         spin_unlock(&pers_lock);
7551         return 0;
7552 }
7553 EXPORT_SYMBOL(register_md_personality);
7554
7555 int unregister_md_personality(struct md_personality *p)
7556 {
7557         printk(KERN_INFO "md: %s personality unregistered\n", p->name);
7558         spin_lock(&pers_lock);
7559         list_del_init(&p->list);
7560         spin_unlock(&pers_lock);
7561         return 0;
7562 }
7563 EXPORT_SYMBOL(unregister_md_personality);
7564
7565 int register_md_cluster_operations(struct md_cluster_operations *ops,
7566                                    struct module *module)
7567 {
7568         int ret = 0;
7569         spin_lock(&pers_lock);
7570         if (md_cluster_ops != NULL)
7571                 ret = -EALREADY;
7572         else {
7573                 md_cluster_ops = ops;
7574                 md_cluster_mod = module;
7575         }
7576         spin_unlock(&pers_lock);
7577         return ret;
7578 }
7579 EXPORT_SYMBOL(register_md_cluster_operations);
7580
7581 int unregister_md_cluster_operations(void)
7582 {
7583         spin_lock(&pers_lock);
7584         md_cluster_ops = NULL;
7585         spin_unlock(&pers_lock);
7586         return 0;
7587 }
7588 EXPORT_SYMBOL(unregister_md_cluster_operations);
7589
7590 int md_setup_cluster(struct mddev *mddev, int nodes)
7591 {
7592         int err;
7593
7594         err = request_module("md-cluster");
7595         if (err) {
7596                 pr_err("md-cluster module not found.\n");
7597                 return -ENOENT;
7598         }
7599
7600         spin_lock(&pers_lock);
7601         if (!md_cluster_ops || !try_module_get(md_cluster_mod)) {
7602                 spin_unlock(&pers_lock);
7603                 return -ENOENT;
7604         }
7605         spin_unlock(&pers_lock);
7606
7607         return md_cluster_ops->join(mddev, nodes);
7608 }
7609
7610 void md_cluster_stop(struct mddev *mddev)
7611 {
7612         if (!md_cluster_ops)
7613                 return;
7614         md_cluster_ops->leave(mddev);
7615         module_put(md_cluster_mod);
7616 }
7617
7618 static int is_mddev_idle(struct mddev *mddev, int init)
7619 {
7620         struct md_rdev *rdev;
7621         int idle;
7622         int curr_events;
7623
7624         idle = 1;
7625         rcu_read_lock();
7626         rdev_for_each_rcu(rdev, mddev) {
7627                 struct gendisk *disk = rdev->bdev->bd_contains->bd_disk;
7628                 curr_events = (int)part_stat_read(&disk->part0, sectors[0]) +
7629                               (int)part_stat_read(&disk->part0, sectors[1]) -
7630                               atomic_read(&disk->sync_io);
7631                 /* sync IO will cause sync_io to increase before the disk_stats
7632                  * as sync_io is counted when a request starts, and
7633                  * disk_stats is counted when it completes.
7634                  * So resync activity will cause curr_events to be smaller than
7635                  * when there was no such activity.
7636                  * non-sync IO will cause disk_stat to increase without
7637                  * increasing sync_io so curr_events will (eventually)
7638                  * be larger than it was before.  Once it becomes
7639                  * substantially larger, the test below will cause
7640                  * the array to appear non-idle, and resync will slow
7641                  * down.
7642                  * If there is a lot of outstanding resync activity when
7643                  * we set last_event to curr_events, then all that activity
7644                  * completing might cause the array to appear non-idle
7645                  * and resync will be slowed down even though there might
7646                  * not have been non-resync activity.  This will only
7647                  * happen once though.  'last_events' will soon reflect
7648                  * the state where there is little or no outstanding
7649                  * resync requests, and further resync activity will
7650                  * always make curr_events less than last_events.
7651                  *
7652                  */
7653                 if (init || curr_events - rdev->last_events > 64) {
7654                         rdev->last_events = curr_events;
7655                         idle = 0;
7656                 }
7657         }
7658         rcu_read_unlock();
7659         return idle;
7660 }
7661
7662 void md_done_sync(struct mddev *mddev, int blocks, int ok)
7663 {
7664         /* another "blocks" (512byte) blocks have been synced */
7665         atomic_sub(blocks, &mddev->recovery_active);
7666         wake_up(&mddev->recovery_wait);
7667         if (!ok) {
7668                 set_bit(MD_RECOVERY_INTR, &mddev->recovery);
7669                 set_bit(MD_RECOVERY_ERROR, &mddev->recovery);
7670                 md_wakeup_thread(mddev->thread);
7671                 // stop recovery, signal do_sync ....
7672         }
7673 }
7674 EXPORT_SYMBOL(md_done_sync);
7675
7676 /* md_write_start(mddev, bi)
7677  * If we need to update some array metadata (e.g. 'active' flag
7678  * in superblock) before writing, schedule a superblock update
7679  * and wait for it to complete.
7680  */
7681 void md_write_start(struct mddev *mddev, struct bio *bi)
7682 {
7683         int did_change = 0;
7684         if (bio_data_dir(bi) != WRITE)
7685                 return;
7686
7687         BUG_ON(mddev->ro == 1);
7688         if (mddev->ro == 2) {
7689                 /* need to switch to read/write */
7690                 mddev->ro = 0;
7691                 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
7692                 md_wakeup_thread(mddev->thread);
7693                 md_wakeup_thread(mddev->sync_thread);
7694                 did_change = 1;
7695         }
7696         atomic_inc(&mddev->writes_pending);
7697         if (mddev->safemode == 1)
7698                 mddev->safemode = 0;
7699         if (mddev->in_sync) {
7700                 spin_lock(&mddev->lock);
7701                 if (mddev->in_sync) {
7702                         mddev->in_sync = 0;
7703                         set_bit(MD_CHANGE_CLEAN, &mddev->flags);
7704                         set_bit(MD_CHANGE_PENDING, &mddev->flags);
7705                         md_wakeup_thread(mddev->thread);
7706                         did_change = 1;
7707                 }
7708                 spin_unlock(&mddev->lock);
7709         }
7710         if (did_change)
7711                 sysfs_notify_dirent_safe(mddev->sysfs_state);
7712         wait_event(mddev->sb_wait,
7713                    !test_bit(MD_CHANGE_PENDING, &mddev->flags));
7714 }
7715 EXPORT_SYMBOL(md_write_start);
7716
7717 void md_write_end(struct mddev *mddev)
7718 {
7719         if (atomic_dec_and_test(&mddev->writes_pending)) {
7720                 if (mddev->safemode == 2)
7721                         md_wakeup_thread(mddev->thread);
7722                 else if (mddev->safemode_delay)
7723                         mod_timer(&mddev->safemode_timer, jiffies + mddev->safemode_delay);
7724         }
7725 }
7726 EXPORT_SYMBOL(md_write_end);
7727
7728 /* md_allow_write(mddev)
7729  * Calling this ensures that the array is marked 'active' so that writes
7730  * may proceed without blocking.  It is important to call this before
7731  * attempting a GFP_KERNEL allocation while holding the mddev lock.
7732  * Must be called with mddev_lock held.
7733  *
7734  * In the ->external case MD_CHANGE_PENDING can not be cleared until mddev->lock
7735  * is dropped, so return -EAGAIN after notifying userspace.
7736  */
7737 int md_allow_write(struct mddev *mddev)
7738 {
7739         if (!mddev->pers)
7740                 return 0;
7741         if (mddev->ro)
7742                 return 0;
7743         if (!mddev->pers->sync_request)
7744                 return 0;
7745
7746         spin_lock(&mddev->lock);
7747         if (mddev->in_sync) {
7748                 mddev->in_sync = 0;
7749                 set_bit(MD_CHANGE_CLEAN, &mddev->flags);
7750                 set_bit(MD_CHANGE_PENDING, &mddev->flags);
7751                 if (mddev->safemode_delay &&
7752                     mddev->safemode == 0)
7753                         mddev->safemode = 1;
7754                 spin_unlock(&mddev->lock);
7755                 md_update_sb(mddev, 0);
7756                 sysfs_notify_dirent_safe(mddev->sysfs_state);
7757         } else
7758                 spin_unlock(&mddev->lock);
7759
7760         if (test_bit(MD_CHANGE_PENDING, &mddev->flags))
7761                 return -EAGAIN;
7762         else
7763                 return 0;
7764 }
7765 EXPORT_SYMBOL_GPL(md_allow_write);
7766
7767 #define SYNC_MARKS      10
7768 #define SYNC_MARK_STEP  (3*HZ)
7769 #define UPDATE_FREQUENCY (5*60*HZ)
7770 void md_do_sync(struct md_thread *thread)
7771 {
7772         struct mddev *mddev = thread->mddev;
7773         struct mddev *mddev2;
7774         unsigned int currspeed = 0,
7775                  window;
7776         sector_t max_sectors,j, io_sectors, recovery_done;
7777         unsigned long mark[SYNC_MARKS];
7778         unsigned long update_time;
7779         sector_t mark_cnt[SYNC_MARKS];
7780         int last_mark,m;
7781         struct list_head *tmp;
7782         sector_t last_check;
7783         int skipped = 0;
7784         struct md_rdev *rdev;
7785         char *desc, *action = NULL;
7786         struct blk_plug plug;
7787         bool cluster_resync_finished = false;
7788
7789         /* just incase thread restarts... */
7790         if (test_bit(MD_RECOVERY_DONE, &mddev->recovery))
7791                 return;
7792         if (mddev->ro) {/* never try to sync a read-only array */
7793                 set_bit(MD_RECOVERY_INTR, &mddev->recovery);
7794                 return;
7795         }
7796
7797         if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
7798                 if (test_bit(MD_RECOVERY_CHECK, &mddev->recovery)) {
7799                         desc = "data-check";
7800                         action = "check";
7801                 } else if (test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery)) {
7802                         desc = "requested-resync";
7803                         action = "repair";
7804                 } else
7805                         desc = "resync";
7806         } else if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery))
7807                 desc = "reshape";
7808         else
7809                 desc = "recovery";
7810
7811         mddev->last_sync_action = action ?: desc;
7812
7813         /* we overload curr_resync somewhat here.
7814          * 0 == not engaged in resync at all
7815          * 2 == checking that there is no conflict with another sync
7816          * 1 == like 2, but have yielded to allow conflicting resync to
7817          *              commense
7818          * other == active in resync - this many blocks
7819          *
7820          * Before starting a resync we must have set curr_resync to
7821          * 2, and then checked that every "conflicting" array has curr_resync
7822          * less than ours.  When we find one that is the same or higher
7823          * we wait on resync_wait.  To avoid deadlock, we reduce curr_resync
7824          * to 1 if we choose to yield (based arbitrarily on address of mddev structure).
7825          * This will mean we have to start checking from the beginning again.
7826          *
7827          */
7828
7829         do {
7830                 mddev->curr_resync = 2;
7831
7832         try_again:
7833                 if (test_bit(MD_RECOVERY_INTR, &mddev->recovery))
7834                         goto skip;
7835                 for_each_mddev(mddev2, tmp) {
7836                         if (mddev2 == mddev)
7837                                 continue;
7838                         if (!mddev->parallel_resync
7839                         &&  mddev2->curr_resync
7840                         &&  match_mddev_units(mddev, mddev2)) {
7841                                 DEFINE_WAIT(wq);
7842                                 if (mddev < mddev2 && mddev->curr_resync == 2) {
7843                                         /* arbitrarily yield */
7844                                         mddev->curr_resync = 1;
7845                                         wake_up(&resync_wait);
7846                                 }
7847                                 if (mddev > mddev2 && mddev->curr_resync == 1)
7848                                         /* no need to wait here, we can wait the next
7849                                          * time 'round when curr_resync == 2
7850                                          */
7851                                         continue;
7852                                 /* We need to wait 'interruptible' so as not to
7853                                  * contribute to the load average, and not to
7854                                  * be caught by 'softlockup'
7855                                  */
7856                                 prepare_to_wait(&resync_wait, &wq, TASK_INTERRUPTIBLE);
7857                                 if (!test_bit(MD_RECOVERY_INTR, &mddev->recovery) &&
7858                                     mddev2->curr_resync >= mddev->curr_resync) {
7859                                         printk(KERN_INFO "md: delaying %s of %s"
7860                                                " until %s has finished (they"
7861                                                " share one or more physical units)\n",
7862                                                desc, mdname(mddev), mdname(mddev2));
7863                                         mddev_put(mddev2);
7864                                         if (signal_pending(current))
7865                                                 flush_signals(current);
7866                                         schedule();
7867                                         finish_wait(&resync_wait, &wq);
7868                                         goto try_again;
7869                                 }
7870                                 finish_wait(&resync_wait, &wq);
7871                         }
7872                 }
7873         } while (mddev->curr_resync < 2);
7874
7875         j = 0;
7876         if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
7877                 /* resync follows the size requested by the personality,
7878                  * which defaults to physical size, but can be virtual size
7879                  */
7880                 max_sectors = mddev->resync_max_sectors;
7881                 atomic64_set(&mddev->resync_mismatches, 0);
7882                 /* we don't use the checkpoint if there's a bitmap */
7883                 if (test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery))
7884                         j = mddev->resync_min;
7885                 else if (!mddev->bitmap)
7886                         j = mddev->recovery_cp;
7887
7888         } else if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery))
7889                 max_sectors = mddev->resync_max_sectors;
7890         else {
7891                 /* recovery follows the physical size of devices */
7892                 max_sectors = mddev->dev_sectors;
7893                 j = MaxSector;
7894                 rcu_read_lock();
7895                 rdev_for_each_rcu(rdev, mddev)
7896                         if (rdev->raid_disk >= 0 &&
7897                             !test_bit(Journal, &rdev->flags) &&
7898                             !test_bit(Faulty, &rdev->flags) &&
7899                             !test_bit(In_sync, &rdev->flags) &&
7900                             rdev->recovery_offset < j)
7901                                 j = rdev->recovery_offset;
7902                 rcu_read_unlock();
7903
7904                 /* If there is a bitmap, we need to make sure all
7905                  * writes that started before we added a spare
7906                  * complete before we start doing a recovery.
7907                  * Otherwise the write might complete and (via
7908                  * bitmap_endwrite) set a bit in the bitmap after the
7909                  * recovery has checked that bit and skipped that
7910                  * region.
7911                  */
7912                 if (mddev->bitmap) {
7913                         mddev->pers->quiesce(mddev, 1);
7914                         mddev->pers->quiesce(mddev, 0);
7915                 }
7916         }
7917
7918         printk(KERN_INFO "md: %s of RAID array %s\n", desc, mdname(mddev));
7919         printk(KERN_INFO "md: minimum _guaranteed_  speed:"
7920                 " %d KB/sec/disk.\n", speed_min(mddev));
7921         printk(KERN_INFO "md: using maximum available idle IO bandwidth "
7922                "(but not more than %d KB/sec) for %s.\n",
7923                speed_max(mddev), desc);
7924
7925         is_mddev_idle(mddev, 1); /* this initializes IO event counters */
7926
7927         io_sectors = 0;
7928         for (m = 0; m < SYNC_MARKS; m++) {
7929                 mark[m] = jiffies;
7930                 mark_cnt[m] = io_sectors;
7931         }
7932         last_mark = 0;
7933         mddev->resync_mark = mark[last_mark];
7934         mddev->resync_mark_cnt = mark_cnt[last_mark];
7935
7936         /*
7937          * Tune reconstruction:
7938          */
7939         window = 32*(PAGE_SIZE/512);
7940         printk(KERN_INFO "md: using %dk window, over a total of %lluk.\n",
7941                 window/2, (unsigned long long)max_sectors/2);
7942
7943         atomic_set(&mddev->recovery_active, 0);
7944         last_check = 0;
7945
7946         if (j>2) {
7947                 printk(KERN_INFO
7948                        "md: resuming %s of %s from checkpoint.\n",
7949                        desc, mdname(mddev));
7950                 mddev->curr_resync = j;
7951         } else
7952                 mddev->curr_resync = 3; /* no longer delayed */
7953         mddev->curr_resync_completed = j;
7954         sysfs_notify(&mddev->kobj, NULL, "sync_completed");
7955         md_new_event(mddev);
7956         update_time = jiffies;
7957
7958         blk_start_plug(&plug);
7959         while (j < max_sectors) {
7960                 sector_t sectors;
7961
7962                 skipped = 0;
7963
7964                 if (!test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery) &&
7965                     ((mddev->curr_resync > mddev->curr_resync_completed &&
7966                       (mddev->curr_resync - mddev->curr_resync_completed)
7967                       > (max_sectors >> 4)) ||
7968                      time_after_eq(jiffies, update_time + UPDATE_FREQUENCY) ||
7969                      (j - mddev->curr_resync_completed)*2
7970                      >= mddev->resync_max - mddev->curr_resync_completed ||
7971                      mddev->curr_resync_completed > mddev->resync_max
7972                             )) {
7973                         /* time to update curr_resync_completed */
7974                         wait_event(mddev->recovery_wait,
7975                                    atomic_read(&mddev->recovery_active) == 0);
7976                         mddev->curr_resync_completed = j;
7977                         if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery) &&
7978                             j > mddev->recovery_cp)
7979                                 mddev->recovery_cp = j;
7980                         update_time = jiffies;
7981                         set_bit(MD_CHANGE_CLEAN, &mddev->flags);
7982                         sysfs_notify(&mddev->kobj, NULL, "sync_completed");
7983                 }
7984
7985                 while (j >= mddev->resync_max &&
7986                        !test_bit(MD_RECOVERY_INTR, &mddev->recovery)) {
7987                         /* As this condition is controlled by user-space,
7988                          * we can block indefinitely, so use '_interruptible'
7989                          * to avoid triggering warnings.
7990                          */
7991                         flush_signals(current); /* just in case */
7992                         wait_event_interruptible(mddev->recovery_wait,
7993                                                  mddev->resync_max > j
7994                                                  || test_bit(MD_RECOVERY_INTR,
7995                                                              &mddev->recovery));
7996                 }
7997
7998                 if (test_bit(MD_RECOVERY_INTR, &mddev->recovery))
7999                         break;
8000
8001                 sectors = mddev->pers->sync_request(mddev, j, &skipped);
8002                 if (sectors == 0) {
8003                         set_bit(MD_RECOVERY_INTR, &mddev->recovery);
8004                         break;
8005                 }
8006
8007                 if (!skipped) { /* actual IO requested */
8008                         io_sectors += sectors;
8009                         atomic_add(sectors, &mddev->recovery_active);
8010                 }
8011
8012                 if (test_bit(MD_RECOVERY_INTR, &mddev->recovery))
8013                         break;
8014
8015                 j += sectors;
8016                 if (j > max_sectors)
8017                         /* when skipping, extra large numbers can be returned. */
8018                         j = max_sectors;
8019                 if (j > 2)
8020                         mddev->curr_resync = j;
8021                 mddev->curr_mark_cnt = io_sectors;
8022                 if (last_check == 0)
8023                         /* this is the earliest that rebuild will be
8024                          * visible in /proc/mdstat
8025                          */
8026                         md_new_event(mddev);
8027
8028                 if (last_check + window > io_sectors || j == max_sectors)
8029                         continue;
8030
8031                 last_check = io_sectors;
8032         repeat:
8033                 if (time_after_eq(jiffies, mark[last_mark] + SYNC_MARK_STEP )) {
8034                         /* step marks */
8035                         int next = (last_mark+1) % SYNC_MARKS;
8036
8037                         mddev->resync_mark = mark[next];
8038                         mddev->resync_mark_cnt = mark_cnt[next];
8039                         mark[next] = jiffies;
8040                         mark_cnt[next] = io_sectors - atomic_read(&mddev->recovery_active);
8041                         last_mark = next;
8042                 }
8043
8044                 if (test_bit(MD_RECOVERY_INTR, &mddev->recovery))
8045                         break;
8046
8047                 /*
8048                  * this loop exits only if either when we are slower than
8049                  * the 'hard' speed limit, or the system was IO-idle for
8050                  * a jiffy.
8051                  * the system might be non-idle CPU-wise, but we only care
8052                  * about not overloading the IO subsystem. (things like an
8053                  * e2fsck being done on the RAID array should execute fast)
8054                  */
8055                 cond_resched();
8056
8057                 recovery_done = io_sectors - atomic_read(&mddev->recovery_active);
8058                 currspeed = ((unsigned long)(recovery_done - mddev->resync_mark_cnt))/2
8059                         /((jiffies-mddev->resync_mark)/HZ +1) +1;
8060
8061                 if (currspeed > speed_min(mddev)) {
8062                         if (currspeed > speed_max(mddev)) {
8063                                 msleep(500);
8064                                 goto repeat;
8065                         }
8066                         if (!is_mddev_idle(mddev, 0)) {
8067                                 /*
8068                                  * Give other IO more of a chance.
8069                                  * The faster the devices, the less we wait.
8070                                  */
8071                                 wait_event(mddev->recovery_wait,
8072                                            !atomic_read(&mddev->recovery_active));
8073                         }
8074                 }
8075         }
8076         printk(KERN_INFO "md: %s: %s %s.\n",mdname(mddev), desc,
8077                test_bit(MD_RECOVERY_INTR, &mddev->recovery)
8078                ? "interrupted" : "done");
8079         /*
8080          * this also signals 'finished resyncing' to md_stop
8081          */
8082         blk_finish_plug(&plug);
8083         wait_event(mddev->recovery_wait, !atomic_read(&mddev->recovery_active));
8084
8085         if (!test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery) &&
8086             !test_bit(MD_RECOVERY_INTR, &mddev->recovery) &&
8087             mddev->curr_resync > 2) {
8088                 mddev->curr_resync_completed = mddev->curr_resync;
8089                 sysfs_notify(&mddev->kobj, NULL, "sync_completed");
8090         }
8091         /* tell personality and other nodes that we are finished */
8092         if (mddev_is_clustered(mddev)) {
8093                 md_cluster_ops->resync_finish(mddev);
8094                 cluster_resync_finished = true;
8095         }
8096         mddev->pers->sync_request(mddev, max_sectors, &skipped);
8097
8098         if (!test_bit(MD_RECOVERY_CHECK, &mddev->recovery) &&
8099             mddev->curr_resync > 2) {
8100                 if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
8101                         if (test_bit(MD_RECOVERY_INTR, &mddev->recovery)) {
8102                                 if (mddev->curr_resync >= mddev->recovery_cp) {
8103                                         printk(KERN_INFO
8104                                                "md: checkpointing %s of %s.\n",
8105                                                desc, mdname(mddev));
8106                                         if (test_bit(MD_RECOVERY_ERROR,
8107                                                 &mddev->recovery))
8108                                                 mddev->recovery_cp =
8109                                                         mddev->curr_resync_completed;
8110                                         else
8111                                                 mddev->recovery_cp =
8112                                                         mddev->curr_resync;
8113                                 }
8114                         } else
8115                                 mddev->recovery_cp = MaxSector;
8116                 } else {
8117                         if (!test_bit(MD_RECOVERY_INTR, &mddev->recovery))
8118                                 mddev->curr_resync = MaxSector;
8119                         rcu_read_lock();
8120                         rdev_for_each_rcu(rdev, mddev)
8121                                 if (rdev->raid_disk >= 0 &&
8122                                     mddev->delta_disks >= 0 &&
8123                                     !test_bit(Journal, &rdev->flags) &&
8124                                     !test_bit(Faulty, &rdev->flags) &&
8125                                     !test_bit(In_sync, &rdev->flags) &&
8126                                     rdev->recovery_offset < mddev->curr_resync)
8127                                         rdev->recovery_offset = mddev->curr_resync;
8128                         rcu_read_unlock();
8129                 }
8130         }
8131  skip:
8132         set_bit(MD_CHANGE_DEVS, &mddev->flags);
8133
8134         if (mddev_is_clustered(mddev) &&
8135             test_bit(MD_RECOVERY_INTR, &mddev->recovery) &&
8136             !cluster_resync_finished)
8137                 md_cluster_ops->resync_finish(mddev);
8138
8139         spin_lock(&mddev->lock);
8140         if (!test_bit(MD_RECOVERY_INTR, &mddev->recovery)) {
8141                 /* We completed so min/max setting can be forgotten if used. */
8142                 if (test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery))
8143                         mddev->resync_min = 0;
8144                 mddev->resync_max = MaxSector;
8145         } else if (test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery))
8146                 mddev->resync_min = mddev->curr_resync_completed;
8147         set_bit(MD_RECOVERY_DONE, &mddev->recovery);
8148         mddev->curr_resync = 0;
8149         spin_unlock(&mddev->lock);
8150
8151         wake_up(&resync_wait);
8152         md_wakeup_thread(mddev->thread);
8153         return;
8154 }
8155 EXPORT_SYMBOL_GPL(md_do_sync);
8156
8157 static int remove_and_add_spares(struct mddev *mddev,
8158                                  struct md_rdev *this)
8159 {
8160         struct md_rdev *rdev;
8161         int spares = 0;
8162         int removed = 0;
8163
8164         rdev_for_each(rdev, mddev)
8165                 if ((this == NULL || rdev == this) &&
8166                     rdev->raid_disk >= 0 &&
8167                     !test_bit(Blocked, &rdev->flags) &&
8168                     (test_bit(Faulty, &rdev->flags) ||
8169                      (!test_bit(In_sync, &rdev->flags) &&
8170                       !test_bit(Journal, &rdev->flags))) &&
8171                     atomic_read(&rdev->nr_pending)==0) {
8172                         if (mddev->pers->hot_remove_disk(
8173                                     mddev, rdev) == 0) {
8174                                 sysfs_unlink_rdev(mddev, rdev);
8175                                 rdev->raid_disk = -1;
8176                                 removed++;
8177                         }
8178                 }
8179         if (removed && mddev->kobj.sd)
8180                 sysfs_notify(&mddev->kobj, NULL, "degraded");
8181
8182         if (this && removed)
8183                 goto no_add;
8184
8185         rdev_for_each(rdev, mddev) {
8186                 if (this && this != rdev)
8187                         continue;
8188                 if (test_bit(Candidate, &rdev->flags))
8189                         continue;
8190                 if (rdev->raid_disk >= 0 &&
8191                     !test_bit(In_sync, &rdev->flags) &&
8192                     !test_bit(Journal, &rdev->flags) &&
8193                     !test_bit(Faulty, &rdev->flags))
8194                         spares++;
8195                 if (rdev->raid_disk >= 0)
8196                         continue;
8197                 if (test_bit(Faulty, &rdev->flags))
8198                         continue;
8199                 if (!test_bit(Journal, &rdev->flags)) {
8200                         if (mddev->ro &&
8201                             ! (rdev->saved_raid_disk >= 0 &&
8202                                !test_bit(Bitmap_sync, &rdev->flags)))
8203                                 continue;
8204
8205                         rdev->recovery_offset = 0;
8206                 }
8207                 if (mddev->pers->
8208                     hot_add_disk(mddev, rdev) == 0) {
8209                         if (sysfs_link_rdev(mddev, rdev))
8210                                 /* failure here is OK */;
8211                         if (!test_bit(Journal, &rdev->flags))
8212                                 spares++;
8213                         md_new_event(mddev);
8214                         set_bit(MD_CHANGE_DEVS, &mddev->flags);
8215                 }
8216         }
8217 no_add:
8218         if (removed)
8219                 set_bit(MD_CHANGE_DEVS, &mddev->flags);
8220         return spares;
8221 }
8222
8223 static void md_start_sync(struct work_struct *ws)
8224 {
8225         struct mddev *mddev = container_of(ws, struct mddev, del_work);
8226         int ret = 0;
8227
8228         if (mddev_is_clustered(mddev)) {
8229                 ret = md_cluster_ops->resync_start(mddev);
8230                 if (ret) {
8231                         mddev->sync_thread = NULL;
8232                         goto out;
8233                 }
8234         }
8235
8236         mddev->sync_thread = md_register_thread(md_do_sync,
8237                                                 mddev,
8238                                                 "resync");
8239 out:
8240         if (!mddev->sync_thread) {
8241                 if (!(mddev_is_clustered(mddev) && ret == -EAGAIN))
8242                         printk(KERN_ERR "%s: could not start resync"
8243                                " thread...\n",
8244                                mdname(mddev));
8245                 /* leave the spares where they are, it shouldn't hurt */
8246                 clear_bit(MD_RECOVERY_SYNC, &mddev->recovery);
8247                 clear_bit(MD_RECOVERY_RESHAPE, &mddev->recovery);
8248                 clear_bit(MD_RECOVERY_REQUESTED, &mddev->recovery);
8249                 clear_bit(MD_RECOVERY_CHECK, &mddev->recovery);
8250                 clear_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
8251                 wake_up(&resync_wait);
8252                 if (test_and_clear_bit(MD_RECOVERY_RECOVER,
8253                                        &mddev->recovery))
8254                         if (mddev->sysfs_action)
8255                                 sysfs_notify_dirent_safe(mddev->sysfs_action);
8256         } else
8257                 md_wakeup_thread(mddev->sync_thread);
8258         sysfs_notify_dirent_safe(mddev->sysfs_action);
8259         md_new_event(mddev);
8260 }
8261
8262 /*
8263  * This routine is regularly called by all per-raid-array threads to
8264  * deal with generic issues like resync and super-block update.
8265  * Raid personalities that don't have a thread (linear/raid0) do not
8266  * need this as they never do any recovery or update the superblock.
8267  *
8268  * It does not do any resync itself, but rather "forks" off other threads
8269  * to do that as needed.
8270  * When it is determined that resync is needed, we set MD_RECOVERY_RUNNING in
8271  * "->recovery" and create a thread at ->sync_thread.
8272  * When the thread finishes it sets MD_RECOVERY_DONE
8273  * and wakeups up this thread which will reap the thread and finish up.
8274  * This thread also removes any faulty devices (with nr_pending == 0).
8275  *
8276  * The overall approach is:
8277  *  1/ if the superblock needs updating, update it.
8278  *  2/ If a recovery thread is running, don't do anything else.
8279  *  3/ If recovery has finished, clean up, possibly marking spares active.
8280  *  4/ If there are any faulty devices, remove them.
8281  *  5/ If array is degraded, try to add spares devices
8282  *  6/ If array has spares or is not in-sync, start a resync thread.
8283  */
8284 void md_check_recovery(struct mddev *mddev)
8285 {
8286         if (mddev->suspended)
8287                 return;
8288
8289         if (mddev->bitmap)
8290                 bitmap_daemon_work(mddev);
8291
8292         if (signal_pending(current)) {
8293                 if (mddev->pers->sync_request && !mddev->external) {
8294                         printk(KERN_INFO "md: %s in immediate safe mode\n",
8295                                mdname(mddev));
8296                         mddev->safemode = 2;
8297                 }
8298                 flush_signals(current);
8299         }
8300
8301         if (mddev->ro && !test_bit(MD_RECOVERY_NEEDED, &mddev->recovery))
8302                 return;
8303         if ( ! (
8304                 (mddev->flags & MD_UPDATE_SB_FLAGS & ~ (1<<MD_CHANGE_PENDING)) ||
8305                 test_bit(MD_RECOVERY_NEEDED, &mddev->recovery) ||
8306                 test_bit(MD_RECOVERY_DONE, &mddev->recovery) ||
8307                 test_bit(MD_RELOAD_SB, &mddev->flags) ||
8308                 (mddev->external == 0 && mddev->safemode == 1) ||
8309                 (mddev->safemode == 2 && ! atomic_read(&mddev->writes_pending)
8310                  && !mddev->in_sync && mddev->recovery_cp == MaxSector)
8311                 ))
8312                 return;
8313
8314         if (mddev_trylock(mddev)) {
8315                 int spares = 0;
8316
8317                 if (mddev->ro) {
8318                         struct md_rdev *rdev;
8319                         if (!mddev->external && mddev->in_sync)
8320                                 /* 'Blocked' flag not needed as failed devices
8321                                  * will be recorded if array switched to read/write.
8322                                  * Leaving it set will prevent the device
8323                                  * from being removed.
8324                                  */
8325                                 rdev_for_each(rdev, mddev)
8326                                         clear_bit(Blocked, &rdev->flags);
8327                         /* On a read-only array we can:
8328                          * - remove failed devices
8329                          * - add already-in_sync devices if the array itself
8330                          *   is in-sync.
8331                          * As we only add devices that are already in-sync,
8332                          * we can activate the spares immediately.
8333                          */
8334                         remove_and_add_spares(mddev, NULL);
8335                         /* There is no thread, but we need to call
8336                          * ->spare_active and clear saved_raid_disk
8337                          */
8338                         set_bit(MD_RECOVERY_INTR, &mddev->recovery);
8339                         md_reap_sync_thread(mddev);
8340                         clear_bit(MD_RECOVERY_RECOVER, &mddev->recovery);
8341                         clear_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
8342                         clear_bit(MD_CHANGE_PENDING, &mddev->flags);
8343                         goto unlock;
8344                 }
8345
8346                 if (mddev_is_clustered(mddev)) {
8347                         struct md_rdev *rdev;
8348                         /* kick the device if another node issued a
8349                          * remove disk.
8350                          */
8351                         rdev_for_each(rdev, mddev) {
8352                                 if (test_and_clear_bit(ClusterRemove, &rdev->flags) &&
8353                                                 rdev->raid_disk < 0)
8354                                         md_kick_rdev_from_array(rdev);
8355                         }
8356
8357                         if (test_and_clear_bit(MD_RELOAD_SB, &mddev->flags))
8358                                 md_reload_sb(mddev, mddev->good_device_nr);
8359                 }
8360
8361                 if (!mddev->external) {
8362                         int did_change = 0;
8363                         spin_lock(&mddev->lock);
8364                         if (mddev->safemode &&
8365                             !atomic_read(&mddev->writes_pending) &&
8366                             !mddev->in_sync &&
8367                             mddev->recovery_cp == MaxSector) {
8368                                 mddev->in_sync = 1;
8369                                 did_change = 1;
8370                                 set_bit(MD_CHANGE_CLEAN, &mddev->flags);
8371                         }
8372                         if (mddev->safemode == 1)
8373                                 mddev->safemode = 0;
8374                         spin_unlock(&mddev->lock);
8375                         if (did_change)
8376                                 sysfs_notify_dirent_safe(mddev->sysfs_state);
8377                 }
8378
8379                 if (mddev->flags & MD_UPDATE_SB_FLAGS)
8380                         md_update_sb(mddev, 0);
8381
8382                 if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery) &&
8383                     !test_bit(MD_RECOVERY_DONE, &mddev->recovery)) {
8384                         /* resync/recovery still happening */
8385                         clear_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
8386                         goto unlock;
8387                 }
8388                 if (mddev->sync_thread) {
8389                         md_reap_sync_thread(mddev);
8390                         goto unlock;
8391                 }
8392                 /* Set RUNNING before clearing NEEDED to avoid
8393                  * any transients in the value of "sync_action".
8394                  */
8395                 mddev->curr_resync_completed = 0;
8396                 spin_lock(&mddev->lock);
8397                 set_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
8398                 spin_unlock(&mddev->lock);
8399                 /* Clear some bits that don't mean anything, but
8400                  * might be left set
8401                  */
8402                 clear_bit(MD_RECOVERY_INTR, &mddev->recovery);
8403                 clear_bit(MD_RECOVERY_DONE, &mddev->recovery);
8404
8405                 if (!test_and_clear_bit(MD_RECOVERY_NEEDED, &mddev->recovery) ||
8406                     test_bit(MD_RECOVERY_FROZEN, &mddev->recovery))
8407                         goto not_running;
8408                 /* no recovery is running.
8409                  * remove any failed drives, then
8410                  * add spares if possible.
8411                  * Spares are also removed and re-added, to allow
8412                  * the personality to fail the re-add.
8413                  */
8414
8415                 if (mddev->reshape_position != MaxSector) {
8416                         if (mddev->pers->check_reshape == NULL ||
8417                             mddev->pers->check_reshape(mddev) != 0)
8418                                 /* Cannot proceed */
8419                                 goto not_running;
8420                         set_bit(MD_RECOVERY_RESHAPE, &mddev->recovery);
8421                         clear_bit(MD_RECOVERY_RECOVER, &mddev->recovery);
8422                 } else if ((spares = remove_and_add_spares(mddev, NULL))) {
8423                         clear_bit(MD_RECOVERY_SYNC, &mddev->recovery);
8424                         clear_bit(MD_RECOVERY_CHECK, &mddev->recovery);
8425                         clear_bit(MD_RECOVERY_REQUESTED, &mddev->recovery);
8426                         set_bit(MD_RECOVERY_RECOVER, &mddev->recovery);
8427                 } else if (mddev->recovery_cp < MaxSector) {
8428                         set_bit(MD_RECOVERY_SYNC, &mddev->recovery);
8429                         clear_bit(MD_RECOVERY_RECOVER, &mddev->recovery);
8430                 } else if (!test_bit(MD_RECOVERY_SYNC, &mddev->recovery))
8431                         /* nothing to be done ... */
8432                         goto not_running;
8433
8434                 if (mddev->pers->sync_request) {
8435                         if (spares) {
8436                                 /* We are adding a device or devices to an array
8437                                  * which has the bitmap stored on all devices.
8438                                  * So make sure all bitmap pages get written
8439                                  */
8440                                 bitmap_write_all(mddev->bitmap);
8441                         }
8442                         INIT_WORK(&mddev->del_work, md_start_sync);
8443                         queue_work(md_misc_wq, &mddev->del_work);
8444                         goto unlock;
8445                 }
8446         not_running:
8447                 if (!mddev->sync_thread) {
8448                         clear_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
8449                         wake_up(&resync_wait);
8450                         if (test_and_clear_bit(MD_RECOVERY_RECOVER,
8451                                                &mddev->recovery))
8452                                 if (mddev->sysfs_action)
8453                                         sysfs_notify_dirent_safe(mddev->sysfs_action);
8454                 }
8455         unlock:
8456                 wake_up(&mddev->sb_wait);
8457                 mddev_unlock(mddev);
8458         }
8459 }
8460 EXPORT_SYMBOL(md_check_recovery);
8461
8462 void md_reap_sync_thread(struct mddev *mddev)
8463 {
8464         struct md_rdev *rdev;
8465
8466         /* resync has finished, collect result */
8467         md_unregister_thread(&mddev->sync_thread);
8468         if (!test_bit(MD_RECOVERY_INTR, &mddev->recovery) &&
8469             !test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery)) {
8470                 /* success...*/
8471                 /* activate any spares */
8472                 if (mddev->pers->spare_active(mddev)) {
8473                         sysfs_notify(&mddev->kobj, NULL,
8474                                      "degraded");
8475                         set_bit(MD_CHANGE_DEVS, &mddev->flags);
8476                 }
8477         }
8478         if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery) &&
8479             mddev->pers->finish_reshape)
8480                 mddev->pers->finish_reshape(mddev);
8481
8482         /* If array is no-longer degraded, then any saved_raid_disk
8483          * information must be scrapped.
8484          */
8485         if (!mddev->degraded)
8486                 rdev_for_each(rdev, mddev)
8487                         rdev->saved_raid_disk = -1;
8488
8489         md_update_sb(mddev, 1);
8490         clear_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
8491         clear_bit(MD_RECOVERY_DONE, &mddev->recovery);
8492         clear_bit(MD_RECOVERY_SYNC, &mddev->recovery);
8493         clear_bit(MD_RECOVERY_RESHAPE, &mddev->recovery);
8494         clear_bit(MD_RECOVERY_REQUESTED, &mddev->recovery);
8495         clear_bit(MD_RECOVERY_CHECK, &mddev->recovery);
8496         wake_up(&resync_wait);
8497         /* flag recovery needed just to double check */
8498         set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
8499         sysfs_notify_dirent_safe(mddev->sysfs_action);
8500         md_new_event(mddev);
8501         if (mddev->event_work.func)
8502                 queue_work(md_misc_wq, &mddev->event_work);
8503 }
8504 EXPORT_SYMBOL(md_reap_sync_thread);
8505
8506 void md_wait_for_blocked_rdev(struct md_rdev *rdev, struct mddev *mddev)
8507 {
8508         sysfs_notify_dirent_safe(rdev->sysfs_state);
8509         wait_event_timeout(rdev->blocked_wait,
8510                            !test_bit(Blocked, &rdev->flags) &&
8511                            !test_bit(BlockedBadBlocks, &rdev->flags),
8512                            msecs_to_jiffies(5000));
8513         rdev_dec_pending(rdev, mddev);
8514 }
8515 EXPORT_SYMBOL(md_wait_for_blocked_rdev);
8516
8517 void md_finish_reshape(struct mddev *mddev)
8518 {
8519         /* called be personality module when reshape completes. */
8520         struct md_rdev *rdev;
8521
8522         rdev_for_each(rdev, mddev) {
8523                 if (rdev->data_offset > rdev->new_data_offset)
8524                         rdev->sectors += rdev->data_offset - rdev->new_data_offset;
8525                 else
8526                         rdev->sectors -= rdev->new_data_offset - rdev->data_offset;
8527                 rdev->data_offset = rdev->new_data_offset;
8528         }
8529 }
8530 EXPORT_SYMBOL(md_finish_reshape);
8531
8532 /* Bad block management.
8533  * We can record which blocks on each device are 'bad' and so just
8534  * fail those blocks, or that stripe, rather than the whole device.
8535  * Entries in the bad-block table are 64bits wide.  This comprises:
8536  * Length of bad-range, in sectors: 0-511 for lengths 1-512
8537  * Start of bad-range, sector offset, 54 bits (allows 8 exbibytes)
8538  *  A 'shift' can be set so that larger blocks are tracked and
8539  *  consequently larger devices can be covered.
8540  * 'Acknowledged' flag - 1 bit. - the most significant bit.
8541  *
8542  * Locking of the bad-block table uses a seqlock so md_is_badblock
8543  * might need to retry if it is very unlucky.
8544  * We will sometimes want to check for bad blocks in a bi_end_io function,
8545  * so we use the write_seqlock_irq variant.
8546  *
8547  * When looking for a bad block we specify a range and want to
8548  * know if any block in the range is bad.  So we binary-search
8549  * to the last range that starts at-or-before the given endpoint,
8550  * (or "before the sector after the target range")
8551  * then see if it ends after the given start.
8552  * We return
8553  *  0 if there are no known bad blocks in the range
8554  *  1 if there are known bad block which are all acknowledged
8555  * -1 if there are bad blocks which have not yet been acknowledged in metadata.
8556  * plus the start/length of the first bad section we overlap.
8557  */
8558 int md_is_badblock(struct badblocks *bb, sector_t s, int sectors,
8559                    sector_t *first_bad, int *bad_sectors)
8560 {
8561         int hi;
8562         int lo;
8563         u64 *p = bb->page;
8564         int rv;
8565         sector_t target = s + sectors;
8566         unsigned seq;
8567
8568         if (bb->shift > 0) {
8569                 /* round the start down, and the end up */
8570                 s >>= bb->shift;
8571                 target += (1<<bb->shift) - 1;
8572                 target >>= bb->shift;
8573                 sectors = target - s;
8574         }
8575         /* 'target' is now the first block after the bad range */
8576
8577 retry:
8578         seq = read_seqbegin(&bb->lock);
8579         lo = 0;
8580         rv = 0;
8581         hi = bb->count;
8582
8583         /* Binary search between lo and hi for 'target'
8584          * i.e. for the last range that starts before 'target'
8585          */
8586         /* INVARIANT: ranges before 'lo' and at-or-after 'hi'
8587          * are known not to be the last range before target.
8588          * VARIANT: hi-lo is the number of possible
8589          * ranges, and decreases until it reaches 1
8590          */
8591         while (hi - lo > 1) {
8592                 int mid = (lo + hi) / 2;
8593                 sector_t a = BB_OFFSET(p[mid]);
8594                 if (a < target)
8595                         /* This could still be the one, earlier ranges
8596                          * could not. */
8597                         lo = mid;
8598                 else
8599                         /* This and later ranges are definitely out. */
8600                         hi = mid;
8601         }
8602         /* 'lo' might be the last that started before target, but 'hi' isn't */
8603         if (hi > lo) {
8604                 /* need to check all range that end after 's' to see if
8605                  * any are unacknowledged.
8606                  */
8607                 while (lo >= 0 &&
8608                        BB_OFFSET(p[lo]) + BB_LEN(p[lo]) > s) {
8609                         if (BB_OFFSET(p[lo]) < target) {
8610                                 /* starts before the end, and finishes after
8611                                  * the start, so they must overlap
8612                                  */
8613                                 if (rv != -1 && BB_ACK(p[lo]))
8614                                         rv = 1;
8615                                 else
8616                                         rv = -1;
8617                                 *first_bad = BB_OFFSET(p[lo]);
8618                                 *bad_sectors = BB_LEN(p[lo]);
8619                         }
8620                         lo--;
8621                 }
8622         }
8623
8624         if (read_seqretry(&bb->lock, seq))
8625                 goto retry;
8626
8627         return rv;
8628 }
8629 EXPORT_SYMBOL_GPL(md_is_badblock);
8630
8631 /*
8632  * Add a range of bad blocks to the table.
8633  * This might extend the table, or might contract it
8634  * if two adjacent ranges can be merged.
8635  * We binary-search to find the 'insertion' point, then
8636  * decide how best to handle it.
8637  */
8638 static int md_set_badblocks(struct badblocks *bb, sector_t s, int sectors,
8639                             int acknowledged)
8640 {
8641         u64 *p;
8642         int lo, hi;
8643         int rv = 1;
8644         unsigned long flags;
8645
8646         if (bb->shift < 0)
8647                 /* badblocks are disabled */
8648                 return 0;
8649
8650         if (bb->shift) {
8651                 /* round the start down, and the end up */
8652                 sector_t next = s + sectors;
8653                 s >>= bb->shift;
8654                 next += (1<<bb->shift) - 1;
8655                 next >>= bb->shift;
8656                 sectors = next - s;
8657         }
8658
8659         write_seqlock_irqsave(&bb->lock, flags);
8660
8661         p = bb->page;
8662         lo = 0;
8663         hi = bb->count;
8664         /* Find the last range that starts at-or-before 's' */
8665         while (hi - lo > 1) {
8666                 int mid = (lo + hi) / 2;
8667                 sector_t a = BB_OFFSET(p[mid]);
8668                 if (a <= s)
8669                         lo = mid;
8670                 else
8671                         hi = mid;
8672         }
8673         if (hi > lo && BB_OFFSET(p[lo]) > s)
8674                 hi = lo;
8675
8676         if (hi > lo) {
8677                 /* we found a range that might merge with the start
8678                  * of our new range
8679                  */
8680                 sector_t a = BB_OFFSET(p[lo]);
8681                 sector_t e = a + BB_LEN(p[lo]);
8682                 int ack = BB_ACK(p[lo]);
8683                 if (e >= s) {
8684                         /* Yes, we can merge with a previous range */
8685                         if (s == a && s + sectors >= e)
8686                                 /* new range covers old */
8687                                 ack = acknowledged;
8688                         else
8689                                 ack = ack && acknowledged;
8690
8691                         if (e < s + sectors)
8692                                 e = s + sectors;
8693                         if (e - a <= BB_MAX_LEN) {
8694                                 p[lo] = BB_MAKE(a, e-a, ack);
8695                                 s = e;
8696                         } else {
8697                                 /* does not all fit in one range,
8698                                  * make p[lo] maximal
8699                                  */
8700                                 if (BB_LEN(p[lo]) != BB_MAX_LEN)
8701                                         p[lo] = BB_MAKE(a, BB_MAX_LEN, ack);
8702                                 s = a + BB_MAX_LEN;
8703                         }
8704                         sectors = e - s;
8705                 }
8706         }
8707         if (sectors && hi < bb->count) {
8708                 /* 'hi' points to the first range that starts after 's'.
8709                  * Maybe we can merge with the start of that range */
8710                 sector_t a = BB_OFFSET(p[hi]);
8711                 sector_t e = a + BB_LEN(p[hi]);
8712                 int ack = BB_ACK(p[hi]);
8713                 if (a <= s + sectors) {
8714                         /* merging is possible */
8715                         if (e <= s + sectors) {
8716                                 /* full overlap */
8717                                 e = s + sectors;
8718                                 ack = acknowledged;
8719                         } else
8720                                 ack = ack && acknowledged;
8721
8722                         a = s;
8723                         if (e - a <= BB_MAX_LEN) {
8724                                 p[hi] = BB_MAKE(a, e-a, ack);
8725                                 s = e;
8726                         } else {
8727                                 p[hi] = BB_MAKE(a, BB_MAX_LEN, ack);
8728                                 s = a + BB_MAX_LEN;
8729                         }
8730                         sectors = e - s;
8731                         lo = hi;
8732                         hi++;
8733                 }
8734         }
8735         if (sectors == 0 && hi < bb->count) {
8736                 /* we might be able to combine lo and hi */
8737                 /* Note: 's' is at the end of 'lo' */
8738                 sector_t a = BB_OFFSET(p[hi]);
8739                 int lolen = BB_LEN(p[lo]);
8740                 int hilen = BB_LEN(p[hi]);
8741                 int newlen = lolen + hilen - (s - a);
8742                 if (s >= a && newlen < BB_MAX_LEN) {
8743                         /* yes, we can combine them */
8744                         int ack = BB_ACK(p[lo]) && BB_ACK(p[hi]);
8745                         p[lo] = BB_MAKE(BB_OFFSET(p[lo]), newlen, ack);
8746                         memmove(p + hi, p + hi + 1,
8747                                 (bb->count - hi - 1) * 8);
8748                         bb->count--;
8749                 }
8750         }
8751         while (sectors) {
8752                 /* didn't merge (it all).
8753                  * Need to add a range just before 'hi' */
8754                 if (bb->count >= MD_MAX_BADBLOCKS) {
8755                         /* No room for more */
8756                         rv = 0;
8757                         break;
8758                 } else {
8759                         int this_sectors = sectors;
8760                         memmove(p + hi + 1, p + hi,
8761                                 (bb->count - hi) * 8);
8762                         bb->count++;
8763
8764                         if (this_sectors > BB_MAX_LEN)
8765                                 this_sectors = BB_MAX_LEN;
8766                         p[hi] = BB_MAKE(s, this_sectors, acknowledged);
8767                         sectors -= this_sectors;
8768                         s += this_sectors;
8769                 }
8770         }
8771
8772         bb->changed = 1;
8773         if (!acknowledged)
8774                 bb->unacked_exist = 1;
8775         write_sequnlock_irqrestore(&bb->lock, flags);
8776
8777         return rv;
8778 }
8779
8780 int rdev_set_badblocks(struct md_rdev *rdev, sector_t s, int sectors,
8781                        int is_new)
8782 {
8783         int rv;
8784         if (is_new)
8785                 s += rdev->new_data_offset;
8786         else
8787                 s += rdev->data_offset;
8788         rv = md_set_badblocks(&rdev->badblocks,
8789                               s, sectors, 0);
8790         if (rv) {
8791                 /* Make sure they get written out promptly */
8792                 sysfs_notify_dirent_safe(rdev->sysfs_state);
8793                 set_bit(MD_CHANGE_CLEAN, &rdev->mddev->flags);
8794                 set_bit(MD_CHANGE_PENDING, &rdev->mddev->flags);
8795                 md_wakeup_thread(rdev->mddev->thread);
8796         }
8797         return rv;
8798 }
8799 EXPORT_SYMBOL_GPL(rdev_set_badblocks);
8800
8801 /*
8802  * Remove a range of bad blocks from the table.
8803  * This may involve extending the table if we spilt a region,
8804  * but it must not fail.  So if the table becomes full, we just
8805  * drop the remove request.
8806  */
8807 static int md_clear_badblocks(struct badblocks *bb, sector_t s, int sectors)
8808 {
8809         u64 *p;
8810         int lo, hi;
8811         sector_t target = s + sectors;
8812         int rv = 0;
8813
8814         if (bb->shift > 0) {
8815                 /* When clearing we round the start up and the end down.
8816                  * This should not matter as the shift should align with
8817                  * the block size and no rounding should ever be needed.
8818                  * However it is better the think a block is bad when it
8819                  * isn't than to think a block is not bad when it is.
8820                  */
8821                 s += (1<<bb->shift) - 1;
8822                 s >>= bb->shift;
8823                 target >>= bb->shift;
8824                 sectors = target - s;
8825         }
8826
8827         write_seqlock_irq(&bb->lock);
8828
8829         p = bb->page;
8830         lo = 0;
8831         hi = bb->count;
8832         /* Find the last range that starts before 'target' */
8833         while (hi - lo > 1) {
8834                 int mid = (lo + hi) / 2;
8835                 sector_t a = BB_OFFSET(p[mid]);
8836                 if (a < target)
8837                         lo = mid;
8838                 else
8839                         hi = mid;
8840         }
8841         if (hi > lo) {
8842                 /* p[lo] is the last range that could overlap the
8843                  * current range.  Earlier ranges could also overlap,
8844                  * but only this one can overlap the end of the range.
8845                  */
8846                 if (BB_OFFSET(p[lo]) + BB_LEN(p[lo]) > target) {
8847                         /* Partial overlap, leave the tail of this range */
8848                         int ack = BB_ACK(p[lo]);
8849                         sector_t a = BB_OFFSET(p[lo]);
8850                         sector_t end = a + BB_LEN(p[lo]);
8851
8852                         if (a < s) {
8853                                 /* we need to split this range */
8854                                 if (bb->count >= MD_MAX_BADBLOCKS) {
8855                                         rv = -ENOSPC;
8856                                         goto out;
8857                                 }
8858                                 memmove(p+lo+1, p+lo, (bb->count - lo) * 8);
8859                                 bb->count++;
8860                                 p[lo] = BB_MAKE(a, s-a, ack);
8861                                 lo++;
8862                         }
8863                         p[lo] = BB_MAKE(target, end - target, ack);
8864                         /* there is no longer an overlap */
8865                         hi = lo;
8866                         lo--;
8867                 }
8868                 while (lo >= 0 &&
8869                        BB_OFFSET(p[lo]) + BB_LEN(p[lo]) > s) {
8870                         /* This range does overlap */
8871                         if (BB_OFFSET(p[lo]) < s) {
8872                                 /* Keep the early parts of this range. */
8873                                 int ack = BB_ACK(p[lo]);
8874                                 sector_t start = BB_OFFSET(p[lo]);
8875                                 p[lo] = BB_MAKE(start, s - start, ack);
8876                                 /* now low doesn't overlap, so.. */
8877                                 break;
8878                         }
8879                         lo--;
8880                 }
8881                 /* 'lo' is strictly before, 'hi' is strictly after,
8882                  * anything between needs to be discarded
8883                  */
8884                 if (hi - lo > 1) {
8885                         memmove(p+lo+1, p+hi, (bb->count - hi) * 8);
8886                         bb->count -= (hi - lo - 1);
8887                 }
8888         }
8889
8890         bb->changed = 1;
8891 out:
8892         write_sequnlock_irq(&bb->lock);
8893         return rv;
8894 }
8895
8896 int rdev_clear_badblocks(struct md_rdev *rdev, sector_t s, int sectors,
8897                          int is_new)
8898 {
8899         if (is_new)
8900                 s += rdev->new_data_offset;
8901         else
8902                 s += rdev->data_offset;
8903         return md_clear_badblocks(&rdev->badblocks,
8904                                   s, sectors);
8905 }
8906 EXPORT_SYMBOL_GPL(rdev_clear_badblocks);
8907
8908 /*
8909  * Acknowledge all bad blocks in a list.
8910  * This only succeeds if ->changed is clear.  It is used by
8911  * in-kernel metadata updates
8912  */
8913 void md_ack_all_badblocks(struct badblocks *bb)
8914 {
8915         if (bb->page == NULL || bb->changed)
8916                 /* no point even trying */
8917                 return;
8918         write_seqlock_irq(&bb->lock);
8919
8920         if (bb->changed == 0 && bb->unacked_exist) {
8921                 u64 *p = bb->page;
8922                 int i;
8923                 for (i = 0; i < bb->count ; i++) {
8924                         if (!BB_ACK(p[i])) {
8925                                 sector_t start = BB_OFFSET(p[i]);
8926                                 int len = BB_LEN(p[i]);
8927                                 p[i] = BB_MAKE(start, len, 1);
8928                         }
8929                 }
8930                 bb->unacked_exist = 0;
8931         }
8932         write_sequnlock_irq(&bb->lock);
8933 }
8934 EXPORT_SYMBOL_GPL(md_ack_all_badblocks);
8935
8936 /* sysfs access to bad-blocks list.
8937  * We present two files.
8938  * 'bad-blocks' lists sector numbers and lengths of ranges that
8939  *    are recorded as bad.  The list is truncated to fit within
8940  *    the one-page limit of sysfs.
8941  *    Writing "sector length" to this file adds an acknowledged
8942  *    bad block list.
8943  * 'unacknowledged-bad-blocks' lists bad blocks that have not yet
8944  *    been acknowledged.  Writing to this file adds bad blocks
8945  *    without acknowledging them.  This is largely for testing.
8946  */
8947
8948 static ssize_t
8949 badblocks_show(struct badblocks *bb, char *page, int unack)
8950 {
8951         size_t len;
8952         int i;
8953         u64 *p = bb->page;
8954         unsigned seq;
8955
8956         if (bb->shift < 0)
8957                 return 0;
8958
8959 retry:
8960         seq = read_seqbegin(&bb->lock);
8961
8962         len = 0;
8963         i = 0;
8964
8965         while (len < PAGE_SIZE && i < bb->count) {
8966                 sector_t s = BB_OFFSET(p[i]);
8967                 unsigned int length = BB_LEN(p[i]);
8968                 int ack = BB_ACK(p[i]);
8969                 i++;
8970
8971                 if (unack && ack)
8972                         continue;
8973
8974                 len += snprintf(page+len, PAGE_SIZE-len, "%llu %u\n",
8975                                 (unsigned long long)s << bb->shift,
8976                                 length << bb->shift);
8977         }
8978         if (unack && len == 0)
8979                 bb->unacked_exist = 0;
8980
8981         if (read_seqretry(&bb->lock, seq))
8982                 goto retry;
8983
8984         return len;
8985 }
8986
8987 #define DO_DEBUG 1
8988
8989 static ssize_t
8990 badblocks_store(struct badblocks *bb, const char *page, size_t len, int unack)
8991 {
8992         unsigned long long sector;
8993         int length;
8994         char newline;
8995 #ifdef DO_DEBUG
8996         /* Allow clearing via sysfs *only* for testing/debugging.
8997          * Normally only a successful write may clear a badblock
8998          */
8999         int clear = 0;
9000         if (page[0] == '-') {
9001                 clear = 1;
9002                 page++;
9003         }
9004 #endif /* DO_DEBUG */
9005
9006         switch (sscanf(page, "%llu %d%c", &sector, &length, &newline)) {
9007         case 3:
9008                 if (newline != '\n')
9009                         return -EINVAL;
9010         case 2:
9011                 if (length <= 0)
9012                         return -EINVAL;
9013                 break;
9014         default:
9015                 return -EINVAL;
9016         }
9017
9018 #ifdef DO_DEBUG
9019         if (clear) {
9020                 md_clear_badblocks(bb, sector, length);
9021                 return len;
9022         }
9023 #endif /* DO_DEBUG */
9024         if (md_set_badblocks(bb, sector, length, !unack))
9025                 return len;
9026         else
9027                 return -ENOSPC;
9028 }
9029
9030 static int md_notify_reboot(struct notifier_block *this,
9031                             unsigned long code, void *x)
9032 {
9033         struct list_head *tmp;
9034         struct mddev *mddev;
9035         int need_delay = 0;
9036
9037         for_each_mddev(mddev, tmp) {
9038                 if (mddev_trylock(mddev)) {
9039                         if (mddev->pers)
9040                                 __md_stop_writes(mddev);
9041                         if (mddev->persistent)
9042                                 mddev->safemode = 2;
9043                         mddev_unlock(mddev);
9044                 }
9045                 need_delay = 1;
9046         }
9047         /*
9048          * certain more exotic SCSI devices are known to be
9049          * volatile wrt too early system reboots. While the
9050          * right place to handle this issue is the given
9051          * driver, we do want to have a safe RAID driver ...
9052          */
9053         if (need_delay)
9054                 mdelay(1000*1);
9055
9056         return NOTIFY_DONE;
9057 }
9058
9059 static struct notifier_block md_notifier = {
9060         .notifier_call  = md_notify_reboot,
9061         .next           = NULL,
9062         .priority       = INT_MAX, /* before any real devices */
9063 };
9064
9065 static void md_geninit(void)
9066 {
9067         pr_debug("md: sizeof(mdp_super_t) = %d\n", (int)sizeof(mdp_super_t));
9068
9069         proc_create("mdstat", S_IRUGO, NULL, &md_seq_fops);
9070 }
9071
9072 static int __init md_init(void)
9073 {
9074         int ret = -ENOMEM;
9075
9076         md_wq = alloc_workqueue("md", WQ_MEM_RECLAIM, 0);
9077         if (!md_wq)
9078                 goto err_wq;
9079
9080         md_misc_wq = alloc_workqueue("md_misc", 0, 0);
9081         if (!md_misc_wq)
9082                 goto err_misc_wq;
9083
9084         if ((ret = register_blkdev(MD_MAJOR, "md")) < 0)
9085                 goto err_md;
9086
9087         if ((ret = register_blkdev(0, "mdp")) < 0)
9088                 goto err_mdp;
9089         mdp_major = ret;
9090
9091         blk_register_region(MKDEV(MD_MAJOR, 0), 512, THIS_MODULE,
9092                             md_probe, NULL, NULL);
9093         blk_register_region(MKDEV(mdp_major, 0), 1UL<<MINORBITS, THIS_MODULE,
9094                             md_probe, NULL, NULL);
9095
9096         register_reboot_notifier(&md_notifier);
9097         raid_table_header = register_sysctl_table(raid_root_table);
9098
9099         md_geninit();
9100         return 0;
9101
9102 err_mdp:
9103         unregister_blkdev(MD_MAJOR, "md");
9104 err_md:
9105         destroy_workqueue(md_misc_wq);
9106 err_misc_wq:
9107         destroy_workqueue(md_wq);
9108 err_wq:
9109         return ret;
9110 }
9111
9112 static void check_sb_changes(struct mddev *mddev, struct md_rdev *rdev)
9113 {
9114         struct mdp_superblock_1 *sb = page_address(rdev->sb_page);
9115         struct md_rdev *rdev2;
9116         int role, ret;
9117         char b[BDEVNAME_SIZE];
9118
9119         /* Check for change of roles in the active devices */
9120         rdev_for_each(rdev2, mddev) {
9121                 if (test_bit(Faulty, &rdev2->flags))
9122                         continue;
9123
9124                 /* Check if the roles changed */
9125                 role = le16_to_cpu(sb->dev_roles[rdev2->desc_nr]);
9126
9127                 if (test_bit(Candidate, &rdev2->flags)) {
9128                         if (role == 0xfffe) {
9129                                 pr_info("md: Removing Candidate device %s because add failed\n", bdevname(rdev2->bdev,b));
9130                                 md_kick_rdev_from_array(rdev2);
9131                                 continue;
9132                         }
9133                         else
9134                                 clear_bit(Candidate, &rdev2->flags);
9135                 }
9136
9137                 if (role != rdev2->raid_disk) {
9138                         /* got activated */
9139                         if (rdev2->raid_disk == -1 && role != 0xffff) {
9140                                 rdev2->saved_raid_disk = role;
9141                                 ret = remove_and_add_spares(mddev, rdev2);
9142                                 pr_info("Activated spare: %s\n",
9143                                                 bdevname(rdev2->bdev,b));
9144                         }
9145                         /* device faulty
9146                          * We just want to do the minimum to mark the disk
9147                          * as faulty. The recovery is performed by the
9148                          * one who initiated the error.
9149                          */
9150                         if ((role == 0xfffe) || (role == 0xfffd)) {
9151                                 md_error(mddev, rdev2);
9152                                 clear_bit(Blocked, &rdev2->flags);
9153                         }
9154                 }
9155         }
9156
9157         if (mddev->raid_disks != le32_to_cpu(sb->raid_disks))
9158                 update_raid_disks(mddev, le32_to_cpu(sb->raid_disks));
9159
9160         /* Finally set the event to be up to date */
9161         mddev->events = le64_to_cpu(sb->events);
9162 }
9163
9164 static int read_rdev(struct mddev *mddev, struct md_rdev *rdev)
9165 {
9166         int err;
9167         struct page *swapout = rdev->sb_page;
9168         struct mdp_superblock_1 *sb;
9169
9170         /* Store the sb page of the rdev in the swapout temporary
9171          * variable in case we err in the future
9172          */
9173         rdev->sb_page = NULL;
9174         alloc_disk_sb(rdev);
9175         ClearPageUptodate(rdev->sb_page);
9176         rdev->sb_loaded = 0;
9177         err = super_types[mddev->major_version].load_super(rdev, NULL, mddev->minor_version);
9178
9179         if (err < 0) {
9180                 pr_warn("%s: %d Could not reload rdev(%d) err: %d. Restoring old values\n",
9181                                 __func__, __LINE__, rdev->desc_nr, err);
9182                 put_page(rdev->sb_page);
9183                 rdev->sb_page = swapout;
9184                 rdev->sb_loaded = 1;
9185                 return err;
9186         }
9187
9188         sb = page_address(rdev->sb_page);
9189         /* Read the offset unconditionally, even if MD_FEATURE_RECOVERY_OFFSET
9190          * is not set
9191          */
9192
9193         if ((le32_to_cpu(sb->feature_map) & MD_FEATURE_RECOVERY_OFFSET))
9194                 rdev->recovery_offset = le64_to_cpu(sb->recovery_offset);
9195
9196         /* The other node finished recovery, call spare_active to set
9197          * device In_sync and mddev->degraded
9198          */
9199         if (rdev->recovery_offset == MaxSector &&
9200             !test_bit(In_sync, &rdev->flags) &&
9201             mddev->pers->spare_active(mddev))
9202                 sysfs_notify(&mddev->kobj, NULL, "degraded");
9203
9204         put_page(swapout);
9205         return 0;
9206 }
9207
9208 void md_reload_sb(struct mddev *mddev, int nr)
9209 {
9210         struct md_rdev *rdev;
9211         int err;
9212
9213         /* Find the rdev */
9214         rdev_for_each_rcu(rdev, mddev) {
9215                 if (rdev->desc_nr == nr)
9216                         break;
9217         }
9218
9219         if (!rdev || rdev->desc_nr != nr) {
9220                 pr_warn("%s: %d Could not find rdev with nr %d\n", __func__, __LINE__, nr);
9221                 return;
9222         }
9223
9224         err = read_rdev(mddev, rdev);
9225         if (err < 0)
9226                 return;
9227
9228         check_sb_changes(mddev, rdev);
9229
9230         /* Read all rdev's to update recovery_offset */
9231         rdev_for_each_rcu(rdev, mddev)
9232                 read_rdev(mddev, rdev);
9233 }
9234 EXPORT_SYMBOL(md_reload_sb);
9235
9236 #ifndef MODULE
9237
9238 /*
9239  * Searches all registered partitions for autorun RAID arrays
9240  * at boot time.
9241  */
9242
9243 static LIST_HEAD(all_detected_devices);
9244 struct detected_devices_node {
9245         struct list_head list;
9246         dev_t dev;
9247 };
9248
9249 void md_autodetect_dev(dev_t dev)
9250 {
9251         struct detected_devices_node *node_detected_dev;
9252
9253         node_detected_dev = kzalloc(sizeof(*node_detected_dev), GFP_KERNEL);
9254         if (node_detected_dev) {
9255                 node_detected_dev->dev = dev;
9256                 list_add_tail(&node_detected_dev->list, &all_detected_devices);
9257         } else {
9258                 printk(KERN_CRIT "md: md_autodetect_dev: kzalloc failed"
9259                         ", skipping dev(%d,%d)\n", MAJOR(dev), MINOR(dev));
9260         }
9261 }
9262
9263 static void autostart_arrays(int part)
9264 {
9265         struct md_rdev *rdev;
9266         struct detected_devices_node *node_detected_dev;
9267         dev_t dev;
9268         int i_scanned, i_passed;
9269
9270         i_scanned = 0;
9271         i_passed = 0;
9272
9273         printk(KERN_INFO "md: Autodetecting RAID arrays.\n");
9274
9275         while (!list_empty(&all_detected_devices) && i_scanned < INT_MAX) {
9276                 i_scanned++;
9277                 node_detected_dev = list_entry(all_detected_devices.next,
9278                                         struct detected_devices_node, list);
9279                 list_del(&node_detected_dev->list);
9280                 dev = node_detected_dev->dev;
9281                 kfree(node_detected_dev);
9282                 rdev = md_import_device(dev,0, 90);
9283                 if (IS_ERR(rdev))
9284                         continue;
9285
9286                 if (test_bit(Faulty, &rdev->flags))
9287                         continue;
9288
9289                 set_bit(AutoDetected, &rdev->flags);
9290                 list_add(&rdev->same_set, &pending_raid_disks);
9291                 i_passed++;
9292         }
9293
9294         printk(KERN_INFO "md: Scanned %d and added %d devices.\n",
9295                                                 i_scanned, i_passed);
9296
9297         autorun_devices(part);
9298 }
9299
9300 #endif /* !MODULE */
9301
9302 static __exit void md_exit(void)
9303 {
9304         struct mddev *mddev;
9305         struct list_head *tmp;
9306         int delay = 1;
9307
9308         blk_unregister_region(MKDEV(MD_MAJOR,0), 512);
9309         blk_unregister_region(MKDEV(mdp_major,0), 1U << MINORBITS);
9310
9311         unregister_blkdev(MD_MAJOR,"md");
9312         unregister_blkdev(mdp_major, "mdp");
9313         unregister_reboot_notifier(&md_notifier);
9314         unregister_sysctl_table(raid_table_header);
9315
9316         /* We cannot unload the modules while some process is
9317          * waiting for us in select() or poll() - wake them up
9318          */
9319         md_unloading = 1;
9320         while (waitqueue_active(&md_event_waiters)) {
9321                 /* not safe to leave yet */
9322                 wake_up(&md_event_waiters);
9323                 msleep(delay);
9324                 delay += delay;
9325         }
9326         remove_proc_entry("mdstat", NULL);
9327
9328         for_each_mddev(mddev, tmp) {
9329                 export_array(mddev);
9330                 mddev->hold_active = 0;
9331         }
9332         destroy_workqueue(md_misc_wq);
9333         destroy_workqueue(md_wq);
9334 }
9335
9336 subsys_initcall(md_init);
9337 module_exit(md_exit)
9338
9339 static int get_ro(char *buffer, struct kernel_param *kp)
9340 {
9341         return sprintf(buffer, "%d", start_readonly);
9342 }
9343 static int set_ro(const char *val, struct kernel_param *kp)
9344 {
9345         return kstrtouint(val, 10, (unsigned int *)&start_readonly);
9346 }
9347
9348 module_param_call(start_ro, set_ro, get_ro, NULL, S_IRUSR|S_IWUSR);
9349 module_param(start_dirty_degraded, int, S_IRUGO|S_IWUSR);
9350 module_param_call(new_array, add_named_array, NULL, NULL, S_IWUSR);
9351
9352 MODULE_LICENSE("GPL");
9353 MODULE_DESCRIPTION("MD RAID framework");
9354 MODULE_ALIAS("md");
9355 MODULE_ALIAS_BLOCKDEV_MAJOR(MD_MAJOR);